267 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			267 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZLANHP returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the element of largest absolute value of a complex Hermitian matrix supplied in packed form.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZLANHP + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhp.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhp.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhp.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          NORM, UPLO
 | |
| *       INTEGER            N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   WORK( * )
 | |
| *       COMPLEX*16         AP( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZLANHP  returns the value of the one norm,  or the Frobenius norm, or
 | |
| *> the  infinity norm,  or the  element of  largest absolute value  of a
 | |
| *> complex hermitian matrix A,  supplied in packed form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \return ZLANHP
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    ZLANHP = ( max(abs(A(i,j))), NORM = 'M' or 'm'
 | |
| *>             (
 | |
| *>             ( norm1(A),         NORM = '1', 'O' or 'o'
 | |
| *>             (
 | |
| *>             ( normI(A),         NORM = 'I' or 'i'
 | |
| *>             (
 | |
| *>             ( normF(A),         NORM = 'F', 'f', 'E' or 'e'
 | |
| *>
 | |
| *> where  norm1  denotes the  one norm of a matrix (maximum column sum),
 | |
| *> normI  denotes the  infinity norm  of a matrix  (maximum row sum) and
 | |
| *> normF  denotes the  Frobenius norm of a matrix (square root of sum of
 | |
| *> squares).  Note that  max(abs(A(i,j)))  is not a consistent matrix norm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] NORM
 | |
| *> \verbatim
 | |
| *>          NORM is CHARACTER*1
 | |
| *>          Specifies the value to be returned in ZLANHP as described
 | |
| *>          above.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          hermitian matrix A is supplied.
 | |
| *>          = 'U':  Upper triangular part of A is supplied
 | |
| *>          = 'L':  Lower triangular part of A is supplied
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.  When N = 0, ZLANHP is
 | |
| *>          set to zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] AP
 | |
| *> \verbatim
 | |
| *>          AP is COMPLEX*16 array, dimension (N*(N+1)/2)
 | |
| *>          The upper or lower triangle of the hermitian matrix A, packed
 | |
| *>          columnwise in a linear array.  The j-th column of A is stored
 | |
| *>          in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>          Note that the  imaginary parts of the diagonal elements need
 | |
| *>          not be set and are assumed to be zero.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is DOUBLE PRECISION array, dimension (MAX(1,LWORK)),
 | |
| *>          where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise,
 | |
| *>          WORK is not referenced.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16OTHERauxiliary
 | |
| *
 | |
| *  =====================================================================
 | |
|       DOUBLE PRECISION FUNCTION ZLANHP( NORM, UPLO, N, AP, WORK )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          NORM, UPLO
 | |
|       INTEGER            N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   WORK( * )
 | |
|       COMPLEX*16         AP( * )
 | |
| *     ..
 | |
| *
 | |
| * =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0D+0, ZERO = 0.0D+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, J, K
 | |
|       DOUBLE PRECISION   ABSA, SCALE, SUM, VALUE
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME, DISNAN
 | |
|       EXTERNAL           LSAME, DISNAN
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           ZLASSQ
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, DBLE, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       IF( N.EQ.0 ) THEN
 | |
|          VALUE = ZERO
 | |
|       ELSE IF( LSAME( NORM, 'M' ) ) THEN
 | |
| *
 | |
| *        Find max(abs(A(i,j))).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             K = 0
 | |
|             DO 20 J = 1, N
 | |
|                DO 10 I = K + 1, K + J - 1
 | |
|                   SUM = ABS( AP( I ) )
 | |
|                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    10          CONTINUE
 | |
|                K = K + J
 | |
|                SUM = ABS( DBLE( AP( K ) ) )
 | |
|                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    20       CONTINUE
 | |
|          ELSE
 | |
|             K = 1
 | |
|             DO 40 J = 1, N
 | |
|                SUM = ABS( DBLE( AP( K ) ) )
 | |
|                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|                DO 30 I = K + 1, K + N - J
 | |
|                   SUM = ABS( AP( I ) )
 | |
|                   IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    30          CONTINUE
 | |
|                K = K + N - J + 1
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'I' ) ) .OR. ( LSAME( NORM, 'O' ) ) .OR.
 | |
|      $         ( NORM.EQ.'1' ) ) THEN
 | |
| *
 | |
| *        Find normI(A) ( = norm1(A), since A is hermitian).
 | |
| *
 | |
|          VALUE = ZERO
 | |
|          K = 1
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             DO 60 J = 1, N
 | |
|                SUM = ZERO
 | |
|                DO 50 I = 1, J - 1
 | |
|                   ABSA = ABS( AP( K ) )
 | |
|                   SUM = SUM + ABSA
 | |
|                   WORK( I ) = WORK( I ) + ABSA
 | |
|                   K = K + 1
 | |
|    50          CONTINUE
 | |
|                WORK( J ) = SUM + ABS( DBLE( AP( K ) ) )
 | |
|                K = K + 1
 | |
|    60       CONTINUE
 | |
|             DO 70 I = 1, N
 | |
|                SUM = WORK( I )
 | |
|                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|    70       CONTINUE
 | |
|          ELSE
 | |
|             DO 80 I = 1, N
 | |
|                WORK( I ) = ZERO
 | |
|    80       CONTINUE
 | |
|             DO 100 J = 1, N
 | |
|                SUM = WORK( J ) + ABS( DBLE( AP( K ) ) )
 | |
|                K = K + 1
 | |
|                DO 90 I = J + 1, N
 | |
|                   ABSA = ABS( AP( K ) )
 | |
|                   SUM = SUM + ABSA
 | |
|                   WORK( I ) = WORK( I ) + ABSA
 | |
|                   K = K + 1
 | |
|    90          CONTINUE
 | |
|                IF( VALUE .LT. SUM .OR. DISNAN( SUM ) ) VALUE = SUM
 | |
|   100       CONTINUE
 | |
|          END IF
 | |
|       ELSE IF( ( LSAME( NORM, 'F' ) ) .OR. ( LSAME( NORM, 'E' ) ) ) THEN
 | |
| *
 | |
| *        Find normF(A).
 | |
| *
 | |
|          SCALE = ZERO
 | |
|          SUM = ONE
 | |
|          K = 2
 | |
|          IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|             DO 110 J = 2, N
 | |
|                CALL ZLASSQ( J-1, AP( K ), 1, SCALE, SUM )
 | |
|                K = K + J
 | |
|   110       CONTINUE
 | |
|          ELSE
 | |
|             DO 120 J = 1, N - 1
 | |
|                CALL ZLASSQ( N-J, AP( K ), 1, SCALE, SUM )
 | |
|                K = K + N - J + 1
 | |
|   120       CONTINUE
 | |
|          END IF
 | |
|          SUM = 2*SUM
 | |
|          K = 1
 | |
|          DO 130 I = 1, N
 | |
|             IF( DBLE( AP( K ) ).NE.ZERO ) THEN
 | |
|                ABSA = ABS( DBLE( AP( K ) ) )
 | |
|                IF( SCALE.LT.ABSA ) THEN
 | |
|                   SUM = ONE + SUM*( SCALE / ABSA )**2
 | |
|                   SCALE = ABSA
 | |
|                ELSE
 | |
|                   SUM = SUM + ( ABSA / SCALE )**2
 | |
|                END IF
 | |
|             END IF
 | |
|             IF( LSAME( UPLO, 'U' ) ) THEN
 | |
|                K = K + I + 1
 | |
|             ELSE
 | |
|                K = K + N - I + 1
 | |
|             END IF
 | |
|   130    CONTINUE
 | |
|          VALUE = SCALE*SQRT( SUM )
 | |
|       END IF
 | |
| *
 | |
|       ZLANHP = VALUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZLANHP
 | |
| *
 | |
|       END
 |