1646 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1646 lines
		
	
	
		
			55 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static integer c__1 = 1;
 | |
| static integer c__2 = 2;
 | |
| static doublereal c_b28 = 0.;
 | |
| 
 | |
| /* > \brief \b ZLARRV computes the eigenvectors of the tridiagonal matrix T = L D LT given L, D and the eigenv
 | |
| alues of L D LT. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZLARRV + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarrv.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarrv.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarrv.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLARRV( N, VL, VU, D, L, PIVMIN, */
 | |
| /*                          ISPLIT, M, DOL, DOU, MINRGP, */
 | |
| /*                          RTOL1, RTOL2, W, WERR, WGAP, */
 | |
| /*                          IBLOCK, INDEXW, GERS, Z, LDZ, ISUPPZ, */
 | |
| /*                          WORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            DOL, DOU, INFO, LDZ, M, N */
 | |
| /*       DOUBLE PRECISION   MINRGP, PIVMIN, RTOL1, RTOL2, VL, VU */
 | |
| /*       INTEGER            IBLOCK( * ), INDEXW( * ), ISPLIT( * ), */
 | |
| /*      $                   ISUPPZ( * ), IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   D( * ), GERS( * ), L( * ), W( * ), WERR( * ), */
 | |
| /*      $                   WGAP( * ), WORK( * ) */
 | |
| /*       COMPLEX*16        Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZLARRV computes the eigenvectors of the tridiagonal matrix */
 | |
| /* > T = L D L**T given L, D and APPROXIMATIONS to the eigenvalues of L D L**T. */
 | |
| /* > The input eigenvalues should have been computed by DLARRE. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is DOUBLE PRECISION */
 | |
| /* >          Lower bound of the interval that contains the desired */
 | |
| /* >          eigenvalues. VL < VU. Needed to compute gaps on the left or right */
 | |
| /* >          end of the extremal eigenvalues in the desired RANGE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VU */
 | |
| /* > \verbatim */
 | |
| /* >          VU is DOUBLE PRECISION */
 | |
| /* >          Upper bound of the interval that contains the desired */
 | |
| /* >          eigenvalues. VL < VU. Needed to compute gaps on the left or right */
 | |
| /* >          end of the extremal eigenvalues in the desired RANGE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          On entry, the N diagonal elements of the diagonal matrix D. */
 | |
| /* >          On exit, D may be overwritten. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] L */
 | |
| /* > \verbatim */
 | |
| /* >          L is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          On entry, the (N-1) subdiagonal elements of the unit */
 | |
| /* >          bidiagonal matrix L are in elements 1 to N-1 of L */
 | |
| /* >          (if the matrix is not split.) At the end of each block */
 | |
| /* >          is stored the corresponding shift as given by DLARRE. */
 | |
| /* >          On exit, L is overwritten. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PIVMIN */
 | |
| /* > \verbatim */
 | |
| /* >          PIVMIN is DOUBLE PRECISION */
 | |
| /* >          The minimum pivot allowed in the Sturm sequence. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ISPLIT */
 | |
| /* > \verbatim */
 | |
| /* >          ISPLIT is INTEGER array, dimension (N) */
 | |
| /* >          The splitting points, at which T breaks up into blocks. */
 | |
| /* >          The first block consists of rows/columns 1 to */
 | |
| /* >          ISPLIT( 1 ), the second of rows/columns ISPLIT( 1 )+1 */
 | |
| /* >          through ISPLIT( 2 ), etc. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The total number of input eigenvalues.  0 <= M <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DOL */
 | |
| /* > \verbatim */
 | |
| /* >          DOL is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DOU */
 | |
| /* > \verbatim */
 | |
| /* >          DOU is INTEGER */
 | |
| /* >          If the user wants to compute only selected eigenvectors from all */
 | |
| /* >          the eigenvalues supplied, he can specify an index range DOL:DOU. */
 | |
| /* >          Or else the setting DOL=1, DOU=M should be applied. */
 | |
| /* >          Note that DOL and DOU refer to the order in which the eigenvalues */
 | |
| /* >          are stored in W. */
 | |
| /* >          If the user wants to compute only selected eigenpairs, then */
 | |
| /* >          the columns DOL-1 to DOU+1 of the eigenvector space Z contain the */
 | |
| /* >          computed eigenvectors. All other columns of Z are set to zero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MINRGP */
 | |
| /* > \verbatim */
 | |
| /* >          MINRGP is DOUBLE PRECISION */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RTOL1 */
 | |
| /* > \verbatim */
 | |
| /* >          RTOL1 is DOUBLE PRECISION */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RTOL2 */
 | |
| /* > \verbatim */
 | |
| /* >          RTOL2 is DOUBLE PRECISION */
 | |
| /* >           Parameters for bisection. */
 | |
| /* >           An interval [LEFT,RIGHT] has converged if */
 | |
| /* >           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The first M elements of W contain the APPROXIMATE eigenvalues for */
 | |
| /* >          which eigenvectors are to be computed.  The eigenvalues */
 | |
| /* >          should be grouped by split-off block and ordered from */
 | |
| /* >          smallest to largest within the block ( The output array */
 | |
| /* >          W from DLARRE is expected here ). Furthermore, they are with */
 | |
| /* >          respect to the shift of the corresponding root representation */
 | |
| /* >          for their block. On exit, W holds the eigenvalues of the */
 | |
| /* >          UNshifted matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] WERR */
 | |
| /* > \verbatim */
 | |
| /* >          WERR is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The first M elements contain the semiwidth of the uncertainty */
 | |
| /* >          interval of the corresponding eigenvalue in W */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] WGAP */
 | |
| /* > \verbatim */
 | |
| /* >          WGAP is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The separation from the right neighbor eigenvalue in W. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IBLOCK */
 | |
| /* > \verbatim */
 | |
| /* >          IBLOCK is INTEGER array, dimension (N) */
 | |
| /* >          The indices of the blocks (submatrices) associated with the */
 | |
| /* >          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
 | |
| /* >          W(i) belongs to the first block from the top, =2 if W(i) */
 | |
| /* >          belongs to the second block, etc. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] INDEXW */
 | |
| /* > \verbatim */
 | |
| /* >          INDEXW is INTEGER array, dimension (N) */
 | |
| /* >          The indices of the eigenvalues within each block (submatrix); */
 | |
| /* >          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
 | |
| /* >          i-th eigenvalue W(i) is the 10-th eigenvalue in the second block. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GERS */
 | |
| /* > \verbatim */
 | |
| /* >          GERS is DOUBLE PRECISION array, dimension (2*N) */
 | |
| /* >          The N Gerschgorin intervals (the i-th Gerschgorin interval */
 | |
| /* >          is (GERS(2*i-1), GERS(2*i)). The Gerschgorin intervals should */
 | |
| /* >          be computed from the original UNshifted matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is COMPLEX*16 array, dimension (LDZ, f2cmax(1,M) ) */
 | |
| /* >          If INFO = 0, the first M columns of Z contain the */
 | |
| /* >          orthonormal eigenvectors of the matrix T */
 | |
| /* >          corresponding to the input eigenvalues, with the i-th */
 | |
| /* >          column of Z holding the eigenvector associated with W(i). */
 | |
| /* >          Note: the user must ensure that at least f2cmax(1,M) columns are */
 | |
| /* >          supplied in the array Z. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z.  LDZ >= 1, and if */
 | |
| /* >          JOBZ = 'V', LDZ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ISUPPZ */
 | |
| /* > \verbatim */
 | |
| /* >          ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
 | |
| /* >          The support of the eigenvectors in Z, i.e., the indices */
 | |
| /* >          indicating the nonzero elements in Z. The I-th eigenvector */
 | |
| /* >          is nonzero only in elements ISUPPZ( 2*I-1 ) through */
 | |
| /* >          ISUPPZ( 2*I ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (12*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (7*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* > */
 | |
| /* >          > 0:  A problem occurred in ZLARRV. */
 | |
| /* >          < 0:  One of the called subroutines signaled an internal problem. */
 | |
| /* >                Needs inspection of the corresponding parameter IINFO */
 | |
| /* >                for further information. */
 | |
| /* > */
 | |
| /* >          =-1:  Problem in DLARRB when refining a child's eigenvalues. */
 | |
| /* >          =-2:  Problem in DLARRF when computing the RRR of a child. */
 | |
| /* >                When a child is inside a tight cluster, it can be difficult */
 | |
| /* >                to find an RRR. A partial remedy from the user's point of */
 | |
| /* >                view is to make the parameter MINRGP smaller and recompile. */
 | |
| /* >                However, as the orthogonality of the computed vectors is */
 | |
| /* >                proportional to 1/MINRGP, the user should be aware that */
 | |
| /* >                he might be trading in precision when he decreases MINRGP. */
 | |
| /* >          =-3:  Problem in DLARRB when refining a single eigenvalue */
 | |
| /* >                after the Rayleigh correction was rejected. */
 | |
| /* >          = 5:  The Rayleigh Quotient Iteration failed to converge to */
 | |
| /* >                full accuracy in MAXITR steps. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Beresford Parlett, University of California, Berkeley, USA \n */
 | |
| /* > Jim Demmel, University of California, Berkeley, USA \n */
 | |
| /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
 | |
| /* > Osni Marques, LBNL/NERSC, USA \n */
 | |
| /* > Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zlarrv_(integer *n, doublereal *vl, doublereal *vu, 
 | |
| 	doublereal *d__, doublereal *l, doublereal *pivmin, integer *isplit, 
 | |
| 	integer *m, integer *dol, integer *dou, doublereal *minrgp, 
 | |
| 	doublereal *rtol1, doublereal *rtol2, doublereal *w, doublereal *werr,
 | |
| 	 doublereal *wgap, integer *iblock, integer *indexw, doublereal *gers,
 | |
| 	 doublecomplex *z__, integer *ldz, integer *isuppz, doublereal *work, 
 | |
| 	integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer z_dim1, z_offset, i__1, i__2, i__3, i__4, i__5, i__6;
 | |
|     doublereal d__1, d__2;
 | |
|     doublecomplex z__1;
 | |
|     logical L__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer iend, jblk;
 | |
|     doublereal lgap;
 | |
|     integer done;
 | |
|     doublereal rgap, left;
 | |
|     integer wend, iter;
 | |
|     doublereal bstw;
 | |
|     integer minwsize, itmp1, i__, j, k, p, q, indld;
 | |
|     doublereal fudge;
 | |
|     integer idone;
 | |
|     doublereal sigma;
 | |
|     integer iinfo, iindr;
 | |
|     doublereal resid;
 | |
|     logical eskip;
 | |
|     doublereal right;
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer nclus, zfrom;
 | |
|     doublereal rqtol;
 | |
|     integer iindc1, iindc2, indin1, indin2, miniwsize;
 | |
|     logical stp2ii;
 | |
|     extern /* Subroutine */ void zlar1v_(integer *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublecomplex *, 
 | |
| 	    logical *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    integer *, doublereal *, doublereal *, doublereal *, doublereal *)
 | |
| 	    ;
 | |
|     doublereal lambda;
 | |
|     integer ii;
 | |
|     doublereal gl;
 | |
|     integer im, in;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     doublereal gu;
 | |
|     integer ibegin, indeig;
 | |
|     logical needbs;
 | |
|     integer indlld;
 | |
|     doublereal sgndef, mingma;
 | |
|     extern /* Subroutine */ void dlarrb_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, integer *, doublereal *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, integer *,
 | |
| 	     doublereal *, doublereal *, integer *, integer *);
 | |
|     integer oldien, oldncl, wbegin, negcnt;
 | |
|     doublereal spdiam;
 | |
|     integer oldcls;
 | |
|     doublereal savgap;
 | |
|     integer ndepth;
 | |
|     doublereal ssigma;
 | |
|     extern /* Subroutine */ void dlarrf_(integer *, doublereal *, doublereal *,
 | |
| 	     doublereal *, integer *, integer *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, doublereal *, doublereal *, doublereal *, 
 | |
| 	    doublereal *, integer *);
 | |
|     logical usedbs;
 | |
|     integer iindwk, offset;
 | |
|     doublereal gaptol;
 | |
|     extern /* Subroutine */ void zdscal_(integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     integer newcls, oldfst, indwrk, windex, oldlst;
 | |
|     logical usedrq;
 | |
|     integer newfst, newftt, parity, windmn, windpl, isupmn, newlst, zusedl;
 | |
|     doublereal bstres;
 | |
|     integer newsiz, zusedu, zusedw;
 | |
|     doublereal nrminv;
 | |
|     logical tryrqc;
 | |
|     integer isupmx;
 | |
|     doublereal rqcorr;
 | |
|     extern /* Subroutine */ void zlaset_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
 | |
|     doublereal gap, eps, tau, tol, tmp;
 | |
|     integer zto;
 | |
|     doublereal ztz;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --l;
 | |
|     --isplit;
 | |
|     --w;
 | |
|     --werr;
 | |
|     --wgap;
 | |
|     --iblock;
 | |
|     --indexw;
 | |
|     --gers;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --isuppz;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n <= 0 || *m <= 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     The first N entries of WORK are reserved for the eigenvalues */
 | |
|     indld = *n + 1;
 | |
|     indlld = (*n << 1) + 1;
 | |
|     indin1 = *n * 3 + 1;
 | |
|     indin2 = (*n << 2) + 1;
 | |
|     indwrk = *n * 5 + 1;
 | |
|     minwsize = *n * 12;
 | |
|     i__1 = minwsize;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	work[i__] = 0.;
 | |
| /* L5: */
 | |
|     }
 | |
| /*     IWORK(IINDR+1:IINDR+N) hold the twist indices R for the */
 | |
| /*     factorization used to compute the FP vector */
 | |
|     iindr = 0;
 | |
| /*     IWORK(IINDC1+1:IINC2+N) are used to store the clusters of the current */
 | |
| /*     layer and the one above. */
 | |
|     iindc1 = *n;
 | |
|     iindc2 = *n << 1;
 | |
|     iindwk = *n * 3 + 1;
 | |
|     miniwsize = *n * 7;
 | |
|     i__1 = miniwsize;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	iwork[i__] = 0;
 | |
| /* L10: */
 | |
|     }
 | |
|     zusedl = 1;
 | |
|     if (*dol > 1) {
 | |
| /*        Set lower bound for use of Z */
 | |
| 	zusedl = *dol - 1;
 | |
|     }
 | |
|     zusedu = *m;
 | |
|     if (*dou < *m) {
 | |
| /*        Set lower bound for use of Z */
 | |
| 	zusedu = *dou + 1;
 | |
|     }
 | |
| /*     The width of the part of Z that is used */
 | |
|     zusedw = zusedu - zusedl + 1;
 | |
|     zlaset_("Full", n, &zusedw, &c_b1, &c_b1, &z__[zusedl * z_dim1 + 1], ldz);
 | |
|     eps = dlamch_("Precision");
 | |
|     rqtol = eps * 2.;
 | |
| 
 | |
| /*     Set expert flags for standard code. */
 | |
|     tryrqc = TRUE_;
 | |
|     if (*dol == 1 && *dou == *m) {
 | |
|     } else {
 | |
| /*        Only selected eigenpairs are computed. Since the other evalues */
 | |
| /*        are not refined by RQ iteration, bisection has to compute to full */
 | |
| /*        accuracy. */
 | |
| 	*rtol1 = eps * 4.;
 | |
| 	*rtol2 = eps * 4.;
 | |
|     }
 | |
| /*     The entries WBEGIN:WEND in W, WERR, WGAP correspond to the */
 | |
| /*     desired eigenvalues. The support of the nonzero eigenvector */
 | |
| /*     entries is contained in the interval IBEGIN:IEND. */
 | |
| /*     Remark that if k eigenpairs are desired, then the eigenvectors */
 | |
| /*     are stored in k contiguous columns of Z. */
 | |
| /*     DONE is the number of eigenvectors already computed */
 | |
|     done = 0;
 | |
|     ibegin = 1;
 | |
|     wbegin = 1;
 | |
|     i__1 = iblock[*m];
 | |
|     for (jblk = 1; jblk <= i__1; ++jblk) {
 | |
| 	iend = isplit[jblk];
 | |
| 	sigma = l[iend];
 | |
| /*        Find the eigenvectors of the submatrix indexed IBEGIN */
 | |
| /*        through IEND. */
 | |
| 	wend = wbegin - 1;
 | |
| L15:
 | |
| 	if (wend < *m) {
 | |
| 	    if (iblock[wend + 1] == jblk) {
 | |
| 		++wend;
 | |
| 		goto L15;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (wend < wbegin) {
 | |
| 	    ibegin = iend + 1;
 | |
| 	    goto L170;
 | |
| 	} else if (wend < *dol || wbegin > *dou) {
 | |
| 	    ibegin = iend + 1;
 | |
| 	    wbegin = wend + 1;
 | |
| 	    goto L170;
 | |
| 	}
 | |
| /*        Find local spectral diameter of the block */
 | |
| 	gl = gers[(ibegin << 1) - 1];
 | |
| 	gu = gers[ibegin * 2];
 | |
| 	i__2 = iend;
 | |
| 	for (i__ = ibegin + 1; i__ <= i__2; ++i__) {
 | |
| /* Computing MIN */
 | |
| 	    d__1 = gers[(i__ << 1) - 1];
 | |
| 	    gl = f2cmin(d__1,gl);
 | |
| /* Computing MAX */
 | |
| 	    d__1 = gers[i__ * 2];
 | |
| 	    gu = f2cmax(d__1,gu);
 | |
| /* L20: */
 | |
| 	}
 | |
| 	spdiam = gu - gl;
 | |
| /*        OLDIEN is the last index of the previous block */
 | |
| 	oldien = ibegin - 1;
 | |
| /*        Calculate the size of the current block */
 | |
| 	in = iend - ibegin + 1;
 | |
| /*        The number of eigenvalues in the current block */
 | |
| 	im = wend - wbegin + 1;
 | |
| /*        This is for a 1x1 block */
 | |
| 	if (ibegin == iend) {
 | |
| 	    ++done;
 | |
| 	    i__2 = ibegin + wbegin * z_dim1;
 | |
| 	    z__[i__2].r = 1., z__[i__2].i = 0.;
 | |
| 	    isuppz[(wbegin << 1) - 1] = ibegin;
 | |
| 	    isuppz[wbegin * 2] = ibegin;
 | |
| 	    w[wbegin] += sigma;
 | |
| 	    work[wbegin] = w[wbegin];
 | |
| 	    ibegin = iend + 1;
 | |
| 	    ++wbegin;
 | |
| 	    goto L170;
 | |
| 	}
 | |
| /*        The desired (shifted) eigenvalues are stored in W(WBEGIN:WEND) */
 | |
| /*        Note that these can be approximations, in this case, the corresp. */
 | |
| /*        entries of WERR give the size of the uncertainty interval. */
 | |
| /*        The eigenvalue approximations will be refined when necessary as */
 | |
| /*        high relative accuracy is required for the computation of the */
 | |
| /*        corresponding eigenvectors. */
 | |
| 	dcopy_(&im, &w[wbegin], &c__1, &work[wbegin], &c__1);
 | |
| /*        We store in W the eigenvalue approximations w.r.t. the original */
 | |
| /*        matrix T. */
 | |
| 	i__2 = im;
 | |
| 	for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 	    w[wbegin + i__ - 1] += sigma;
 | |
| /* L30: */
 | |
| 	}
 | |
| /*        NDEPTH is the current depth of the representation tree */
 | |
| 	ndepth = 0;
 | |
| /*        PARITY is either 1 or 0 */
 | |
| 	parity = 1;
 | |
| /*        NCLUS is the number of clusters for the next level of the */
 | |
| /*        representation tree, we start with NCLUS = 1 for the root */
 | |
| 	nclus = 1;
 | |
| 	iwork[iindc1 + 1] = 1;
 | |
| 	iwork[iindc1 + 2] = im;
 | |
| /*        IDONE is the number of eigenvectors already computed in the current */
 | |
| /*        block */
 | |
| 	idone = 0;
 | |
| /*        loop while( IDONE.LT.IM ) */
 | |
| /*        generate the representation tree for the current block and */
 | |
| /*        compute the eigenvectors */
 | |
| L40:
 | |
| 	if (idone < im) {
 | |
| /*           This is a crude protection against infinitely deep trees */
 | |
| 	    if (ndepth > *m) {
 | |
| 		*info = -2;
 | |
| 		return;
 | |
| 	    }
 | |
| /*           breadth first processing of the current level of the representation */
 | |
| /*           tree: OLDNCL = number of clusters on current level */
 | |
| 	    oldncl = nclus;
 | |
| /*           reset NCLUS to count the number of child clusters */
 | |
| 	    nclus = 0;
 | |
| 
 | |
| 	    parity = 1 - parity;
 | |
| 	    if (parity == 0) {
 | |
| 		oldcls = iindc1;
 | |
| 		newcls = iindc2;
 | |
| 	    } else {
 | |
| 		oldcls = iindc2;
 | |
| 		newcls = iindc1;
 | |
| 	    }
 | |
| /*           Process the clusters on the current level */
 | |
| 	    i__2 = oldncl;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		j = oldcls + (i__ << 1);
 | |
| /*              OLDFST, OLDLST = first, last index of current cluster. */
 | |
| /*                               cluster indices start with 1 and are relative */
 | |
| /*                               to WBEGIN when accessing W, WGAP, WERR, Z */
 | |
| 		oldfst = iwork[j - 1];
 | |
| 		oldlst = iwork[j];
 | |
| 		if (ndepth > 0) {
 | |
| /*                 Retrieve relatively robust representation (RRR) of cluster */
 | |
| /*                 that has been computed at the previous level */
 | |
| /*                 The RRR is stored in Z and overwritten once the eigenvectors */
 | |
| /*                 have been computed or when the cluster is refined */
 | |
| 		    if (*dol == 1 && *dou == *m) {
 | |
| /*                    Get representation from location of the leftmost evalue */
 | |
| /*                    of the cluster */
 | |
| 			j = wbegin + oldfst - 1;
 | |
| 		    } else {
 | |
| 			if (wbegin + oldfst - 1 < *dol) {
 | |
| /*                       Get representation from the left end of Z array */
 | |
| 			    j = *dol - 1;
 | |
| 			} else if (wbegin + oldfst - 1 > *dou) {
 | |
| /*                       Get representation from the right end of Z array */
 | |
| 			    j = *dou;
 | |
| 			} else {
 | |
| 			    j = wbegin + oldfst - 1;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__3 = in - 1;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| 			i__4 = ibegin + k - 1 + j * z_dim1;
 | |
| 			d__[ibegin + k - 1] = z__[i__4].r;
 | |
| 			i__4 = ibegin + k - 1 + (j + 1) * z_dim1;
 | |
| 			l[ibegin + k - 1] = z__[i__4].r;
 | |
| /* L45: */
 | |
| 		    }
 | |
| 		    i__3 = iend + j * z_dim1;
 | |
| 		    d__[iend] = z__[i__3].r;
 | |
| 		    i__3 = iend + (j + 1) * z_dim1;
 | |
| 		    sigma = z__[i__3].r;
 | |
| /*                 Set the corresponding entries in Z to zero */
 | |
| 		    zlaset_("Full", &in, &c__2, &c_b1, &c_b1, &z__[ibegin + j 
 | |
| 			    * z_dim1], ldz);
 | |
| 		}
 | |
| /*              Compute DL and DLL of current RRR */
 | |
| 		i__3 = iend - 1;
 | |
| 		for (j = ibegin; j <= i__3; ++j) {
 | |
| 		    tmp = d__[j] * l[j];
 | |
| 		    work[indld - 1 + j] = tmp;
 | |
| 		    work[indlld - 1 + j] = tmp * l[j];
 | |
| /* L50: */
 | |
| 		}
 | |
| 		if (ndepth > 0) {
 | |
| /*                 P and Q are index of the first and last eigenvalue to compute */
 | |
| /*                 within the current block */
 | |
| 		    p = indexw[wbegin - 1 + oldfst];
 | |
| 		    q = indexw[wbegin - 1 + oldlst];
 | |
| /*                 Offset for the arrays WORK, WGAP and WERR, i.e., the P-OFFSET */
 | |
| /*                 through the Q-OFFSET elements of these arrays are to be used. */
 | |
| /*                  OFFSET = P-OLDFST */
 | |
| 		    offset = indexw[wbegin] - 1;
 | |
| /*                 perform limited bisection (if necessary) to get approximate */
 | |
| /*                 eigenvalues to the precision needed. */
 | |
| 		    dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin - 1], &p,
 | |
| 			     &q, rtol1, rtol2, &offset, &work[wbegin], &wgap[
 | |
| 			    wbegin], &werr[wbegin], &work[indwrk], &iwork[
 | |
| 			    iindwk], pivmin, &spdiam, &in, &iinfo);
 | |
| 		    if (iinfo != 0) {
 | |
| 			*info = -1;
 | |
| 			return;
 | |
| 		    }
 | |
| /*                 We also recompute the extremal gaps. W holds all eigenvalues */
 | |
| /*                 of the unshifted matrix and must be used for computation */
 | |
| /*                 of WGAP, the entries of WORK might stem from RRRs with */
 | |
| /*                 different shifts. The gaps from WBEGIN-1+OLDFST to */
 | |
| /*                 WBEGIN-1+OLDLST are correctly computed in DLARRB. */
 | |
| /*                 However, we only allow the gaps to become greater since */
 | |
| /*                 this is what should happen when we decrease WERR */
 | |
| 		    if (oldfst > 1) {
 | |
| /* Computing MAX */
 | |
| 			d__1 = wgap[wbegin + oldfst - 2], d__2 = w[wbegin + 
 | |
| 				oldfst - 1] - werr[wbegin + oldfst - 1] - w[
 | |
| 				wbegin + oldfst - 2] - werr[wbegin + oldfst - 
 | |
| 				2];
 | |
| 			wgap[wbegin + oldfst - 2] = f2cmax(d__1,d__2);
 | |
| 		    }
 | |
| 		    if (wbegin + oldlst - 1 < wend) {
 | |
| /* Computing MAX */
 | |
| 			d__1 = wgap[wbegin + oldlst - 1], d__2 = w[wbegin + 
 | |
| 				oldlst] - werr[wbegin + oldlst] - w[wbegin + 
 | |
| 				oldlst - 1] - werr[wbegin + oldlst - 1];
 | |
| 			wgap[wbegin + oldlst - 1] = f2cmax(d__1,d__2);
 | |
| 		    }
 | |
| /*                 Each time the eigenvalues in WORK get refined, we store */
 | |
| /*                 the newly found approximation with all shifts applied in W */
 | |
| 		    i__3 = oldlst;
 | |
| 		    for (j = oldfst; j <= i__3; ++j) {
 | |
| 			w[wbegin + j - 1] = work[wbegin + j - 1] + sigma;
 | |
| /* L53: */
 | |
| 		    }
 | |
| 		}
 | |
| /*              Process the current node. */
 | |
| 		newfst = oldfst;
 | |
| 		i__3 = oldlst;
 | |
| 		for (j = oldfst; j <= i__3; ++j) {
 | |
| 		    if (j == oldlst) {
 | |
| /*                    we are at the right end of the cluster, this is also the */
 | |
| /*                    boundary of the child cluster */
 | |
| 			newlst = j;
 | |
| 		    } else if (wgap[wbegin + j - 1] >= *minrgp * (d__1 = work[
 | |
| 			    wbegin + j - 1], abs(d__1))) {
 | |
| /*                    the right relative gap is big enough, the child cluster */
 | |
| /*                    (NEWFST,..,NEWLST) is well separated from the following */
 | |
| 			newlst = j;
 | |
| 		    } else {
 | |
| /*                    inside a child cluster, the relative gap is not */
 | |
| /*                    big enough. */
 | |
| 			goto L140;
 | |
| 		    }
 | |
| /*                 Compute size of child cluster found */
 | |
| 		    newsiz = newlst - newfst + 1;
 | |
| /*                 NEWFTT is the place in Z where the new RRR or the computed */
 | |
| /*                 eigenvector is to be stored */
 | |
| 		    if (*dol == 1 && *dou == *m) {
 | |
| /*                    Store representation at location of the leftmost evalue */
 | |
| /*                    of the cluster */
 | |
| 			newftt = wbegin + newfst - 1;
 | |
| 		    } else {
 | |
| 			if (wbegin + newfst - 1 < *dol) {
 | |
| /*                       Store representation at the left end of Z array */
 | |
| 			    newftt = *dol - 1;
 | |
| 			} else if (wbegin + newfst - 1 > *dou) {
 | |
| /*                       Store representation at the right end of Z array */
 | |
| 			    newftt = *dou;
 | |
| 			} else {
 | |
| 			    newftt = wbegin + newfst - 1;
 | |
| 			}
 | |
| 		    }
 | |
| 		    if (newsiz > 1) {
 | |
| 
 | |
| /*                    Current child is not a singleton but a cluster. */
 | |
| /*                    Compute and store new representation of child. */
 | |
| 
 | |
| 
 | |
| /*                    Compute left and right cluster gap. */
 | |
| 
 | |
| /*                    LGAP and RGAP are not computed from WORK because */
 | |
| /*                    the eigenvalue approximations may stem from RRRs */
 | |
| /*                    different shifts. However, W hold all eigenvalues */
 | |
| /*                    of the unshifted matrix. Still, the entries in WGAP */
 | |
| /*                    have to be computed from WORK since the entries */
 | |
| /*                    in W might be of the same order so that gaps are not */
 | |
| /*                    exhibited correctly for very close eigenvalues. */
 | |
| 			if (newfst == 1) {
 | |
| /* Computing MAX */
 | |
| 			    d__1 = 0., d__2 = w[wbegin] - werr[wbegin] - *vl;
 | |
| 			    lgap = f2cmax(d__1,d__2);
 | |
| 			} else {
 | |
| 			    lgap = wgap[wbegin + newfst - 2];
 | |
| 			}
 | |
| 			rgap = wgap[wbegin + newlst - 1];
 | |
| 
 | |
| /*                    Compute left- and rightmost eigenvalue of child */
 | |
| /*                    to high precision in order to shift as close */
 | |
| /*                    as possible and obtain as large relative gaps */
 | |
| /*                    as possible */
 | |
| 
 | |
| 			for (k = 1; k <= 2; ++k) {
 | |
| 			    if (k == 1) {
 | |
| 				p = indexw[wbegin - 1 + newfst];
 | |
| 			    } else {
 | |
| 				p = indexw[wbegin - 1 + newlst];
 | |
| 			    }
 | |
| 			    offset = indexw[wbegin] - 1;
 | |
| 			    dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin 
 | |
| 				    - 1], &p, &p, &rqtol, &rqtol, &offset, &
 | |
| 				    work[wbegin], &wgap[wbegin], &werr[wbegin]
 | |
| 				    , &work[indwrk], &iwork[iindwk], pivmin, &
 | |
| 				    spdiam, &in, &iinfo);
 | |
| /* L55: */
 | |
| 			}
 | |
| 
 | |
| 			if (wbegin + newlst - 1 < *dol || wbegin + newfst - 1 
 | |
| 				> *dou) {
 | |
| /*                       if the cluster contains no desired eigenvalues */
 | |
| /*                       skip the computation of that branch of the rep. tree */
 | |
| 
 | |
| /*                       We could skip before the refinement of the extremal */
 | |
| /*                       eigenvalues of the child, but then the representation */
 | |
| /*                       tree could be different from the one when nothing is */
 | |
| /*                       skipped. For this reason we skip at this place. */
 | |
| 			    idone = idone + newlst - newfst + 1;
 | |
| 			    goto L139;
 | |
| 			}
 | |
| 
 | |
| /*                    Compute RRR of child cluster. */
 | |
| /*                    Note that the new RRR is stored in Z */
 | |
| 
 | |
| /*                    DLARRF needs LWORK = 2*N */
 | |
| 			dlarrf_(&in, &d__[ibegin], &l[ibegin], &work[indld + 
 | |
| 				ibegin - 1], &newfst, &newlst, &work[wbegin], 
 | |
| 				&wgap[wbegin], &werr[wbegin], &spdiam, &lgap, 
 | |
| 				&rgap, pivmin, &tau, &work[indin1], &work[
 | |
| 				indin2], &work[indwrk], &iinfo);
 | |
| /*                    In the complex case, DLARRF cannot write */
 | |
| /*                    the new RRR directly into Z and needs an intermediate */
 | |
| /*                    workspace */
 | |
| 			i__4 = in - 1;
 | |
| 			for (k = 1; k <= i__4; ++k) {
 | |
| 			    i__5 = ibegin + k - 1 + newftt * z_dim1;
 | |
| 			    i__6 = indin1 + k - 1;
 | |
| 			    z__1.r = work[i__6], z__1.i = 0.;
 | |
| 			    z__[i__5].r = z__1.r, z__[i__5].i = z__1.i;
 | |
| 			    i__5 = ibegin + k - 1 + (newftt + 1) * z_dim1;
 | |
| 			    i__6 = indin2 + k - 1;
 | |
| 			    z__1.r = work[i__6], z__1.i = 0.;
 | |
| 			    z__[i__5].r = z__1.r, z__[i__5].i = z__1.i;
 | |
| /* L56: */
 | |
| 			}
 | |
| 			i__4 = iend + newftt * z_dim1;
 | |
| 			i__5 = indin1 + in - 1;
 | |
| 			z__1.r = work[i__5], z__1.i = 0.;
 | |
| 			z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
 | |
| 			if (iinfo == 0) {
 | |
| /*                       a new RRR for the cluster was found by DLARRF */
 | |
| /*                       update shift and store it */
 | |
| 			    ssigma = sigma + tau;
 | |
| 			    i__4 = iend + (newftt + 1) * z_dim1;
 | |
| 			    z__1.r = ssigma, z__1.i = 0.;
 | |
| 			    z__[i__4].r = z__1.r, z__[i__4].i = z__1.i;
 | |
| /*                       WORK() are the midpoints and WERR() the semi-width */
 | |
| /*                       Note that the entries in W are unchanged. */
 | |
| 			    i__4 = newlst;
 | |
| 			    for (k = newfst; k <= i__4; ++k) {
 | |
| 				fudge = eps * 3. * (d__1 = work[wbegin + k - 
 | |
| 					1], abs(d__1));
 | |
| 				work[wbegin + k - 1] -= tau;
 | |
| 				fudge += eps * 4. * (d__1 = work[wbegin + k - 
 | |
| 					1], abs(d__1));
 | |
| /*                          Fudge errors */
 | |
| 				werr[wbegin + k - 1] += fudge;
 | |
| /*                          Gaps are not fudged. Provided that WERR is small */
 | |
| /*                          when eigenvalues are close, a zero gap indicates */
 | |
| /*                          that a new representation is needed for resolving */
 | |
| /*                          the cluster. A fudge could lead to a wrong decision */
 | |
| /*                          of judging eigenvalues 'separated' which in */
 | |
| /*                          reality are not. This could have a negative impact */
 | |
| /*                          on the orthogonality of the computed eigenvectors. */
 | |
| /* L116: */
 | |
| 			    }
 | |
| 			    ++nclus;
 | |
| 			    k = newcls + (nclus << 1);
 | |
| 			    iwork[k - 1] = newfst;
 | |
| 			    iwork[k] = newlst;
 | |
| 			} else {
 | |
| 			    *info = -2;
 | |
| 			    return;
 | |
| 			}
 | |
| 		    } else {
 | |
| 
 | |
| /*                    Compute eigenvector of singleton */
 | |
| 
 | |
| 			iter = 0;
 | |
| 
 | |
| 			tol = log((doublereal) in) * 4. * eps;
 | |
| 
 | |
| 			k = newfst;
 | |
| 			windex = wbegin + k - 1;
 | |
| /* Computing MAX */
 | |
| 			i__4 = windex - 1;
 | |
| 			windmn = f2cmax(i__4,1);
 | |
| /* Computing MIN */
 | |
| 			i__4 = windex + 1;
 | |
| 			windpl = f2cmin(i__4,*m);
 | |
| 			lambda = work[windex];
 | |
| 			++done;
 | |
| /*                    Check if eigenvector computation is to be skipped */
 | |
| 			if (windex < *dol || windex > *dou) {
 | |
| 			    eskip = TRUE_;
 | |
| 			    goto L125;
 | |
| 			} else {
 | |
| 			    eskip = FALSE_;
 | |
| 			}
 | |
| 			left = work[windex] - werr[windex];
 | |
| 			right = work[windex] + werr[windex];
 | |
| 			indeig = indexw[windex];
 | |
| /*                    Note that since we compute the eigenpairs for a child, */
 | |
| /*                    all eigenvalue approximations are w.r.t the same shift. */
 | |
| /*                    In this case, the entries in WORK should be used for */
 | |
| /*                    computing the gaps since they exhibit even very small */
 | |
| /*                    differences in the eigenvalues, as opposed to the */
 | |
| /*                    entries in W which might "look" the same. */
 | |
| 			if (k == 1) {
 | |
| /*                       In the case RANGE='I' and with not much initial */
 | |
| /*                       accuracy in LAMBDA and VL, the formula */
 | |
| /*                       LGAP = MAX( ZERO, (SIGMA - VL) + LAMBDA ) */
 | |
| /*                       can lead to an overestimation of the left gap and */
 | |
| /*                       thus to inadequately early RQI 'convergence'. */
 | |
| /*                       Prevent this by forcing a small left gap. */
 | |
| /* Computing MAX */
 | |
| 			    d__1 = abs(left), d__2 = abs(right);
 | |
| 			    lgap = eps * f2cmax(d__1,d__2);
 | |
| 			} else {
 | |
| 			    lgap = wgap[windmn];
 | |
| 			}
 | |
| 			if (k == im) {
 | |
| /*                       In the case RANGE='I' and with not much initial */
 | |
| /*                       accuracy in LAMBDA and VU, the formula */
 | |
| /*                       can lead to an overestimation of the right gap and */
 | |
| /*                       thus to inadequately early RQI 'convergence'. */
 | |
| /*                       Prevent this by forcing a small right gap. */
 | |
| /* Computing MAX */
 | |
| 			    d__1 = abs(left), d__2 = abs(right);
 | |
| 			    rgap = eps * f2cmax(d__1,d__2);
 | |
| 			} else {
 | |
| 			    rgap = wgap[windex];
 | |
| 			}
 | |
| 			gap = f2cmin(lgap,rgap);
 | |
| 			if (k == 1 || k == im) {
 | |
| /*                       The eigenvector support can become wrong */
 | |
| /*                       because significant entries could be cut off due to a */
 | |
| /*                       large GAPTOL parameter in LAR1V. Prevent this. */
 | |
| 			    gaptol = 0.;
 | |
| 			} else {
 | |
| 			    gaptol = gap * eps;
 | |
| 			}
 | |
| 			isupmn = in;
 | |
| 			isupmx = 1;
 | |
| /*                    Update WGAP so that it holds the minimum gap */
 | |
| /*                    to the left or the right. This is crucial in the */
 | |
| /*                    case where bisection is used to ensure that the */
 | |
| /*                    eigenvalue is refined up to the required precision. */
 | |
| /*                    The correct value is restored afterwards. */
 | |
| 			savgap = wgap[windex];
 | |
| 			wgap[windex] = gap;
 | |
| /*                    We want to use the Rayleigh Quotient Correction */
 | |
| /*                    as often as possible since it converges quadratically */
 | |
| /*                    when we are close enough to the desired eigenvalue. */
 | |
| /*                    However, the Rayleigh Quotient can have the wrong sign */
 | |
| /*                    and lead us away from the desired eigenvalue. In this */
 | |
| /*                    case, the best we can do is to use bisection. */
 | |
| 			usedbs = FALSE_;
 | |
| 			usedrq = FALSE_;
 | |
| /*                    Bisection is initially turned off unless it is forced */
 | |
| 			needbs = ! tryrqc;
 | |
| L120:
 | |
| /*                    Check if bisection should be used to refine eigenvalue */
 | |
| 			if (needbs) {
 | |
| /*                       Take the bisection as new iterate */
 | |
| 			    usedbs = TRUE_;
 | |
| 			    itmp1 = iwork[iindr + windex];
 | |
| 			    offset = indexw[wbegin] - 1;
 | |
| 			    d__1 = eps * 2.;
 | |
| 			    dlarrb_(&in, &d__[ibegin], &work[indlld + ibegin 
 | |
| 				    - 1], &indeig, &indeig, &c_b28, &d__1, &
 | |
| 				    offset, &work[wbegin], &wgap[wbegin], &
 | |
| 				    werr[wbegin], &work[indwrk], &iwork[
 | |
| 				    iindwk], pivmin, &spdiam, &itmp1, &iinfo);
 | |
| 			    if (iinfo != 0) {
 | |
| 				*info = -3;
 | |
| 				return;
 | |
| 			    }
 | |
| 			    lambda = work[windex];
 | |
| /*                       Reset twist index from inaccurate LAMBDA to */
 | |
| /*                       force computation of true MINGMA */
 | |
| 			    iwork[iindr + windex] = 0;
 | |
| 			}
 | |
| /*                    Given LAMBDA, compute the eigenvector. */
 | |
| 			L__1 = ! usedbs;
 | |
| 			zlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin], &l[
 | |
| 				ibegin], &work[indld + ibegin - 1], &work[
 | |
| 				indlld + ibegin - 1], pivmin, &gaptol, &z__[
 | |
| 				ibegin + windex * z_dim1], &L__1, &negcnt, &
 | |
| 				ztz, &mingma, &iwork[iindr + windex], &isuppz[
 | |
| 				(windex << 1) - 1], &nrminv, &resid, &rqcorr, 
 | |
| 				&work[indwrk]);
 | |
| 			if (iter == 0) {
 | |
| 			    bstres = resid;
 | |
| 			    bstw = lambda;
 | |
| 			} else if (resid < bstres) {
 | |
| 			    bstres = resid;
 | |
| 			    bstw = lambda;
 | |
| 			}
 | |
| /* Computing MIN */
 | |
| 			i__4 = isupmn, i__5 = isuppz[(windex << 1) - 1];
 | |
| 			isupmn = f2cmin(i__4,i__5);
 | |
| /* Computing MAX */
 | |
| 			i__4 = isupmx, i__5 = isuppz[windex * 2];
 | |
| 			isupmx = f2cmax(i__4,i__5);
 | |
| 			++iter;
 | |
| /*                    sin alpha <= |resid|/gap */
 | |
| /*                    Note that both the residual and the gap are */
 | |
| /*                    proportional to the matrix, so ||T|| doesn't play */
 | |
| /*                    a role in the quotient */
 | |
| 
 | |
| /*                    Convergence test for Rayleigh-Quotient iteration */
 | |
| /*                    (omitted when Bisection has been used) */
 | |
| 
 | |
| 			if (resid > tol * gap && abs(rqcorr) > rqtol * abs(
 | |
| 				lambda) && ! usedbs) {
 | |
| /*                       We need to check that the RQCORR update doesn't */
 | |
| /*                       move the eigenvalue away from the desired one and */
 | |
| /*                       towards a neighbor. -> protection with bisection */
 | |
| 			    if (indeig <= negcnt) {
 | |
| /*                          The wanted eigenvalue lies to the left */
 | |
| 				sgndef = -1.;
 | |
| 			    } else {
 | |
| /*                          The wanted eigenvalue lies to the right */
 | |
| 				sgndef = 1.;
 | |
| 			    }
 | |
| /*                       We only use the RQCORR if it improves the */
 | |
| /*                       the iterate reasonably. */
 | |
| 			    if (rqcorr * sgndef >= 0. && lambda + rqcorr <= 
 | |
| 				    right && lambda + rqcorr >= left) {
 | |
| 				usedrq = TRUE_;
 | |
| /*                          Store new midpoint of bisection interval in WORK */
 | |
| 				if (sgndef == 1.) {
 | |
| /*                             The current LAMBDA is on the left of the true */
 | |
| /*                             eigenvalue */
 | |
| 				    left = lambda;
 | |
| /*                             We prefer to assume that the error estimate */
 | |
| /*                             is correct. We could make the interval not */
 | |
| /*                             as a bracket but to be modified if the RQCORR */
 | |
| /*                             chooses to. In this case, the RIGHT side should */
 | |
| /*                             be modified as follows: */
 | |
| /*                              RIGHT = MAX(RIGHT, LAMBDA + RQCORR) */
 | |
| 				} else {
 | |
| /*                             The current LAMBDA is on the right of the true */
 | |
| /*                             eigenvalue */
 | |
| 				    right = lambda;
 | |
| /*                             See comment about assuming the error estimate is */
 | |
| /*                             correct above. */
 | |
| /*                              LEFT = MIN(LEFT, LAMBDA + RQCORR) */
 | |
| 				}
 | |
| 				work[windex] = (right + left) * .5;
 | |
| /*                          Take RQCORR since it has the correct sign and */
 | |
| /*                          improves the iterate reasonably */
 | |
| 				lambda += rqcorr;
 | |
| /*                          Update width of error interval */
 | |
| 				werr[windex] = (right - left) * .5;
 | |
| 			    } else {
 | |
| 				needbs = TRUE_;
 | |
| 			    }
 | |
| 			    if (right - left < rqtol * abs(lambda)) {
 | |
| /*                             The eigenvalue is computed to bisection accuracy */
 | |
| /*                             compute eigenvector and stop */
 | |
| 				usedbs = TRUE_;
 | |
| 				goto L120;
 | |
| 			    } else if (iter < 10) {
 | |
| 				goto L120;
 | |
| 			    } else if (iter == 10) {
 | |
| 				needbs = TRUE_;
 | |
| 				goto L120;
 | |
| 			    } else {
 | |
| 				*info = 5;
 | |
| 				return;
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    stp2ii = FALSE_;
 | |
| 			    if (usedrq && usedbs && bstres <= resid) {
 | |
| 				lambda = bstw;
 | |
| 				stp2ii = TRUE_;
 | |
| 			    }
 | |
| 			    if (stp2ii) {
 | |
| /*                          improve error angle by second step */
 | |
| 				L__1 = ! usedbs;
 | |
| 				zlar1v_(&in, &c__1, &in, &lambda, &d__[ibegin]
 | |
| 					, &l[ibegin], &work[indld + ibegin - 
 | |
| 					1], &work[indlld + ibegin - 1], 
 | |
| 					pivmin, &gaptol, &z__[ibegin + windex 
 | |
| 					* z_dim1], &L__1, &negcnt, &ztz, &
 | |
| 					mingma, &iwork[iindr + windex], &
 | |
| 					isuppz[(windex << 1) - 1], &nrminv, &
 | |
| 					resid, &rqcorr, &work[indwrk]);
 | |
| 			    }
 | |
| 			    work[windex] = lambda;
 | |
| 			}
 | |
| 
 | |
| /*                    Compute FP-vector support w.r.t. whole matrix */
 | |
| 
 | |
| 			isuppz[(windex << 1) - 1] += oldien;
 | |
| 			isuppz[windex * 2] += oldien;
 | |
| 			zfrom = isuppz[(windex << 1) - 1];
 | |
| 			zto = isuppz[windex * 2];
 | |
| 			isupmn += oldien;
 | |
| 			isupmx += oldien;
 | |
| /*                    Ensure vector is ok if support in the RQI has changed */
 | |
| 			if (isupmn < zfrom) {
 | |
| 			    i__4 = zfrom - 1;
 | |
| 			    for (ii = isupmn; ii <= i__4; ++ii) {
 | |
| 				i__5 = ii + windex * z_dim1;
 | |
| 				z__[i__5].r = 0., z__[i__5].i = 0.;
 | |
| /* L122: */
 | |
| 			    }
 | |
| 			}
 | |
| 			if (isupmx > zto) {
 | |
| 			    i__4 = isupmx;
 | |
| 			    for (ii = zto + 1; ii <= i__4; ++ii) {
 | |
| 				i__5 = ii + windex * z_dim1;
 | |
| 				z__[i__5].r = 0., z__[i__5].i = 0.;
 | |
| /* L123: */
 | |
| 			    }
 | |
| 			}
 | |
| 			i__4 = zto - zfrom + 1;
 | |
| 			zdscal_(&i__4, &nrminv, &z__[zfrom + windex * z_dim1],
 | |
| 				 &c__1);
 | |
| L125:
 | |
| /*                    Update W */
 | |
| 			w[windex] = lambda + sigma;
 | |
| /*                    Recompute the gaps on the left and right */
 | |
| /*                    But only allow them to become larger and not */
 | |
| /*                    smaller (which can only happen through "bad" */
 | |
| /*                    cancellation and doesn't reflect the theory */
 | |
| /*                    where the initial gaps are underestimated due */
 | |
| /*                    to WERR being too crude.) */
 | |
| 			if (! eskip) {
 | |
| 			    if (k > 1) {
 | |
| /* Computing MAX */
 | |
| 				d__1 = wgap[windmn], d__2 = w[windex] - werr[
 | |
| 					windex] - w[windmn] - werr[windmn];
 | |
| 				wgap[windmn] = f2cmax(d__1,d__2);
 | |
| 			    }
 | |
| 			    if (windex < wend) {
 | |
| /* Computing MAX */
 | |
| 				d__1 = savgap, d__2 = w[windpl] - werr[windpl]
 | |
| 					 - w[windex] - werr[windex];
 | |
| 				wgap[windex] = f2cmax(d__1,d__2);
 | |
| 			    }
 | |
| 			}
 | |
| 			++idone;
 | |
| 		    }
 | |
| /*                 here ends the code for the current child */
 | |
| 
 | |
| L139:
 | |
| /*                 Proceed to any remaining child nodes */
 | |
| 		    newfst = j + 1;
 | |
| L140:
 | |
| 		    ;
 | |
| 		}
 | |
| /* L150: */
 | |
| 	    }
 | |
| 	    ++ndepth;
 | |
| 	    goto L40;
 | |
| 	}
 | |
| 	ibegin = iend + 1;
 | |
| 	wbegin = wend + 1;
 | |
| L170:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZLARRV */
 | |
| 
 | |
| } /* zlarrv_ */
 | |
| 
 |