1062 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1062 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief <b> ZPOSVX computes the solution to system of linear equations A * X = B for PO matrices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZPOSVX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zposvx.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zposvx.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zposvx.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZPOSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, EQUED, */
 | |
| /*                          S, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, */
 | |
| /*                          RWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          EQUED, FACT, UPLO */
 | |
| /*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS */
 | |
| /*       DOUBLE PRECISION   RCOND */
 | |
| /*       DOUBLE PRECISION   BERR( * ), FERR( * ), RWORK( * ), S( * ) */
 | |
| /*       COMPLEX*16         A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
 | |
| /*      $                   WORK( * ), X( LDX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZPOSVX uses the Cholesky factorization A = U**H*U or A = L*L**H to */
 | |
| /* > compute the solution to a complex system of linear equations */
 | |
| /* >    A * X = B, */
 | |
| /* > where A is an N-by-N Hermitian positive definite matrix and X and B */
 | |
| /* > are N-by-NRHS matrices. */
 | |
| /* > */
 | |
| /* > Error bounds on the solution and a condition estimate are also */
 | |
| /* > provided. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Description: */
 | |
| /*  ================= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > The following steps are performed: */
 | |
| /* > */
 | |
| /* > 1. If FACT = 'E', real scaling factors are computed to equilibrate */
 | |
| /* >    the system: */
 | |
| /* >       diag(S) * A * diag(S) * inv(diag(S)) * X = diag(S) * B */
 | |
| /* >    Whether or not the system will be equilibrated depends on the */
 | |
| /* >    scaling of the matrix A, but if equilibration is used, A is */
 | |
| /* >    overwritten by diag(S)*A*diag(S) and B by diag(S)*B. */
 | |
| /* > */
 | |
| /* > 2. If FACT = 'N' or 'E', the Cholesky decomposition is used to */
 | |
| /* >    factor the matrix A (after equilibration if FACT = 'E') as */
 | |
| /* >       A = U**H* U,  if UPLO = 'U', or */
 | |
| /* >       A = L * L**H,  if UPLO = 'L', */
 | |
| /* >    where U is an upper triangular matrix and L is a lower triangular */
 | |
| /* >    matrix. */
 | |
| /* > */
 | |
| /* > 3. If the leading i-by-i principal minor is not positive definite, */
 | |
| /* >    then the routine returns with INFO = i. Otherwise, the factored */
 | |
| /* >    form of A is used to estimate the condition number of the matrix */
 | |
| /* >    A.  If the reciprocal of the condition number is less than machine */
 | |
| /* >    precision, INFO = N+1 is returned as a warning, but the routine */
 | |
| /* >    still goes on to solve for X and compute error bounds as */
 | |
| /* >    described below. */
 | |
| /* > */
 | |
| /* > 4. The system of equations is solved for X using the factored form */
 | |
| /* >    of A. */
 | |
| /* > */
 | |
| /* > 5. Iterative refinement is applied to improve the computed solution */
 | |
| /* >    matrix and calculate error bounds and backward error estimates */
 | |
| /* >    for it. */
 | |
| /* > */
 | |
| /* > 6. If equilibration was used, the matrix X is premultiplied by */
 | |
| /* >    diag(S) so that it solves the original system before */
 | |
| /* >    equilibration. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] FACT */
 | |
| /* > \verbatim */
 | |
| /* >          FACT is CHARACTER*1 */
 | |
| /* >          Specifies whether or not the factored form of the matrix A is */
 | |
| /* >          supplied on entry, and if not, whether the matrix A should be */
 | |
| /* >          equilibrated before it is factored. */
 | |
| /* >          = 'F':  On entry, AF contains the factored form of A. */
 | |
| /* >                  If EQUED = 'Y', the matrix A has been equilibrated */
 | |
| /* >                  with scaling factors given by S.  A and AF will not */
 | |
| /* >                  be modified. */
 | |
| /* >          = 'N':  The matrix A will be copied to AF and factored. */
 | |
| /* >          = 'E':  The matrix A will be equilibrated if necessary, then */
 | |
| /* >                  copied to AF and factored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of linear equations, i.e., the order of the */
 | |
| /* >          matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >          The number of right hand sides, i.e., the number of columns */
 | |
| /* >          of the matrices B and X.  NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | |
| /* >          On entry, the Hermitian matrix A, except if FACT = 'F' and */
 | |
| /* >          EQUED = 'Y', then A must contain the equilibrated matrix */
 | |
| /* >          diag(S)*A*diag(S).  If UPLO = 'U', the leading */
 | |
| /* >          N-by-N upper triangular part of A contains the upper */
 | |
| /* >          triangular part of the matrix A, and the strictly lower */
 | |
| /* >          triangular part of A is not referenced.  If UPLO = 'L', the */
 | |
| /* >          leading N-by-N lower triangular part of A contains the lower */
 | |
| /* >          triangular part of the matrix A, and the strictly upper */
 | |
| /* >          triangular part of A is not referenced.  A is not modified if */
 | |
| /* >          FACT = 'F' or 'N', or if FACT = 'E' and EQUED = 'N' on exit. */
 | |
| /* > */
 | |
| /* >          On exit, if FACT = 'E' and EQUED = 'Y', A is overwritten by */
 | |
| /* >          diag(S)*A*diag(S). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AF */
 | |
| /* > \verbatim */
 | |
| /* >          AF is COMPLEX*16 array, dimension (LDAF,N) */
 | |
| /* >          If FACT = 'F', then AF is an input argument and on entry */
 | |
| /* >          contains the triangular factor U or L from the Cholesky */
 | |
| /* >          factorization A = U**H *U or A = L*L**H, in the same storage */
 | |
| /* >          format as A.  If EQUED .ne. 'N', then AF is the factored form */
 | |
| /* >          of the equilibrated matrix diag(S)*A*diag(S). */
 | |
| /* > */
 | |
| /* >          If FACT = 'N', then AF is an output argument and on exit */
 | |
| /* >          returns the triangular factor U or L from the Cholesky */
 | |
| /* >          factorization A = U**H *U or A = L*L**H of the original */
 | |
| /* >          matrix A. */
 | |
| /* > */
 | |
| /* >          If FACT = 'E', then AF is an output argument and on exit */
 | |
| /* >          returns the triangular factor U or L from the Cholesky */
 | |
| /* >          factorization A = U**H *U or A = L*L**H of the equilibrated */
 | |
| /* >          matrix A (see the description of A for the form of the */
 | |
| /* >          equilibrated matrix). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAF */
 | |
| /* > \verbatim */
 | |
| /* >          LDAF is INTEGER */
 | |
| /* >          The leading dimension of the array AF.  LDAF >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] EQUED */
 | |
| /* > \verbatim */
 | |
| /* >          EQUED is CHARACTER*1 */
 | |
| /* >          Specifies the form of equilibration that was done. */
 | |
| /* >          = 'N':  No equilibration (always true if FACT = 'N'). */
 | |
| /* >          = 'Y':  Equilibration was done, i.e., A has been replaced by */
 | |
| /* >                  diag(S) * A * diag(S). */
 | |
| /* >          EQUED is an input argument if FACT = 'F'; otherwise, it is an */
 | |
| /* >          output argument. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The scale factors for A; not accessed if EQUED = 'N'.  S is */
 | |
| /* >          an input argument if FACT = 'F'; otherwise, S is an output */
 | |
| /* >          argument.  If FACT = 'F' and EQUED = 'Y', each element of S */
 | |
| /* >          must be positive. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension (LDB,NRHS) */
 | |
| /* >          On entry, the N-by-NRHS righthand side matrix B. */
 | |
| /* >          On exit, if EQUED = 'N', B is not modified; if EQUED = 'Y', */
 | |
| /* >          B is overwritten by diag(S) * B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is COMPLEX*16 array, dimension (LDX,NRHS) */
 | |
| /* >          If INFO = 0 or INFO = N+1, the N-by-NRHS solution matrix X to */
 | |
| /* >          the original system of equations.  Note that if EQUED = 'Y', */
 | |
| /* >          A and B are modified on exit, and the solution to the */
 | |
| /* >          equilibrated system is inv(diag(S))*X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCOND */
 | |
| /* > \verbatim */
 | |
| /* >          RCOND is DOUBLE PRECISION */
 | |
| /* >          The estimate of the reciprocal condition number of the matrix */
 | |
| /* >          A after equilibration (if done).  If RCOND is less than the */
 | |
| /* >          machine precision (in particular, if RCOND = 0), the matrix */
 | |
| /* >          is singular to working precision.  This condition is */
 | |
| /* >          indicated by a return code of INFO > 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] FERR */
 | |
| /* > \verbatim */
 | |
| /* >          FERR is DOUBLE PRECISION array, dimension (NRHS) */
 | |
| /* >          The estimated forward error bound for each solution vector */
 | |
| /* >          X(j) (the j-th column of the solution matrix X). */
 | |
| /* >          If XTRUE is the true solution corresponding to X(j), FERR(j) */
 | |
| /* >          is an estimated upper bound for the magnitude of the largest */
 | |
| /* >          element in (X(j) - XTRUE) divided by the magnitude of the */
 | |
| /* >          largest element in X(j).  The estimate is as reliable as */
 | |
| /* >          the estimate for RCOND, and is almost always a slight */
 | |
| /* >          overestimate of the true error. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BERR */
 | |
| /* > \verbatim */
 | |
| /* >          BERR is DOUBLE PRECISION array, dimension (NRHS) */
 | |
| /* >          The componentwise relative backward error of each solution */
 | |
| /* >          vector X(j) (i.e., the smallest relative change in */
 | |
| /* >          any element of A or B that makes X(j) an exact solution). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (2*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0: if INFO = i, and i is */
 | |
| /* >                <= N:  the leading minor of order i of A is */
 | |
| /* >                       not positive definite, so the factorization */
 | |
| /* >                       could not be completed, and the solution has not */
 | |
| /* >                       been computed. RCOND = 0 is returned. */
 | |
| /* >                = N+1: U is nonsingular, but RCOND is less than machine */
 | |
| /* >                       precision, meaning that the matrix is singular */
 | |
| /* >                       to working precision.  Nevertheless, the */
 | |
| /* >                       solution and error bounds are computed because */
 | |
| /* >                       there are a number of situations where the */
 | |
| /* >                       computed solution can be more accurate than the */
 | |
| /* >                       value of RCOND would suggest. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date April 2012 */
 | |
| 
 | |
| /* > \ingroup complex16POsolve */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zposvx_(char *fact, char *uplo, integer *n, integer *
 | |
| 	nrhs, doublecomplex *a, integer *lda, doublecomplex *af, integer *
 | |
| 	ldaf, char *equed, doublereal *s, doublecomplex *b, integer *ldb, 
 | |
| 	doublecomplex *x, integer *ldx, doublereal *rcond, doublereal *ferr, 
 | |
| 	doublereal *berr, doublecomplex *work, doublereal *rwork, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
 | |
| 	    x_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublereal d__1, d__2;
 | |
|     doublecomplex z__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal amax, smin, smax;
 | |
|     integer i__, j;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal scond, anorm;
 | |
|     logical equil, rcequ;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     logical nofact;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal bignum;
 | |
|     extern doublereal zlanhe_(char *, char *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublereal *);
 | |
|     extern /* Subroutine */ void zlaqhe_(char *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublereal *, doublereal *, doublereal *, char *);
 | |
|     integer infequ;
 | |
|     extern /* Subroutine */ void zlacpy_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *), 
 | |
| 	    zpocon_(char *, integer *, doublecomplex *, integer *, doublereal 
 | |
| 	    *, doublereal *, doublecomplex *, doublereal *, integer *)
 | |
| 	    ;
 | |
|     doublereal smlnum;
 | |
|     extern /* Subroutine */ void zpoequ_(integer *, doublecomplex *, integer *,
 | |
| 	     doublereal *, doublereal *, doublereal *, integer *), zporfs_(
 | |
| 	    char *, integer *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *, doublereal *, 
 | |
| 	    doublecomplex *, doublereal *, integer *);
 | |
|     extern int zpotrf_(char *,
 | |
| 	     integer *, doublecomplex *, integer *, integer *); 
 | |
|     extern void zpotrs_(char *, integer *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     April 2012 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     af_dim1 = *ldaf;
 | |
|     af_offset = 1 + af_dim1 * 1;
 | |
|     af -= af_offset;
 | |
|     --s;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --ferr;
 | |
|     --berr;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     nofact = lsame_(fact, "N");
 | |
|     equil = lsame_(fact, "E");
 | |
|     if (nofact || equil) {
 | |
| 	*(unsigned char *)equed = 'N';
 | |
| 	rcequ = FALSE_;
 | |
|     } else {
 | |
| 	rcequ = lsame_(equed, "Y");
 | |
| 	smlnum = dlamch_("Safe minimum");
 | |
| 	bignum = 1. / smlnum;
 | |
|     }
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     if (! nofact && ! equil && ! lsame_(fact, "F")) {
 | |
| 	*info = -1;
 | |
|     } else if (! lsame_(uplo, "U") && ! lsame_(uplo, 
 | |
| 	    "L")) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldaf < f2cmax(1,*n)) {
 | |
| 	*info = -8;
 | |
|     } else if (lsame_(fact, "F") && ! (rcequ || lsame_(
 | |
| 	    equed, "N"))) {
 | |
| 	*info = -9;
 | |
|     } else {
 | |
| 	if (rcequ) {
 | |
| 	    smin = bignum;
 | |
| 	    smax = 0.;
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MIN */
 | |
| 		d__1 = smin, d__2 = s[j];
 | |
| 		smin = f2cmin(d__1,d__2);
 | |
| /* Computing MAX */
 | |
| 		d__1 = smax, d__2 = s[j];
 | |
| 		smax = f2cmax(d__1,d__2);
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	    if (smin <= 0.) {
 | |
| 		*info = -10;
 | |
| 	    } else if (*n > 0) {
 | |
| 		scond = f2cmax(smin,smlnum) / f2cmin(smax,bignum);
 | |
| 	    } else {
 | |
| 		scond = 1.;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (*info == 0) {
 | |
| 	    if (*ldb < f2cmax(1,*n)) {
 | |
| 		*info = -12;
 | |
| 	    } else if (*ldx < f2cmax(1,*n)) {
 | |
| 		*info = -14;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZPOSVX", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (equil) {
 | |
| 
 | |
| /*        Compute row and column scalings to equilibrate the matrix A. */
 | |
| 
 | |
| 	zpoequ_(n, &a[a_offset], lda, &s[1], &scond, &amax, &infequ);
 | |
| 	if (infequ == 0) {
 | |
| 
 | |
| /*           Equilibrate the matrix. */
 | |
| 
 | |
| 	    zlaqhe_(uplo, n, &a[a_offset], lda, &s[1], &scond, &amax, equed);
 | |
| 	    rcequ = lsame_(equed, "Y");
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Scale the right hand side. */
 | |
| 
 | |
|     if (rcequ) {
 | |
| 	i__1 = *nrhs;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		i__3 = i__ + j * b_dim1;
 | |
| 		i__4 = i__;
 | |
| 		i__5 = i__ + j * b_dim1;
 | |
| 		z__1.r = s[i__4] * b[i__5].r, z__1.i = s[i__4] * b[i__5].i;
 | |
| 		b[i__3].r = z__1.r, b[i__3].i = z__1.i;
 | |
| /* L20: */
 | |
| 	    }
 | |
| /* L30: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (nofact || equil) {
 | |
| 
 | |
| /*        Compute the Cholesky factorization A = U**H *U or A = L*L**H. */
 | |
| 
 | |
| 	zlacpy_(uplo, n, n, &a[a_offset], lda, &af[af_offset], ldaf);
 | |
| 	zpotrf_(uplo, n, &af[af_offset], ldaf, info);
 | |
| 
 | |
| /*        Return if INFO is non-zero. */
 | |
| 
 | |
| 	if (*info > 0) {
 | |
| 	    *rcond = 0.;
 | |
| 	    return;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute the norm of the matrix A. */
 | |
| 
 | |
|     anorm = zlanhe_("1", uplo, n, &a[a_offset], lda, &rwork[1]);
 | |
| 
 | |
| /*     Compute the reciprocal of the condition number of A. */
 | |
| 
 | |
|     zpocon_(uplo, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &rwork[1],
 | |
| 	     info);
 | |
| 
 | |
| /*     Compute the solution matrix X. */
 | |
| 
 | |
|     zlacpy_("Full", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 | |
|     zpotrs_(uplo, n, nrhs, &af[af_offset], ldaf, &x[x_offset], ldx, info);
 | |
| 
 | |
| /*     Use iterative refinement to improve the computed solution and */
 | |
| /*     compute error bounds and backward error estimates for it. */
 | |
| 
 | |
|     zporfs_(uplo, n, nrhs, &a[a_offset], lda, &af[af_offset], ldaf, &b[
 | |
| 	    b_offset], ldb, &x[x_offset], ldx, &ferr[1], &berr[1], &work[1], &
 | |
| 	    rwork[1], info);
 | |
| 
 | |
| /*     Transform the solution matrix X to a solution of the original */
 | |
| /*     system. */
 | |
| 
 | |
|     if (rcequ) {
 | |
| 	i__1 = *nrhs;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__2 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		i__3 = i__ + j * x_dim1;
 | |
| 		i__4 = i__;
 | |
| 		i__5 = i__ + j * x_dim1;
 | |
| 		z__1.r = s[i__4] * x[i__5].r, z__1.i = s[i__4] * x[i__5].i;
 | |
| 		x[i__3].r = z__1.r, x[i__3].i = z__1.i;
 | |
| /* L40: */
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
| 	i__1 = *nrhs;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    ferr[j] /= scond;
 | |
| /* L60: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Set INFO = N+1 if the matrix is singular to working precision. */
 | |
| 
 | |
|     if (*rcond < dlamch_("Epsilon")) {
 | |
| 	*info = *n + 1;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZPOSVX */
 | |
| 
 | |
| } /* zposvx_ */
 | |
| 
 |