2458 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2458 lines
		
	
	
		
			63 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZLANHF returns the value of the 1-norm, or the Frobenius norm, or the infinity norm, or the ele
 | |
| ment of largest absolute value of a Hermitian matrix in RFP format. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZLANHF + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlanhf.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlanhf.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlanhf.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       DOUBLE PRECISION FUNCTION ZLANHF( NORM, TRANSR, UPLO, N, A, WORK ) */
 | |
| 
 | |
| /*       CHARACTER          NORM, TRANSR, UPLO */
 | |
| /*       INTEGER            N */
 | |
| /*       DOUBLE PRECISION   WORK( 0: * ) */
 | |
| /*       COMPLEX*16         A( 0: * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZLANHF  returns the value of the one norm,  or the Frobenius norm, or */
 | |
| /* > the  infinity norm,  or the  element of  largest absolute value  of a */
 | |
| /* > complex Hermitian matrix A in RFP format. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \return ZLANHF */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    ZLANHF = ( f2cmax(abs(A(i,j))), NORM = 'M' or 'm' */
 | |
| /* >             ( */
 | |
| /* >             ( norm1(A),         NORM = '1', 'O' or 'o' */
 | |
| /* >             ( */
 | |
| /* >             ( normI(A),         NORM = 'I' or 'i' */
 | |
| /* >             ( */
 | |
| /* >             ( normF(A),         NORM = 'F', 'f', 'E' or 'e' */
 | |
| /* > */
 | |
| /* > where  norm1  denotes the  one norm of a matrix (maximum column sum), */
 | |
| /* > normI  denotes the  infinity norm  of a matrix  (maximum row sum) and */
 | |
| /* > normF  denotes the  Frobenius norm of a matrix (square root of sum of */
 | |
| /* > squares).  Note that  f2cmax(abs(A(i,j)))  is not a  matrix norm. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] NORM */
 | |
| /* > \verbatim */
 | |
| /* >          NORM is CHARACTER */
 | |
| /* >            Specifies the value to be returned in ZLANHF as described */
 | |
| /* >            above. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANSR */
 | |
| /* > \verbatim */
 | |
| /* >          TRANSR is CHARACTER */
 | |
| /* >            Specifies whether the RFP format of A is normal or */
 | |
| /* >            conjugate-transposed format. */
 | |
| /* >            = 'N':  RFP format is Normal */
 | |
| /* >            = 'C':  RFP format is Conjugate-transposed */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER */
 | |
| /* >            On entry, UPLO specifies whether the RFP matrix A came from */
 | |
| /* >            an upper or lower triangular matrix as follows: */
 | |
| /* > */
 | |
| /* >            UPLO = 'U' or 'u' RFP A came from an upper triangular */
 | |
| /* >            matrix */
 | |
| /* > */
 | |
| /* >            UPLO = 'L' or 'l' RFP A came from a  lower triangular */
 | |
| /* >            matrix */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >            The order of the matrix A.  N >= 0.  When N = 0, ZLANHF is */
 | |
| /* >            set to zero. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension ( N*(N+1)/2 ); */
 | |
| /* >            On entry, the matrix A in RFP Format. */
 | |
| /* >            RFP Format is described by TRANSR, UPLO and N as follows: */
 | |
| /* >            If TRANSR='N' then RFP A is (0:N,0:K-1) when N is even; */
 | |
| /* >            K=N/2. RFP A is (0:N-1,0:K) when N is odd; K=N/2. If */
 | |
| /* >            TRANSR = 'C' then RFP is the Conjugate-transpose of RFP A */
 | |
| /* >            as defined when TRANSR = 'N'. The contents of RFP A are */
 | |
| /* >            defined by UPLO as follows: If UPLO = 'U' the RFP A */
 | |
| /* >            contains the ( N*(N+1)/2 ) elements of upper packed A */
 | |
| /* >            either in normal or conjugate-transpose Format. If */
 | |
| /* >            UPLO = 'L' the RFP A contains the ( N*(N+1) /2 ) elements */
 | |
| /* >            of lower packed A either in normal or conjugate-transpose */
 | |
| /* >            Format. The LDA of RFP A is (N+1)/2 when TRANSR = 'C'. When */
 | |
| /* >            TRANSR is 'N' the LDA is N+1 when N is even and is N when */
 | |
| /* >            is odd. See the Note below for more details. */
 | |
| /* >            Unchanged on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (LWORK), */
 | |
| /* >            where LWORK >= N when NORM = 'I' or '1' or 'O'; otherwise, */
 | |
| /* >            WORK is not referenced. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  We first consider Standard Packed Format when N is even. */
 | |
| /* >  We give an example where N = 6. */
 | |
| /* > */
 | |
| /* >      AP is Upper             AP is Lower */
 | |
| /* > */
 | |
| /* >   00 01 02 03 04 05       00 */
 | |
| /* >      11 12 13 14 15       10 11 */
 | |
| /* >         22 23 24 25       20 21 22 */
 | |
| /* >            33 34 35       30 31 32 33 */
 | |
| /* >               44 45       40 41 42 43 44 */
 | |
| /* >                  55       50 51 52 53 54 55 */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >  Let TRANSR = 'N'. RFP holds AP as follows: */
 | |
| /* >  For UPLO = 'U' the upper trapezoid A(0:5,0:2) consists of the last */
 | |
| /* >  three columns of AP upper. The lower triangle A(4:6,0:2) consists of */
 | |
| /* >  conjugate-transpose of the first three columns of AP upper. */
 | |
| /* >  For UPLO = 'L' the lower trapezoid A(1:6,0:2) consists of the first */
 | |
| /* >  three columns of AP lower. The upper triangle A(0:2,0:2) consists of */
 | |
| /* >  conjugate-transpose of the last three columns of AP lower. */
 | |
| /* >  To denote conjugate we place -- above the element. This covers the */
 | |
| /* >  case N even and TRANSR = 'N'. */
 | |
| /* > */
 | |
| /* >         RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >                                -- -- -- */
 | |
| /* >        03 04 05                33 43 53 */
 | |
| /* >                                   -- -- */
 | |
| /* >        13 14 15                00 44 54 */
 | |
| /* >                                      -- */
 | |
| /* >        23 24 25                10 11 55 */
 | |
| /* > */
 | |
| /* >        33 34 35                20 21 22 */
 | |
| /* >        -- */
 | |
| /* >        00 44 45                30 31 32 */
 | |
| /* >        -- -- */
 | |
| /* >        01 11 55                40 41 42 */
 | |
| /* >        -- -- -- */
 | |
| /* >        02 12 22                50 51 52 */
 | |
| /* > */
 | |
| /* >  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
 | |
| /* >  transpose of RFP A above. One therefore gets: */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >           RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >     -- -- -- --                -- -- -- -- -- -- */
 | |
| /* >     03 13 23 33 00 01 02    33 00 10 20 30 40 50 */
 | |
| /* >     -- -- -- -- --                -- -- -- -- -- */
 | |
| /* >     04 14 24 34 44 11 12    43 44 11 21 31 41 51 */
 | |
| /* >     -- -- -- -- -- --                -- -- -- -- */
 | |
| /* >     05 15 25 35 45 55 22    53 54 55 22 32 42 52 */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >  We next  consider Standard Packed Format when N is odd. */
 | |
| /* >  We give an example where N = 5. */
 | |
| /* > */
 | |
| /* >     AP is Upper                 AP is Lower */
 | |
| /* > */
 | |
| /* >   00 01 02 03 04              00 */
 | |
| /* >      11 12 13 14              10 11 */
 | |
| /* >         22 23 24              20 21 22 */
 | |
| /* >            33 34              30 31 32 33 */
 | |
| /* >               44              40 41 42 43 44 */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >  Let TRANSR = 'N'. RFP holds AP as follows: */
 | |
| /* >  For UPLO = 'U' the upper trapezoid A(0:4,0:2) consists of the last */
 | |
| /* >  three columns of AP upper. The lower triangle A(3:4,0:1) consists of */
 | |
| /* >  conjugate-transpose of the first two   columns of AP upper. */
 | |
| /* >  For UPLO = 'L' the lower trapezoid A(0:4,0:2) consists of the first */
 | |
| /* >  three columns of AP lower. The upper triangle A(0:1,1:2) consists of */
 | |
| /* >  conjugate-transpose of the last two   columns of AP lower. */
 | |
| /* >  To denote conjugate we place -- above the element. This covers the */
 | |
| /* >  case N odd  and TRANSR = 'N'. */
 | |
| /* > */
 | |
| /* >         RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >                                   -- -- */
 | |
| /* >        02 03 04                00 33 43 */
 | |
| /* >                                      -- */
 | |
| /* >        12 13 14                10 11 44 */
 | |
| /* > */
 | |
| /* >        22 23 24                20 21 22 */
 | |
| /* >        -- */
 | |
| /* >        00 33 34                30 31 32 */
 | |
| /* >        -- -- */
 | |
| /* >        01 11 44                40 41 42 */
 | |
| /* > */
 | |
| /* >  Now let TRANSR = 'C'. RFP A in both UPLO cases is just the conjugate- */
 | |
| /* >  transpose of RFP A above. One therefore gets: */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >           RFP A                   RFP A */
 | |
| /* > */
 | |
| /* >     -- -- --                   -- -- -- -- -- -- */
 | |
| /* >     02 12 22 00 01             00 10 20 30 40 50 */
 | |
| /* >     -- -- -- --                   -- -- -- -- -- */
 | |
| /* >     03 13 23 33 11             33 11 21 31 41 51 */
 | |
| /* >     -- -- -- -- --                   -- -- -- -- */
 | |
| /* >     04 14 24 34 44             43 44 22 32 42 52 */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| doublereal zlanhf_(char *norm, char *transr, char *uplo, integer *n, 
 | |
| 	doublecomplex *a, doublereal *work)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2;
 | |
|     doublereal ret_val, d__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal temp;
 | |
|     integer i__, j, k, l;
 | |
|     doublereal s, scale;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal value;
 | |
|     integer n1;
 | |
|     doublereal aa;
 | |
|     extern logical disnan_(doublereal *);
 | |
|     extern /* Subroutine */ void zlassq_(integer *, doublecomplex *, integer *,
 | |
| 	     doublereal *, doublereal *);
 | |
|     integer lda, ifm, noe, ilu;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	ret_val = 0.;
 | |
| 	return ret_val;
 | |
|     } else if (*n == 1) {
 | |
| 	ret_val = (d__1 = a[0].r, abs(d__1));
 | |
| 	return ret_val;
 | |
|     }
 | |
| 
 | |
| /*     set noe = 1 if n is odd. if n is even set noe=0 */
 | |
| 
 | |
|     noe = 1;
 | |
|     if (*n % 2 == 0) {
 | |
| 	noe = 0;
 | |
|     }
 | |
| 
 | |
| /*     set ifm = 0 when form='C' or 'c' and 1 otherwise */
 | |
| 
 | |
|     ifm = 1;
 | |
|     if (lsame_(transr, "C")) {
 | |
| 	ifm = 0;
 | |
|     }
 | |
| 
 | |
| /*     set ilu = 0 when uplo='U or 'u' and 1 otherwise */
 | |
| 
 | |
|     ilu = 1;
 | |
|     if (lsame_(uplo, "U")) {
 | |
| 	ilu = 0;
 | |
|     }
 | |
| 
 | |
| /*     set lda = (n+1)/2 when ifm = 0 */
 | |
| /*     set lda = n when ifm = 1 and noe = 1 */
 | |
| /*     set lda = n+1 when ifm = 1 and noe = 0 */
 | |
| 
 | |
|     if (ifm == 1) {
 | |
| 	if (noe == 1) {
 | |
| 	    lda = *n;
 | |
| 	} else {
 | |
| /*           noe=0 */
 | |
| 	    lda = *n + 1;
 | |
| 	}
 | |
|     } else {
 | |
| /*        ifm=0 */
 | |
| 	lda = (*n + 1) / 2;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(norm, "M")) {
 | |
| 
 | |
| /*       Find f2cmax(abs(A(i,j))). */
 | |
| 
 | |
| 	k = (*n + 1) / 2;
 | |
| 	value = 0.;
 | |
| 	if (noe == 1) {
 | |
| /*           n is odd & n = k + k - 1 */
 | |
| 	    if (ifm == 1) {
 | |
| /*              A is n by k */
 | |
| 		if (ilu == 1) {
 | |
| /*                 uplo ='L' */
 | |
| 		    j = 0;
 | |
| /*                 -> L(0,0) */
 | |
| 		    i__1 = j + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			i__2 = j - 2;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = j - 1;
 | |
| /*                    L(k+j,k+j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__ = j;
 | |
| /*                    -> L(j,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = *n - 1;
 | |
| 			for (i__ = j + 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 uplo = 'U' */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k + j - 2;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = k + j - 1;
 | |
| /*                    -> U(i,i) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			++i__;
 | |
| /*                    =k+j; i -> U(j,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = *n - 1;
 | |
| 			for (i__ = k + j + 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = *n - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| /*                    j=k-1 */
 | |
| 		    }
 | |
| /*                 i=n-1 -> U(n-1,n-1) */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              xpose case; A is k by n */
 | |
| 		if (ilu == 1) {
 | |
| /*                 uplo ='L' */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = j - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = j;
 | |
| /*                    L(i,i) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__ = j + 1;
 | |
| /*                    L(j+k,j+k) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = j + 2; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		    j = k - 1;
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__ = k - 1;
 | |
| /*                 -> L(i,i) is at A(i,j) */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k; j <= i__1; ++j) {
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 uplo = 'U' */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		    j = k - 1;
 | |
| /*                 -> U(j,j) is at A(0,j) */
 | |
| 		    i__1 = j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k; j <= i__1; ++j) {
 | |
| 			i__2 = j - k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = j - k;
 | |
| /*                    -> U(i,i) at A(i,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__ = j - k + 1;
 | |
| /*                    U(j,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = j - k + 2; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           n is even & k = n/2 */
 | |
| 	    if (ifm == 1) {
 | |
| /*              A is n+1 by k */
 | |
| 		if (ilu == 1) {
 | |
| /*                 uplo ='L' */
 | |
| 		    j = 0;
 | |
| /*                 -> L(k,k) & j=1 -> L(0,0) */
 | |
| 		    i__1 = j + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = j + 1 + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = *n;
 | |
| 		    for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			i__2 = j - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = j;
 | |
| /*                    L(k+j,k+j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__ = j + 1;
 | |
| /*                    -> L(j,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = *n;
 | |
| 			for (i__ = j + 2; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 uplo = 'U' */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k + j - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = k + j;
 | |
| /*                    -> U(i,i) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			++i__;
 | |
| /*                    =k+j+1; i -> U(j,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = *n;
 | |
| 			for (i__ = k + j + 2; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = *n - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| /*                    j=k-1 */
 | |
| 		    }
 | |
| /*                 i=n-1 -> U(n-1,n-1) */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__ = *n;
 | |
| /*                 -> U(k-1,k-1) */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              xpose case; A is k by n+1 */
 | |
| 		if (ilu == 1) {
 | |
| /*                 uplo ='L' */
 | |
| 		    j = 0;
 | |
| /*                 -> L(k,k) at A(0,0) */
 | |
| 		    i__1 = j + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			i__2 = j - 2;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = j - 1;
 | |
| /*                    L(i,i) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__ = j;
 | |
| /*                    L(j+k,j+k) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = j + 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		    j = k;
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__ = k - 1;
 | |
| /*                 -> L(i,i) is at A(i,j) */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = *n;
 | |
| 		    for (j = k + 1; j <= i__1; ++j) {
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 uplo = 'U' */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		    j = k;
 | |
| /*                 -> U(j,j) is at A(0,j) */
 | |
| 		    i__1 = j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k + 1; j <= i__1; ++j) {
 | |
| 			i__2 = j - k - 2;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__ = j - k - 1;
 | |
| /*                    -> U(i,i) at A(i,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__ = j - k;
 | |
| /*                    U(j,j) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			temp = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = j - k + 1; i__ <= i__2; ++i__) {
 | |
| 			    temp = z_abs(&a[i__ + j * lda]);
 | |
| 			    if (value < temp || disnan_(&temp)) {
 | |
| 				value = temp;
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 		    j = *n;
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			temp = z_abs(&a[i__ + j * lda]);
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		    i__ = k - 1;
 | |
| /*                 U(k,k) at A(i,j) */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    temp = (d__1 = a[i__1].r, abs(d__1));
 | |
| 		    if (value < temp || disnan_(&temp)) {
 | |
| 			value = temp;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (lsame_(norm, "I") || lsame_(norm, "O") || *(unsigned char *)norm == '1') {
 | |
| 
 | |
| /*       Find normI(A) ( = norm1(A), since A is Hermitian). */
 | |
| 
 | |
| 	if (ifm == 1) {
 | |
| /*           A is 'N' */
 | |
| 	    k = *n / 2;
 | |
| 	    if (noe == 1) {
 | |
| /*              n is odd & A is n by (n+1)/2 */
 | |
| 		if (ilu == 0) {
 | |
| /*                 uplo = 'U' */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| 		    i__1 = k;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			s = 0.;
 | |
| 			i__2 = k + j - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(i,j+k) */
 | |
| 			    s += aa;
 | |
| 			    work[i__] += aa;
 | |
| 			}
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    -> A(j+k,j+k) */
 | |
| 			work[j + k] = s + aa;
 | |
| 			if (i__ == k + k) {
 | |
| 			    goto L10;
 | |
| 			}
 | |
| 			++i__;
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    -> A(j,j) */
 | |
| 			work[j] += aa;
 | |
| 			s = 0.;
 | |
| 			i__2 = k - 1;
 | |
| 			for (l = j + 1; l <= i__2; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(l,j) */
 | |
| 			    s += aa;
 | |
| 			    work[l] += aa;
 | |
| 			}
 | |
| 			work[j] += s;
 | |
| 		    }
 | |
| L10:
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 ilu = 1 & uplo = 'L' */
 | |
| 		    ++k;
 | |
| /*                 k=(n+1)/2 for n odd and ilu=1 */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = k; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| 		    for (j = k - 1; j >= 0; --j) {
 | |
| 			s = 0.;
 | |
| 			i__1 = j - 2;
 | |
| 			for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(j+k,i+k) */
 | |
| 			    s += aa;
 | |
| 			    work[i__ + k] += aa;
 | |
| 			}
 | |
| 			if (j > 0) {
 | |
| 			    i__1 = i__ + j * lda;
 | |
| 			    aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                       -> A(j+k,j+k) */
 | |
| 			    s += aa;
 | |
| 			    work[i__ + k] += s;
 | |
| /*                       i=j */
 | |
| 			    ++i__;
 | |
| 			}
 | |
| 			i__1 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                    -> A(j,j) */
 | |
| 			work[j] = aa;
 | |
| 			s = 0.;
 | |
| 			i__1 = *n - 1;
 | |
| 			for (l = j + 1; l <= i__1; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(l,j) */
 | |
| 			    s += aa;
 | |
| 			    work[l] += aa;
 | |
| 			}
 | |
| 			work[j] += s;
 | |
| 		    }
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              n is even & A is n+1 by k = n/2 */
 | |
| 		if (ilu == 0) {
 | |
| /*                 uplo = 'U' */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			s = 0.;
 | |
| 			i__2 = k + j - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(i,j+k) */
 | |
| 			    s += aa;
 | |
| 			    work[i__] += aa;
 | |
| 			}
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    -> A(j+k,j+k) */
 | |
| 			work[j + k] = s + aa;
 | |
| 			++i__;
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    -> A(j,j) */
 | |
| 			work[j] += aa;
 | |
| 			s = 0.;
 | |
| 			i__2 = k - 1;
 | |
| 			for (l = j + 1; l <= i__2; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(l,j) */
 | |
| 			    s += aa;
 | |
| 			    work[l] += aa;
 | |
| 			}
 | |
| 			work[j] += s;
 | |
| 		    }
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 ilu = 1 & uplo = 'L' */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = k; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| 		    for (j = k - 1; j >= 0; --j) {
 | |
| 			s = 0.;
 | |
| 			i__1 = j - 1;
 | |
| 			for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(j+k,i+k) */
 | |
| 			    s += aa;
 | |
| 			    work[i__ + k] += aa;
 | |
| 			}
 | |
| 			i__1 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                    -> A(j+k,j+k) */
 | |
| 			s += aa;
 | |
| 			work[i__ + k] += s;
 | |
| /*                    i=j */
 | |
| 			++i__;
 | |
| 			i__1 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                    -> A(j,j) */
 | |
| 			work[j] = aa;
 | |
| 			s = 0.;
 | |
| 			i__1 = *n - 1;
 | |
| 			for (l = j + 1; l <= i__1; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       -> A(l,j) */
 | |
| 			    s += aa;
 | |
| 			    work[l] += aa;
 | |
| 			}
 | |
| 			work[j] += s;
 | |
| 		    }
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           ifm=0 */
 | |
| 	    k = *n / 2;
 | |
| 	    if (noe == 1) {
 | |
| /*              n is odd & A is (n+1)/2 by n */
 | |
| 		if (ilu == 0) {
 | |
| /*                 uplo = 'U' */
 | |
| 		    n1 = k;
 | |
| /*                 n/2 */
 | |
| 		    ++k;
 | |
| /*                 k is the row size and lda */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = n1; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| 		    i__1 = n1 - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			s = 0.;
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j,n1+i) */
 | |
| 			    work[i__ + n1] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			work[j] = s;
 | |
| 		    }
 | |
| /*                 j=n1=k-1 is special */
 | |
| 		    i__1 = j * lda;
 | |
| 		    s = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                 A(k-1,k-1) */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                    A(k-1,i+n1) */
 | |
| 			work[i__ + n1] += aa;
 | |
| 			s += aa;
 | |
| 		    }
 | |
| 		    work[j] += s;
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k; j <= i__1; ++j) {
 | |
| 			s = 0.;
 | |
| 			i__2 = j - k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(i,j-k) */
 | |
| 			    work[i__] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| /*                    i=j-k */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    A(j-k,j-k) */
 | |
| 			s += aa;
 | |
| 			work[j - k] += s;
 | |
| 			++i__;
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			s = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    A(j,j) */
 | |
| 			i__2 = *n - 1;
 | |
| 			for (l = j + 1; l <= i__2; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j,l) */
 | |
| 			    work[l] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			work[j] += s;
 | |
| 		    }
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 ilu=1 & uplo = 'L' */
 | |
| 		    ++k;
 | |
| /*                 k=(n+1)/2 for n odd and ilu=1 */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = k; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| /*                    process */
 | |
| 			s = 0.;
 | |
| 			i__2 = j - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j,i) */
 | |
| 			    work[i__] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    i=j so process of A(j,j) */
 | |
| 			s += aa;
 | |
| 			work[j] = s;
 | |
| /*                    is initialised here */
 | |
| 			++i__;
 | |
| /*                    i=j process A(j+k,j+k) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			s = aa;
 | |
| 			i__2 = *n - 1;
 | |
| 			for (l = k + j + 1; l <= i__2; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(l,k+j) */
 | |
| 			    s += aa;
 | |
| 			    work[l] += aa;
 | |
| 			}
 | |
| 			work[k + j] += s;
 | |
| 		    }
 | |
| /*                 j=k-1 is special :process col A(k-1,0:k-1) */
 | |
| 		    s = 0.;
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                    A(k,i) */
 | |
| 			work[i__] += aa;
 | |
| 			s += aa;
 | |
| 		    }
 | |
| /*                 i=k-1 */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                 A(k-1,k-1) */
 | |
| 		    s += aa;
 | |
| 		    work[i__] = s;
 | |
| /*                 done with col j=k+1 */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k; j <= i__1; ++j) {
 | |
| /*                    process col j of A = A(j,0:k-1) */
 | |
| 			s = 0.;
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j,i) */
 | |
| 			    work[i__] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			work[j] += s;
 | |
| 		    }
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              n is even & A is k=n/2 by n+1 */
 | |
| 		if (ilu == 0) {
 | |
| /*                 uplo = 'U' */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = k; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			s = 0.;
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j,i+k) */
 | |
| 			    work[i__ + k] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			work[j] = s;
 | |
| 		    }
 | |
| /*                 j=k */
 | |
| 		    i__1 = j * lda;
 | |
| 		    aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                 A(k,k) */
 | |
| 		    s = aa;
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                    A(k,k+i) */
 | |
| 			work[i__ + k] += aa;
 | |
| 			s += aa;
 | |
| 		    }
 | |
| 		    work[j] += s;
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k + 1; j <= i__1; ++j) {
 | |
| 			s = 0.;
 | |
| 			i__2 = j - 2 - k;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(i,j-k-1) */
 | |
| 			    work[i__] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| /*                    i=j-1-k */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    A(j-k-1,j-k-1) */
 | |
| 			s += aa;
 | |
| 			work[j - k - 1] += s;
 | |
| 			++i__;
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    A(j,j) */
 | |
| 			s = aa;
 | |
| 			i__2 = *n - 1;
 | |
| 			for (l = j + 1; l <= i__2; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j,l) */
 | |
| 			    work[l] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			work[j] += s;
 | |
| 		    }
 | |
| /*                 j=n */
 | |
| 		    s = 0.;
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                    A(i,k-1) */
 | |
| 			work[i__] += aa;
 | |
| 			s += aa;
 | |
| 		    }
 | |
| /*                 i=k-1 */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                 A(k-1,k-1) */
 | |
| 		    s += aa;
 | |
| 		    work[i__] += s;
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 ilu=1 & uplo = 'L' */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = k; i__ <= i__1; ++i__) {
 | |
| 			work[i__] = 0.;
 | |
| 		    }
 | |
| /*                 j=0 is special :process col A(k:n-1,k) */
 | |
| 		    s = (d__1 = a[0].r, abs(d__1));
 | |
| /*                 A(k,k) */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			aa = z_abs(&a[i__]);
 | |
| /*                    A(k+i,k) */
 | |
| 			work[i__ + k] += aa;
 | |
| 			s += aa;
 | |
| 		    }
 | |
| 		    work[k] += s;
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| /*                    process */
 | |
| 			s = 0.;
 | |
| 			i__2 = j - 2;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j-1,i) */
 | |
| 			    work[i__] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| /*                    i=j-1 so process of A(j-1,j-1) */
 | |
| 			s += aa;
 | |
| 			work[j - 1] = s;
 | |
| /*                    is initialised here */
 | |
| 			++i__;
 | |
| /*                    i=j process A(j+k,j+k) */
 | |
| 			i__2 = i__ + j * lda;
 | |
| 			aa = (d__1 = a[i__2].r, abs(d__1));
 | |
| 			s = aa;
 | |
| 			i__2 = *n - 1;
 | |
| 			for (l = k + j + 1; l <= i__2; ++l) {
 | |
| 			    ++i__;
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(l,k+j) */
 | |
| 			    s += aa;
 | |
| 			    work[l] += aa;
 | |
| 			}
 | |
| 			work[k + j] += s;
 | |
| 		    }
 | |
| /*                 j=k is special :process col A(k,0:k-1) */
 | |
| 		    s = 0.;
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                    A(k,i) */
 | |
| 			work[i__] += aa;
 | |
| 			s += aa;
 | |
| 		    }
 | |
| 
 | |
| /*                 i=k-1 */
 | |
| 		    i__1 = i__ + j * lda;
 | |
| 		    aa = (d__1 = a[i__1].r, abs(d__1));
 | |
| /*                 A(k-1,k-1) */
 | |
| 		    s += aa;
 | |
| 		    work[i__] = s;
 | |
| /*                 done with col j=k+1 */
 | |
| 		    i__1 = *n;
 | |
| 		    for (j = k + 1; j <= i__1; ++j) {
 | |
| 
 | |
| /*                    process col j-1 of A = A(j-1,0:k-1) */
 | |
| 			s = 0.;
 | |
| 			i__2 = k - 1;
 | |
| 			for (i__ = 0; i__ <= i__2; ++i__) {
 | |
| 			    aa = z_abs(&a[i__ + j * lda]);
 | |
| /*                       A(j-1,i) */
 | |
| 			    work[i__] += aa;
 | |
| 			    s += aa;
 | |
| 			}
 | |
| 			work[j - 1] += s;
 | |
| 		    }
 | |
| 		    value = work[0];
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			temp = work[i__];
 | |
| 			if (value < temp || disnan_(&temp)) {
 | |
| 			    value = temp;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
|     } else if (lsame_(norm, "F") || lsame_(norm, "E")) {
 | |
| 
 | |
| /*       Find normF(A). */
 | |
| 
 | |
| 	k = (*n + 1) / 2;
 | |
| 	scale = 0.;
 | |
| 	s = 1.;
 | |
| 	if (noe == 1) {
 | |
| /*           n is odd */
 | |
| 	    if (ifm == 1) {
 | |
| /*              A is normal & A is n by k */
 | |
| 		if (ilu == 0) {
 | |
| /*                 A is upper */
 | |
| 		    i__1 = k - 3;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - j - 2;
 | |
| 			zlassq_(&i__2, &a[k + j + 1 + j * lda], &c__1, &scale,
 | |
| 				 &s);
 | |
| /*                    L at A(k,0) */
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k + j - 1;
 | |
| 			zlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                    trap U at A(0,0) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    l = k - 1;
 | |
| /*                 -> U(k,k) at A(k-1,0) */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    U(k+i,k+i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    U(i,i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| 		    i__1 = l;
 | |
| 		    aa = a[i__1].r;
 | |
| /*                 U(n-1,n-1) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 ilu=1 & A is lower */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = *n - j - 1;
 | |
| 			zlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
 | |
| 				;
 | |
| /*                    trap L at A(0,0) */
 | |
| 		    }
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			zlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
 | |
| /*                    U at A(0,1) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    aa = a[0].r;
 | |
| /*                 L(0,0) at A(0,0) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		    l = lda;
 | |
| /*                 -> L(k,k) at A(0,1) */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(k-1+i,k-1+i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(i,i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              A is xpose & A is k by n */
 | |
| 		if (ilu == 0) {
 | |
| /*                 A**H is upper */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			zlassq_(&j, &a[(k + j) * lda], &c__1, &scale, &s);
 | |
| /*                    U at A(0,k) */
 | |
| 		    }
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			zlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                    k by k-1 rect. at A(0,0) */
 | |
| 		    }
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - j - 1;
 | |
| 			zlassq_(&i__2, &a[j + 1 + (j + k - 1) * lda], &c__1, &
 | |
| 				scale, &s);
 | |
| /*                    L at A(0,k-1) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    l = k * lda - lda;
 | |
| /*                 -> U(k-1,k-1) at A(0,k-1) */
 | |
| 		    i__1 = l;
 | |
| 		    aa = a[i__1].r;
 | |
| /*                 U(k-1,k-1) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		    l += lda;
 | |
| /*                 -> U(0,0) at A(0,k) */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k; j <= i__1; ++j) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    -> U(j-k,j-k) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    -> U(j,j) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 A**H is lower */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			zlassq_(&j, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                    U at A(0,0) */
 | |
| 		    }
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k; j <= i__1; ++j) {
 | |
| 			zlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                    k by k-1 rect. at A(0,k) */
 | |
| 		    }
 | |
| 		    i__1 = k - 3;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - j - 2;
 | |
| 			zlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
 | |
| 				;
 | |
| /*                    L at A(1,0) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    l = 0;
 | |
| /*                 -> L(0,0) at A(0,0) */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(i,i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(k+i,k+i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| /*                 L-> k-1 + (k-1)*lda or L(k-1,k-1) at A(k-1,k-1) */
 | |
| 		    i__1 = l;
 | |
| 		    aa = a[i__1].r;
 | |
| /*                 L(k-1,k-1) at A(k-1,k-1) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           n is even */
 | |
| 	    if (ifm == 1) {
 | |
| /*              A is normal */
 | |
| 		if (ilu == 0) {
 | |
| /*                 A is upper */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - j - 1;
 | |
| 			zlassq_(&i__2, &a[k + j + 2 + j * lda], &c__1, &scale,
 | |
| 				 &s);
 | |
| /*                 L at A(k+1,0) */
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k + j;
 | |
| 			zlassq_(&i__2, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                 trap U at A(0,0) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    l = k;
 | |
| /*                 -> U(k,k) at A(k,0) */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    U(k+i,k+i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    U(i,i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 ilu=1 & A is lower */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = *n - j - 1;
 | |
| 			zlassq_(&i__2, &a[j + 2 + j * lda], &c__1, &scale, &s)
 | |
| 				;
 | |
| /*                    trap L at A(1,0) */
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			zlassq_(&j, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                    U at A(0,0) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    l = 0;
 | |
| /*                 -> L(k,k) at A(0,0) */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(k-1+i,k-1+i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(i,i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              A is xpose */
 | |
| 		if (ilu == 0) {
 | |
| /*                 A**H is upper */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			zlassq_(&j, &a[(k + 1 + j) * lda], &c__1, &scale, &s);
 | |
| /*                 U at A(0,k+1) */
 | |
| 		    }
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			zlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                 k by k rect. at A(0,0) */
 | |
| 		    }
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - j - 1;
 | |
| 			zlassq_(&i__2, &a[j + 1 + (j + k) * lda], &c__1, &
 | |
| 				scale, &s);
 | |
| /*                 L at A(0,k) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    l = k * lda;
 | |
| /*                 -> U(k,k) at A(0,k) */
 | |
| 		    i__1 = l;
 | |
| 		    aa = a[i__1].r;
 | |
| /*                 U(k,k) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		    l += lda;
 | |
| /*                 -> U(0,0) at A(0,k+1) */
 | |
| 		    i__1 = *n - 1;
 | |
| 		    for (j = k + 1; j <= i__1; ++j) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    -> U(j-k-1,j-k-1) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    -> U(j,j) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| /*                 L=k-1+n*lda */
 | |
| /*                 -> U(k-1,k-1) at A(k-1,n) */
 | |
| 		    i__1 = l;
 | |
| 		    aa = a[i__1].r;
 | |
| /*                 U(k,k) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| /*                 A**H is lower */
 | |
| 		    i__1 = k - 1;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			zlassq_(&j, &a[(j + 1) * lda], &c__1, &scale, &s);
 | |
| /*                 U at A(0,1) */
 | |
| 		    }
 | |
| 		    i__1 = *n;
 | |
| 		    for (j = k + 1; j <= i__1; ++j) {
 | |
| 			zlassq_(&k, &a[j * lda], &c__1, &scale, &s);
 | |
| /*                 k by k rect. at A(0,k+1) */
 | |
| 		    }
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 0; j <= i__1; ++j) {
 | |
| 			i__2 = k - j - 1;
 | |
| 			zlassq_(&i__2, &a[j + 1 + j * lda], &c__1, &scale, &s)
 | |
| 				;
 | |
| /*                 L at A(0,0) */
 | |
| 		    }
 | |
| 		    s += s;
 | |
| /*                 double s for the off diagonal elements */
 | |
| 		    l = 0;
 | |
| /*                 -> L(k,k) at A(0,0) */
 | |
| 		    i__1 = l;
 | |
| 		    aa = a[i__1].r;
 | |
| /*                 L(k,k) at A(0,0) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		    l = lda;
 | |
| /*                 -> L(0,0) at A(0,1) */
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (i__ = 0; i__ <= i__1; ++i__) {
 | |
| 			i__2 = l;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(i,i) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			i__2 = l + 1;
 | |
| 			aa = a[i__2].r;
 | |
| /*                    L(k+i+1,k+i+1) */
 | |
| 			if (aa != 0.) {
 | |
| 			    if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = scale / aa;
 | |
| 				s = s * (d__1 * d__1) + 1.;
 | |
| 				scale = aa;
 | |
| 			    } else {
 | |
| /* Computing 2nd power */
 | |
| 				d__1 = aa / scale;
 | |
| 				s += d__1 * d__1;
 | |
| 			    }
 | |
| 			}
 | |
| 			l = l + lda + 1;
 | |
| 		    }
 | |
| /*                 L-> k - 1 + k*lda or L(k-1,k-1) at A(k-1,k) */
 | |
| 		    i__1 = l;
 | |
| 		    aa = a[i__1].r;
 | |
| /*                 L(k-1,k-1) at A(k-1,k) */
 | |
| 		    if (aa != 0.) {
 | |
| 			if (scale < aa) {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = scale / aa;
 | |
| 			    s = s * (d__1 * d__1) + 1.;
 | |
| 			    scale = aa;
 | |
| 			} else {
 | |
| /* Computing 2nd power */
 | |
| 			    d__1 = aa / scale;
 | |
| 			    s += d__1 * d__1;
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	value = scale * sqrt(s);
 | |
|     }
 | |
| 
 | |
|     ret_val = value;
 | |
|     return ret_val;
 | |
| 
 | |
| /*     End of ZLANHF */
 | |
| 
 | |
| } /* zlanhf_ */
 | |
| 
 |