1391 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1391 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZLARFB applies a block reflector or its conjugate-transpose to a general rectangular matrix. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZLARFB + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlarfb.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlarfb.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlarfb.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLARFB( SIDE, TRANS, DIRECT, STOREV, M, N, K, V, LDV, */
 | |
| /*                          T, LDT, C, LDC, WORK, LDWORK ) */
 | |
| 
 | |
| /*       CHARACTER          DIRECT, SIDE, STOREV, TRANS */
 | |
| /*       INTEGER            K, LDC, LDT, LDV, LDWORK, M, N */
 | |
| /*       COMPLEX*16         C( LDC, * ), T( LDT, * ), V( LDV, * ), */
 | |
| /*      $                   WORK( LDWORK, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZLARFB applies a complex block reflector H or its transpose H**H to a */
 | |
| /* > complex M-by-N matrix C, from either the left or the right. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >          = 'L': apply H or H**H from the Left */
 | |
| /* >          = 'R': apply H or H**H from the Right */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >          = 'N': apply H (No transpose) */
 | |
| /* >          = 'C': apply H**H (Conjugate transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIRECT */
 | |
| /* > \verbatim */
 | |
| /* >          DIRECT is CHARACTER*1 */
 | |
| /* >          Indicates how H is formed from a product of elementary */
 | |
| /* >          reflectors */
 | |
| /* >          = 'F': H = H(1) H(2) . . . H(k) (Forward) */
 | |
| /* >          = 'B': H = H(k) . . . H(2) H(1) (Backward) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] STOREV */
 | |
| /* > \verbatim */
 | |
| /* >          STOREV is CHARACTER*1 */
 | |
| /* >          Indicates how the vectors which define the elementary */
 | |
| /* >          reflectors are stored: */
 | |
| /* >          = 'C': Columnwise */
 | |
| /* >          = 'R': Rowwise */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix C. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix C. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >          The order of the matrix T (= the number of elementary */
 | |
| /* >          reflectors whose product defines the block reflector). */
 | |
| /* >          If SIDE = 'L', M >= K >= 0; */
 | |
| /* >          if SIDE = 'R', N >= K >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] V */
 | |
| /* > \verbatim */
 | |
| /* >          V is COMPLEX*16 array, dimension */
 | |
| /* >                                (LDV,K) if STOREV = 'C' */
 | |
| /* >                                (LDV,M) if STOREV = 'R' and SIDE = 'L' */
 | |
| /* >                                (LDV,N) if STOREV = 'R' and SIDE = 'R' */
 | |
| /* >          See Further Details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV */
 | |
| /* > \verbatim */
 | |
| /* >          LDV is INTEGER */
 | |
| /* >          The leading dimension of the array V. */
 | |
| /* >          If STOREV = 'C' and SIDE = 'L', LDV >= f2cmax(1,M); */
 | |
| /* >          if STOREV = 'C' and SIDE = 'R', LDV >= f2cmax(1,N); */
 | |
| /* >          if STOREV = 'R', LDV >= K. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is COMPLEX*16 array, dimension (LDT,K) */
 | |
| /* >          The triangular K-by-K matrix T in the representation of the */
 | |
| /* >          block reflector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T. LDT >= K. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is COMPLEX*16 array, dimension (LDC,N) */
 | |
| /* >          On entry, the M-by-N matrix C. */
 | |
| /* >          On exit, C is overwritten by H*C or H**H*C or C*H or C*H**H. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the array C. LDC >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (LDWORK,K) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LDWORK is INTEGER */
 | |
| /* >          The leading dimension of the array WORK. */
 | |
| /* >          If SIDE = 'L', LDWORK >= f2cmax(1,N); */
 | |
| /* >          if SIDE = 'R', LDWORK >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2013 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The shape of the matrix V and the storage of the vectors which define */
 | |
| /* >  the H(i) is best illustrated by the following example with n = 5 and */
 | |
| /* >  k = 3. The elements equal to 1 are not stored; the corresponding */
 | |
| /* >  array elements are modified but restored on exit. The rest of the */
 | |
| /* >  array is not used. */
 | |
| /* > */
 | |
| /* >  DIRECT = 'F' and STOREV = 'C':         DIRECT = 'F' and STOREV = 'R': */
 | |
| /* > */
 | |
| /* >               V = (  1       )                 V = (  1 v1 v1 v1 v1 ) */
 | |
| /* >                   ( v1  1    )                     (     1 v2 v2 v2 ) */
 | |
| /* >                   ( v1 v2  1 )                     (        1 v3 v3 ) */
 | |
| /* >                   ( v1 v2 v3 ) */
 | |
| /* >                   ( v1 v2 v3 ) */
 | |
| /* > */
 | |
| /* >  DIRECT = 'B' and STOREV = 'C':         DIRECT = 'B' and STOREV = 'R': */
 | |
| /* > */
 | |
| /* >               V = ( v1 v2 v3 )                 V = ( v1 v1  1       ) */
 | |
| /* >                   ( v1 v2 v3 )                     ( v2 v2 v2  1    ) */
 | |
| /* >                   (  1 v2 v3 )                     ( v3 v3 v3 v3  1 ) */
 | |
| /* >                   (     1 v3 ) */
 | |
| /* >                   (        1 ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zlarfb_(char *side, char *trans, char *direct, char *
 | |
| 	storev, integer *m, integer *n, integer *k, doublecomplex *v, integer 
 | |
| 	*ldv, doublecomplex *t, integer *ldt, doublecomplex *c__, integer *
 | |
| 	ldc, doublecomplex *work, integer *ldwork)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer c_dim1, c_offset, t_dim1, t_offset, v_dim1, v_offset, work_dim1, 
 | |
| 	    work_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublecomplex z__1, z__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, j;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *), zcopy_(integer *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, integer *), ztrmm_(char *, char *, 
 | |
| 	    char *, char *, integer *, integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *), zlacgv_(integer *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     char transt[1];
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2013 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     work_dim1 = *ldwork;
 | |
|     work_offset = 1 + work_dim1 * 1;
 | |
|     work -= work_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (*m <= 0 || *n <= 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(trans, "N")) {
 | |
| 	*(unsigned char *)transt = 'C';
 | |
|     } else {
 | |
| 	*(unsigned char *)transt = 'N';
 | |
|     }
 | |
| 
 | |
|     if (lsame_(storev, "C")) {
 | |
| 
 | |
| 	if (lsame_(direct, "F")) {
 | |
| 
 | |
| /*           Let  V =  ( V1 )    (first K rows) */
 | |
| /*                     ( V2 ) */
 | |
| /*           where  V1  is unit lower triangular. */
 | |
| 
 | |
| 	    if (lsame_(side, "L")) {
 | |
| 
 | |
| /*              Form  H * C  or  H**H * C  where  C = ( C1 ) */
 | |
| /*                                                    ( C2 ) */
 | |
| 
 | |
| /*              W := C**H * V  =  (C1**H * V1 + C2**H * V2)  (stored in WORK) */
 | |
| 
 | |
| /*              W := C1**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
 | |
| 			     &c__1);
 | |
| 		    zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
 | |
| /* L10: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1 */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1, 
 | |
| 			&v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 W := W + C2**H * V2 */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    zgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
 | |
| 			     &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[*k + 1 + 
 | |
| 			    v_dim1], ldv, &c_b1, &work[work_offset], ldwork);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T**H  or  W * T */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - V * W**H */
 | |
| 
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 C2 := C2 - V2 * W**H */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
 | |
| 			     &z__1, &v[*k + 1 + v_dim1], ldv, &work[
 | |
| 			    work_offset], ldwork, &c_b1, &c__[*k + 1 + c_dim1]
 | |
| 			    , ldc);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k, 
 | |
| 			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C1 := C1 - W**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = j + i__ * c_dim1;
 | |
| 			i__4 = j + i__ * c_dim1;
 | |
| 			d_cnjg(&z__2, &work[i__ + j * work_dim1]);
 | |
| 			z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - 
 | |
| 				z__2.i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L20: */
 | |
| 		    }
 | |
| /* L30: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (lsame_(side, "R")) {
 | |
| 
 | |
| /*              Form  C * H  or  C * H**H  where  C = ( C1  C2 ) */
 | |
| 
 | |
| /*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK) */
 | |
| 
 | |
| /*              W := C1 */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * 
 | |
| 			    work_dim1 + 1], &c__1);
 | |
| /* L40: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1 */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1, 
 | |
| 			&v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 W := W + C2 * V2 */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    zgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
 | |
| 			     &c__[(*k + 1) * c_dim1 + 1], ldc, &v[*k + 1 + 
 | |
| 			    v_dim1], ldv, &c_b1, &work[work_offset], ldwork);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T  or  W * T**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - W * V**H */
 | |
| 
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 C2 := C2 - W * V2**H */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
 | |
| 			     &z__1, &work[work_offset], ldwork, &v[*k + 1 + 
 | |
| 			    v_dim1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1], 
 | |
| 			    ldc);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k, 
 | |
| 			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C1 := C1 - W */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + j * c_dim1;
 | |
| 			i__4 = i__ + j * c_dim1;
 | |
| 			i__5 = i__ + j * work_dim1;
 | |
| 			z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
 | |
| 				i__4].i - work[i__5].i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L50: */
 | |
| 		    }
 | |
| /* L60: */
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Let  V =  ( V1 ) */
 | |
| /*                     ( V2 )    (last K rows) */
 | |
| /*           where  V2  is unit upper triangular. */
 | |
| 
 | |
| 	    if (lsame_(side, "L")) {
 | |
| 
 | |
| /*              Form  H * C  or  H**H * C  where  C = ( C1 ) */
 | |
| /*                                                    ( C2 ) */
 | |
| 
 | |
| /*              W := C**H * V  =  (C1**H * V1 + C2**H * V2)  (stored in WORK) */
 | |
| 
 | |
| /*              W := C2**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * 
 | |
| 			    work_dim1 + 1], &c__1);
 | |
| 		    zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
 | |
| /* L70: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2 */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1, 
 | |
| 			&v[*m - *k + 1 + v_dim1], ldv, &work[work_offset], 
 | |
| 			ldwork);
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 W := W + C1**H * V1 */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    zgemm_("Conjugate transpose", "No transpose", n, k, &i__1,
 | |
| 			     &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
 | |
| 			    c_b1, &work[work_offset], ldwork);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T**H  or  W * T */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - V * W**H */
 | |
| 
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 C1 := C1 - V1 * W**H */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("No transpose", "Conjugate transpose", &i__1, n, k,
 | |
| 			     &z__1, &v[v_offset], ldv, &work[work_offset], 
 | |
| 			    ldwork, &c_b1, &c__[c_offset], ldc);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k, 
 | |
| 			&c_b1, &v[*m - *k + 1 + v_dim1], ldv, &work[
 | |
| 			work_offset], ldwork);
 | |
| 
 | |
| /*              C2 := C2 - W**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = *m - *k + j + i__ * c_dim1;
 | |
| 			i__4 = *m - *k + j + i__ * c_dim1;
 | |
| 			d_cnjg(&z__2, &work[i__ + j * work_dim1]);
 | |
| 			z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - 
 | |
| 				z__2.i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L80: */
 | |
| 		    }
 | |
| /* L90: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (lsame_(side, "R")) {
 | |
| 
 | |
| /*              Form  C * H  or  C * H**H  where  C = ( C1  C2 ) */
 | |
| 
 | |
| /*              W := C * V  =  (C1*V1 + C2*V2)  (stored in WORK) */
 | |
| 
 | |
| /*              W := C2 */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
 | |
| 			    j * work_dim1 + 1], &c__1);
 | |
| /* L100: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2 */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1, 
 | |
| 			&v[*n - *k + 1 + v_dim1], ldv, &work[work_offset], 
 | |
| 			ldwork);
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 W := W + C1 * V1 */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    zgemm_("No transpose", "No transpose", m, k, &i__1, &c_b1,
 | |
| 			     &c__[c_offset], ldc, &v[v_offset], ldv, &c_b1, &
 | |
| 			    work[work_offset], ldwork)
 | |
| 			    ;
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T  or  W * T**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - W * V**H */
 | |
| 
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 C1 := C1 - W * V1**H */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("No transpose", "Conjugate transpose", m, &i__1, k,
 | |
| 			     &z__1, &work[work_offset], ldwork, &v[v_offset], 
 | |
| 			    ldv, &c_b1, &c__[c_offset], ldc);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k, 
 | |
| 			&c_b1, &v[*n - *k + 1 + v_dim1], ldv, &work[
 | |
| 			work_offset], ldwork);
 | |
| 
 | |
| /*              C2 := C2 - W */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + (*n - *k + j) * c_dim1;
 | |
| 			i__4 = i__ + (*n - *k + j) * c_dim1;
 | |
| 			i__5 = i__ + j * work_dim1;
 | |
| 			z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
 | |
| 				i__4].i - work[i__5].i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L110: */
 | |
| 		    }
 | |
| /* L120: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     } else if (lsame_(storev, "R")) {
 | |
| 
 | |
| 	if (lsame_(direct, "F")) {
 | |
| 
 | |
| /*           Let  V =  ( V1  V2 )    (V1: first K columns) */
 | |
| /*           where  V1  is unit upper triangular. */
 | |
| 
 | |
| 	    if (lsame_(side, "L")) {
 | |
| 
 | |
| /*              Form  H * C  or  H**H * C  where  C = ( C1 ) */
 | |
| /*                                                    ( C2 ) */
 | |
| 
 | |
| /*              W := C**H * V**H  =  (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
 | |
| 
 | |
| /*              W := C1**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(n, &c__[j + c_dim1], ldc, &work[j * work_dim1 + 1],
 | |
| 			     &c__1);
 | |
| 		    zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
 | |
| /* L130: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", n, k, 
 | |
| 			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 W := W + C2**H * V2**H */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    zgemm_("Conjugate transpose", "Conjugate transpose", n, k,
 | |
| 			     &i__1, &c_b1, &c__[*k + 1 + c_dim1], ldc, &v[(*k 
 | |
| 			    + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
 | |
| 			    , ldwork);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T**H  or  W * T */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", transt, "Non-unit", n, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - V**H * W**H */
 | |
| 
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 C2 := C2 - V2**H * W**H */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("Conjugate transpose", "Conjugate transpose", &
 | |
| 			    i__1, n, k, &z__1, &v[(*k + 1) * v_dim1 + 1], ldv,
 | |
| 			     &work[work_offset], ldwork, &c_b1, &c__[*k + 1 + 
 | |
| 			    c_dim1], ldc);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1 */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "No transpose", "Unit", n, k, &c_b1, 
 | |
| 			&v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C1 := C1 - W**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = j + i__ * c_dim1;
 | |
| 			i__4 = j + i__ * c_dim1;
 | |
| 			d_cnjg(&z__2, &work[i__ + j * work_dim1]);
 | |
| 			z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - 
 | |
| 				z__2.i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L140: */
 | |
| 		    }
 | |
| /* L150: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (lsame_(side, "R")) {
 | |
| 
 | |
| /*              Form  C * H  or  C * H**H  where  C = ( C1  C2 ) */
 | |
| 
 | |
| /*              W := C * V**H  =  (C1*V1**H + C2*V2**H)  (stored in WORK) */
 | |
| 
 | |
| /*              W := C1 */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(m, &c__[j * c_dim1 + 1], &c__1, &work[j * 
 | |
| 			    work_dim1 + 1], &c__1);
 | |
| /* L160: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "Conjugate transpose", "Unit", m, k, 
 | |
| 			&c_b1, &v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 W := W + C2 * V2**H */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    zgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
 | |
| 			     &c_b1, &c__[(*k + 1) * c_dim1 + 1], ldc, &v[(*k 
 | |
| 			    + 1) * v_dim1 + 1], ldv, &c_b1, &work[work_offset]
 | |
| 			    , ldwork);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T  or  W * T**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", trans, "Non-unit", m, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - W * V */
 | |
| 
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 C2 := C2 - W * V2 */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("No transpose", "No transpose", m, &i__1, k, &z__1,
 | |
| 			     &work[work_offset], ldwork, &v[(*k + 1) * v_dim1 
 | |
| 			    + 1], ldv, &c_b1, &c__[(*k + 1) * c_dim1 + 1], 
 | |
| 			    ldc);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V1 */
 | |
| 
 | |
| 		ztrmm_("Right", "Upper", "No transpose", "Unit", m, k, &c_b1, 
 | |
| 			&v[v_offset], ldv, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C1 := C1 - W */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + j * c_dim1;
 | |
| 			i__4 = i__ + j * c_dim1;
 | |
| 			i__5 = i__ + j * work_dim1;
 | |
| 			z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
 | |
| 				i__4].i - work[i__5].i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L170: */
 | |
| 		    }
 | |
| /* L180: */
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Let  V =  ( V1  V2 )    (V2: last K columns) */
 | |
| /*           where  V2  is unit lower triangular. */
 | |
| 
 | |
| 	    if (lsame_(side, "L")) {
 | |
| 
 | |
| /*              Form  H * C  or  H**H * C  where  C = ( C1 ) */
 | |
| /*                                                    ( C2 ) */
 | |
| 
 | |
| /*              W := C**H * V**H  =  (C1**H * V1**H + C2**H * V2**H) (stored in WORK) */
 | |
| 
 | |
| /*              W := C2**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(n, &c__[*m - *k + j + c_dim1], ldc, &work[j * 
 | |
| 			    work_dim1 + 1], &c__1);
 | |
| 		    zlacgv_(n, &work[j * work_dim1 + 1], &c__1);
 | |
| /* L190: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", n, k, 
 | |
| 			&c_b1, &v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
 | |
| 			work_offset], ldwork);
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 W := W + C1**H * V1**H */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    zgemm_("Conjugate transpose", "Conjugate transpose", n, k,
 | |
| 			     &i__1, &c_b1, &c__[c_offset], ldc, &v[v_offset], 
 | |
| 			    ldv, &c_b1, &work[work_offset], ldwork);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T**H  or  W * T */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", transt, "Non-unit", n, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - V**H * W**H */
 | |
| 
 | |
| 		if (*m > *k) {
 | |
| 
 | |
| /*                 C1 := C1 - V1**H * W**H */
 | |
| 
 | |
| 		    i__1 = *m - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("Conjugate transpose", "Conjugate transpose", &
 | |
| 			    i__1, n, k, &z__1, &v[v_offset], ldv, &work[
 | |
| 			    work_offset], ldwork, &c_b1, &c__[c_offset], ldc);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2 */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "No transpose", "Unit", n, k, &c_b1, 
 | |
| 			&v[(*m - *k + 1) * v_dim1 + 1], ldv, &work[
 | |
| 			work_offset], ldwork);
 | |
| 
 | |
| /*              C2 := C2 - W**H */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = *m - *k + j + i__ * c_dim1;
 | |
| 			i__4 = *m - *k + j + i__ * c_dim1;
 | |
| 			d_cnjg(&z__2, &work[i__ + j * work_dim1]);
 | |
| 			z__1.r = c__[i__4].r - z__2.r, z__1.i = c__[i__4].i - 
 | |
| 				z__2.i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L200: */
 | |
| 		    }
 | |
| /* L210: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (lsame_(side, "R")) {
 | |
| 
 | |
| /*              Form  C * H  or  C * H**H  where  C = ( C1  C2 ) */
 | |
| 
 | |
| /*              W := C * V**H  =  (C1*V1**H + C2*V2**H)  (stored in WORK) */
 | |
| 
 | |
| /*              W := C2 */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    zcopy_(m, &c__[(*n - *k + j) * c_dim1 + 1], &c__1, &work[
 | |
| 			    j * work_dim1 + 1], &c__1);
 | |
| /* L220: */
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "Conjugate transpose", "Unit", m, k, 
 | |
| 			&c_b1, &v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
 | |
| 			work_offset], ldwork);
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 W := W + C1 * V1**H */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    zgemm_("No transpose", "Conjugate transpose", m, k, &i__1,
 | |
| 			     &c_b1, &c__[c_offset], ldc, &v[v_offset], ldv, &
 | |
| 			    c_b1, &work[work_offset], ldwork);
 | |
| 		}
 | |
| 
 | |
| /*              W := W * T  or  W * T**H */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", trans, "Non-unit", m, k, &c_b1, &t[
 | |
| 			t_offset], ldt, &work[work_offset], ldwork);
 | |
| 
 | |
| /*              C := C - W * V */
 | |
| 
 | |
| 		if (*n > *k) {
 | |
| 
 | |
| /*                 C1 := C1 - W * V1 */
 | |
| 
 | |
| 		    i__1 = *n - *k;
 | |
| 		    z__1.r = -1., z__1.i = 0.;
 | |
| 		    zgemm_("No transpose", "No transpose", m, &i__1, k, &z__1,
 | |
| 			     &work[work_offset], ldwork, &v[v_offset], ldv, &
 | |
| 			    c_b1, &c__[c_offset], ldc)
 | |
| 			    ;
 | |
| 		}
 | |
| 
 | |
| /*              W := W * V2 */
 | |
| 
 | |
| 		ztrmm_("Right", "Lower", "No transpose", "Unit", m, k, &c_b1, 
 | |
| 			&v[(*n - *k + 1) * v_dim1 + 1], ldv, &work[
 | |
| 			work_offset], ldwork);
 | |
| 
 | |
| /*              C1 := C1 - W */
 | |
| 
 | |
| 		i__1 = *k;
 | |
| 		for (j = 1; j <= i__1; ++j) {
 | |
| 		    i__2 = *m;
 | |
| 		    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 			i__3 = i__ + (*n - *k + j) * c_dim1;
 | |
| 			i__4 = i__ + (*n - *k + j) * c_dim1;
 | |
| 			i__5 = i__ + j * work_dim1;
 | |
| 			z__1.r = c__[i__4].r - work[i__5].r, z__1.i = c__[
 | |
| 				i__4].i - work[i__5].i;
 | |
| 			c__[i__3].r = z__1.r, c__[i__3].i = z__1.i;
 | |
| /* L230: */
 | |
| 		    }
 | |
| /* L240: */
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZLARFB */
 | |
| 
 | |
| } /* zlarfb_ */
 | |
| 
 |