1170 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1170 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublereal c_b5 = -1.;
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b13 = 1.;
 | |
| static doublereal c_b15 = 0.;
 | |
| static integer c__0 = 0;
 | |
| 
 | |
| /* > \brief \b ZLALS0 applies back multiplying factors in solving the least squares problem using divide and c
 | |
| onquer SVD approach. Used by sgelsd. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZLALS0 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlals0.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlals0.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlals0.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLALS0( ICOMPQ, NL, NR, SQRE, NRHS, B, LDB, BX, LDBX, */
 | |
| /*                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
 | |
| /*                          POLES, DIFL, DIFR, Z, K, C, S, RWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDB, LDBX, LDGCOL, */
 | |
| /*      $                   LDGNUM, NL, NR, NRHS, SQRE */
 | |
| /*       DOUBLE PRECISION   C, S */
 | |
| /*       INTEGER            GIVCOL( LDGCOL, * ), PERM( * ) */
 | |
| /*       DOUBLE PRECISION   DIFL( * ), DIFR( LDGNUM, * ), */
 | |
| /*      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), */
 | |
| /*      $                   RWORK( * ), Z( * ) */
 | |
| /*       COMPLEX*16         B( LDB, * ), BX( LDBX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZLALS0 applies back the multiplying factors of either the left or the */
 | |
| /* > right singular vector matrix of a diagonal matrix appended by a row */
 | |
| /* > to the right hand side matrix B in solving the least squares problem */
 | |
| /* > using the divide-and-conquer SVD approach. */
 | |
| /* > */
 | |
| /* > For the left singular vector matrix, three types of orthogonal */
 | |
| /* > matrices are involved: */
 | |
| /* > */
 | |
| /* > (1L) Givens rotations: the number of such rotations is GIVPTR; the */
 | |
| /* >      pairs of columns/rows they were applied to are stored in GIVCOL; */
 | |
| /* >      and the C- and S-values of these rotations are stored in GIVNUM. */
 | |
| /* > */
 | |
| /* > (2L) Permutation. The (NL+1)-st row of B is to be moved to the first */
 | |
| /* >      row, and for J=2:N, PERM(J)-th row of B is to be moved to the */
 | |
| /* >      J-th row. */
 | |
| /* > */
 | |
| /* > (3L) The left singular vector matrix of the remaining matrix. */
 | |
| /* > */
 | |
| /* > For the right singular vector matrix, four types of orthogonal */
 | |
| /* > matrices are involved: */
 | |
| /* > */
 | |
| /* > (1R) The right singular vector matrix of the remaining matrix. */
 | |
| /* > */
 | |
| /* > (2R) If SQRE = 1, one extra Givens rotation to generate the right */
 | |
| /* >      null space. */
 | |
| /* > */
 | |
| /* > (3R) The inverse transformation of (2L). */
 | |
| /* > */
 | |
| /* > (4R) The inverse transformation of (1L). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] ICOMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          ICOMPQ is INTEGER */
 | |
| /* >         Specifies whether singular vectors are to be computed in */
 | |
| /* >         factored form: */
 | |
| /* >         = 0: Left singular vector matrix. */
 | |
| /* >         = 1: Right singular vector matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NL */
 | |
| /* > \verbatim */
 | |
| /* >          NL is INTEGER */
 | |
| /* >         The row dimension of the upper block. NL >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NR */
 | |
| /* > \verbatim */
 | |
| /* >          NR is INTEGER */
 | |
| /* >         The row dimension of the lower block. NR >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SQRE */
 | |
| /* > \verbatim */
 | |
| /* >          SQRE is INTEGER */
 | |
| /* >         = 0: the lower block is an NR-by-NR square matrix. */
 | |
| /* >         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 | |
| /* > */
 | |
| /* >         The bidiagonal matrix has row dimension N = NL + NR + 1, */
 | |
| /* >         and column dimension M = N + SQRE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >         The number of columns of B and BX. NRHS must be at least 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension ( LDB, NRHS ) */
 | |
| /* >         On input, B contains the right hand sides of the least */
 | |
| /* >         squares problem in rows 1 through M. On output, B contains */
 | |
| /* >         the solution X in rows 1 through N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >         The leading dimension of B. LDB must be at least */
 | |
| /* >         f2cmax(1,MAX( M, N ) ). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BX */
 | |
| /* > \verbatim */
 | |
| /* >          BX is COMPLEX*16 array, dimension ( LDBX, NRHS ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDBX */
 | |
| /* > \verbatim */
 | |
| /* >          LDBX is INTEGER */
 | |
| /* >         The leading dimension of BX. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PERM */
 | |
| /* > \verbatim */
 | |
| /* >          PERM is INTEGER array, dimension ( N ) */
 | |
| /* >         The permutations (from deflation and sorting) applied */
 | |
| /* >         to the two blocks. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVPTR */
 | |
| /* > \verbatim */
 | |
| /* >          GIVPTR is INTEGER */
 | |
| /* >         The number of Givens rotations which took place in this */
 | |
| /* >         subproblem. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVCOL */
 | |
| /* > \verbatim */
 | |
| /* >          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
 | |
| /* >         Each pair of numbers indicates a pair of rows/columns */
 | |
| /* >         involved in a Givens rotation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDGCOL */
 | |
| /* > \verbatim */
 | |
| /* >          LDGCOL is INTEGER */
 | |
| /* >         The leading dimension of GIVCOL, must be at least N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] GIVNUM */
 | |
| /* > \verbatim */
 | |
| /* >          GIVNUM is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
 | |
| /* >         Each number indicates the C or S value used in the */
 | |
| /* >         corresponding Givens rotation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDGNUM */
 | |
| /* > \verbatim */
 | |
| /* >          LDGNUM is INTEGER */
 | |
| /* >         The leading dimension of arrays DIFR, POLES and */
 | |
| /* >         GIVNUM, must be at least K. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] POLES */
 | |
| /* > \verbatim */
 | |
| /* >          POLES is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ) */
 | |
| /* >         On entry, POLES(1:K, 1) contains the new singular */
 | |
| /* >         values obtained from solving the secular equation, and */
 | |
| /* >         POLES(1:K, 2) is an array containing the poles in the secular */
 | |
| /* >         equation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIFL */
 | |
| /* > \verbatim */
 | |
| /* >          DIFL is DOUBLE PRECISION array, dimension ( K ). */
 | |
| /* >         On entry, DIFL(I) is the distance between I-th updated */
 | |
| /* >         (undeflated) singular value and the I-th (undeflated) old */
 | |
| /* >         singular value. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIFR */
 | |
| /* > \verbatim */
 | |
| /* >          DIFR is DOUBLE PRECISION array, dimension ( LDGNUM, 2 ). */
 | |
| /* >         On entry, DIFR(I, 1) contains the distances between I-th */
 | |
| /* >         updated (undeflated) singular value and the I+1-th */
 | |
| /* >         (undeflated) old singular value. And DIFR(I, 2) is the */
 | |
| /* >         normalizing factor for the I-th right singular vector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is DOUBLE PRECISION array, dimension ( K ) */
 | |
| /* >         Contain the components of the deflation-adjusted updating row */
 | |
| /* >         vector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >         Contains the dimension of the non-deflated matrix, */
 | |
| /* >         This is the order of the related secular equation. 1 <= K <=N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is DOUBLE PRECISION */
 | |
| /* >         C contains garbage if SQRE =0 and the C-value of a Givens */
 | |
| /* >         rotation related to the right null space if SQRE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is DOUBLE PRECISION */
 | |
| /* >         S contains garbage if SQRE =0 and the S-value of a Givens */
 | |
| /* >         rotation related to the right null space if SQRE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension */
 | |
| /* >         ( K*(1+NRHS) + 2*NRHS ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Ren-Cang Li, Computer Science Division, University of */
 | |
| /* >       California at Berkeley, USA \n */
 | |
| /* >     Osni Marques, LBNL/NERSC, USA \n */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zlals0_(integer *icompq, integer *nl, integer *nr, 
 | |
| 	integer *sqre, integer *nrhs, doublecomplex *b, integer *ldb, 
 | |
| 	doublecomplex *bx, integer *ldbx, integer *perm, integer *givptr, 
 | |
| 	integer *givcol, integer *ldgcol, doublereal *givnum, integer *ldgnum,
 | |
| 	 doublereal *poles, doublereal *difl, doublereal *difr, doublereal *
 | |
| 	z__, integer *k, doublereal *c__, doublereal *s, doublereal *rwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer givcol_dim1, givcol_offset, difr_dim1, difr_offset, givnum_dim1, 
 | |
| 	    givnum_offset, poles_dim1, poles_offset, b_dim1, b_offset, 
 | |
| 	    bx_dim1, bx_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     doublereal d__1;
 | |
|     doublecomplex z__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer jcol;
 | |
|     doublereal temp;
 | |
|     integer jrow;
 | |
|     extern doublereal dnrm2_(integer *, doublereal *, integer *);
 | |
|     integer i__, j, m, n;
 | |
|     doublereal diflj, difrj, dsigj;
 | |
|     extern /* Subroutine */ void dgemv_(char *, integer *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, doublereal *, integer *), zdrot_(integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublereal *, doublereal *);
 | |
|     extern doublereal dlamc3_(doublereal *, doublereal *);
 | |
|     extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     doublereal dj;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal dsigjp;
 | |
|     extern /* Subroutine */ void zdscal_(integer *, doublereal *, 
 | |
| 	    doublecomplex *, integer *), zlascl_(char *, integer *, integer *,
 | |
| 	     doublereal *, doublereal *, integer *, integer *, doublecomplex *
 | |
| 	    , integer *, integer *), zlacpy_(char *, integer *, 
 | |
| 	    integer *, doublecomplex *, integer *, doublecomplex *, integer *);
 | |
|     integer nlp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     bx_dim1 = *ldbx;
 | |
|     bx_offset = 1 + bx_dim1 * 1;
 | |
|     bx -= bx_offset;
 | |
|     --perm;
 | |
|     givcol_dim1 = *ldgcol;
 | |
|     givcol_offset = 1 + givcol_dim1 * 1;
 | |
|     givcol -= givcol_offset;
 | |
|     difr_dim1 = *ldgnum;
 | |
|     difr_offset = 1 + difr_dim1 * 1;
 | |
|     difr -= difr_offset;
 | |
|     poles_dim1 = *ldgnum;
 | |
|     poles_offset = 1 + poles_dim1 * 1;
 | |
|     poles -= poles_offset;
 | |
|     givnum_dim1 = *ldgnum;
 | |
|     givnum_offset = 1 + givnum_dim1 * 1;
 | |
|     givnum -= givnum_offset;
 | |
|     --difl;
 | |
|     --z__;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     n = *nl + *nr + 1;
 | |
| 
 | |
|     if (*icompq < 0 || *icompq > 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*nl < 1) {
 | |
| 	*info = -2;
 | |
|     } else if (*nr < 1) {
 | |
| 	*info = -3;
 | |
|     } else if (*sqre < 0 || *sqre > 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*nrhs < 1) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldb < n) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldbx < n) {
 | |
| 	*info = -9;
 | |
|     } else if (*givptr < 0) {
 | |
| 	*info = -11;
 | |
|     } else if (*ldgcol < n) {
 | |
| 	*info = -13;
 | |
|     } else if (*ldgnum < n) {
 | |
| 	*info = -15;
 | |
|     //} else if (*k < 1) {
 | |
|     } else if (*k < 0) {
 | |
| 	*info = -20;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZLALS0", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     m = n + *sqre;
 | |
|     nlp1 = *nl + 1;
 | |
| 
 | |
|     if (*icompq == 0) {
 | |
| 
 | |
| /*        Apply back orthogonal transformations from the left. */
 | |
| 
 | |
| /*        Step (1L): apply back the Givens rotations performed. */
 | |
| 
 | |
| 	i__1 = *givptr;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    zdrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
 | |
| 		    b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + 
 | |
| 		    (givnum_dim1 << 1)], &givnum[i__ + givnum_dim1]);
 | |
| /* L10: */
 | |
| 	}
 | |
| 
 | |
| /*        Step (2L): permute rows of B. */
 | |
| 
 | |
| 	zcopy_(nrhs, &b[nlp1 + b_dim1], ldb, &bx[bx_dim1 + 1], ldbx);
 | |
| 	i__1 = n;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	    zcopy_(nrhs, &b[perm[i__] + b_dim1], ldb, &bx[i__ + bx_dim1], 
 | |
| 		    ldbx);
 | |
| /* L20: */
 | |
| 	}
 | |
| 
 | |
| /*        Step (3L): apply the inverse of the left singular vector */
 | |
| /*        matrix to BX. */
 | |
| 
 | |
| 	if (*k == 1) {
 | |
| 	    zcopy_(nrhs, &bx[bx_offset], ldbx, &b[b_offset], ldb);
 | |
| 	    if (z__[1] < 0.) {
 | |
| 		zdscal_(nrhs, &c_b5, &b[b_offset], ldb);
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *k;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		diflj = difl[j];
 | |
| 		dj = poles[j + poles_dim1];
 | |
| 		dsigj = -poles[j + (poles_dim1 << 1)];
 | |
| 		if (j < *k) {
 | |
| 		    difrj = -difr[j + difr_dim1];
 | |
| 		    dsigjp = -poles[j + 1 + (poles_dim1 << 1)];
 | |
| 		}
 | |
| 		if (z__[j] == 0. || poles[j + (poles_dim1 << 1)] == 0.) {
 | |
| 		    rwork[j] = 0.;
 | |
| 		} else {
 | |
| 		    rwork[j] = -poles[j + (poles_dim1 << 1)] * z__[j] / diflj 
 | |
| 			    / (poles[j + (poles_dim1 << 1)] + dj);
 | |
| 		}
 | |
| 		i__2 = j - 1;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == 
 | |
| 			    0.) {
 | |
| 			rwork[i__] = 0.;
 | |
| 		    } else {
 | |
| 			rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
 | |
| 				 / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
 | |
| 				dsigj) - diflj) / (poles[i__ + (poles_dim1 << 
 | |
| 				1)] + dj);
 | |
| 		    }
 | |
| /* L30: */
 | |
| 		}
 | |
| 		i__2 = *k;
 | |
| 		for (i__ = j + 1; i__ <= i__2; ++i__) {
 | |
| 		    if (z__[i__] == 0. || poles[i__ + (poles_dim1 << 1)] == 
 | |
| 			    0.) {
 | |
| 			rwork[i__] = 0.;
 | |
| 		    } else {
 | |
| 			rwork[i__] = poles[i__ + (poles_dim1 << 1)] * z__[i__]
 | |
| 				 / (dlamc3_(&poles[i__ + (poles_dim1 << 1)], &
 | |
| 				dsigjp) + difrj) / (poles[i__ + (poles_dim1 <<
 | |
| 				 1)] + dj);
 | |
| 		    }
 | |
| /* L40: */
 | |
| 		}
 | |
| 		rwork[1] = -1.;
 | |
| 		temp = dnrm2_(k, &rwork[1], &c__1);
 | |
| 
 | |
| /*              Since B and BX are complex, the following call to DGEMV */
 | |
| /*              is performed in two steps (real and imaginary parts). */
 | |
| 
 | |
| /*              CALL DGEMV( 'T', K, NRHS, ONE, BX, LDBX, WORK, 1, ZERO, */
 | |
| /*    $                     B( J, 1 ), LDB ) */
 | |
| 
 | |
| 		i__ = *k + (*nrhs << 1);
 | |
| 		i__2 = *nrhs;
 | |
| 		for (jcol = 1; jcol <= i__2; ++jcol) {
 | |
| 		    i__3 = *k;
 | |
| 		    for (jrow = 1; jrow <= i__3; ++jrow) {
 | |
| 			++i__;
 | |
| 			i__4 = jrow + jcol * bx_dim1;
 | |
| 			rwork[i__] = bx[i__4].r;
 | |
| /* L50: */
 | |
| 		    }
 | |
| /* L60: */
 | |
| 		}
 | |
| 		dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
 | |
| 			 &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1);
 | |
| 		i__ = *k + (*nrhs << 1);
 | |
| 		i__2 = *nrhs;
 | |
| 		for (jcol = 1; jcol <= i__2; ++jcol) {
 | |
| 		    i__3 = *k;
 | |
| 		    for (jrow = 1; jrow <= i__3; ++jrow) {
 | |
| 			++i__;
 | |
| 			rwork[i__] = d_imag(&bx[jrow + jcol * bx_dim1]);
 | |
| /* L70: */
 | |
| 		    }
 | |
| /* L80: */
 | |
| 		}
 | |
| 		dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
 | |
| 			 &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], &
 | |
| 			c__1);
 | |
| 		i__2 = *nrhs;
 | |
| 		for (jcol = 1; jcol <= i__2; ++jcol) {
 | |
| 		    i__3 = j + jcol * b_dim1;
 | |
| 		    i__4 = jcol + *k;
 | |
| 		    i__5 = jcol + *k + *nrhs;
 | |
| 		    z__1.r = rwork[i__4], z__1.i = rwork[i__5];
 | |
| 		    b[i__3].r = z__1.r, b[i__3].i = z__1.i;
 | |
| /* L90: */
 | |
| 		}
 | |
| 		zlascl_("G", &c__0, &c__0, &temp, &c_b13, &c__1, nrhs, &b[j + 
 | |
| 			b_dim1], ldb, info);
 | |
| /* L100: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Move the deflated rows of BX to B also. */
 | |
| 
 | |
| 	if (*k < f2cmax(m,n)) {
 | |
| 	    i__1 = n - *k;
 | |
| 	    zlacpy_("A", &i__1, nrhs, &bx[*k + 1 + bx_dim1], ldbx, &b[*k + 1 
 | |
| 		    + b_dim1], ldb);
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        Apply back the right orthogonal transformations. */
 | |
| 
 | |
| /*        Step (1R): apply back the new right singular vector matrix */
 | |
| /*        to B. */
 | |
| 
 | |
| 	if (*k == 1) {
 | |
| 	    zcopy_(nrhs, &b[b_offset], ldb, &bx[bx_offset], ldbx);
 | |
| 	} else {
 | |
| 	    i__1 = *k;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		dsigj = poles[j + (poles_dim1 << 1)];
 | |
| 		if (z__[j] == 0.) {
 | |
| 		    rwork[j] = 0.;
 | |
| 		} else {
 | |
| 		    rwork[j] = -z__[j] / difl[j] / (dsigj + poles[j + 
 | |
| 			    poles_dim1]) / difr[j + (difr_dim1 << 1)];
 | |
| 		}
 | |
| 		i__2 = j - 1;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    if (z__[j] == 0.) {
 | |
| 			rwork[i__] = 0.;
 | |
| 		    } else {
 | |
| 			d__1 = -poles[i__ + 1 + (poles_dim1 << 1)];
 | |
| 			rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difr[
 | |
| 				i__ + difr_dim1]) / (dsigj + poles[i__ + 
 | |
| 				poles_dim1]) / difr[i__ + (difr_dim1 << 1)];
 | |
| 		    }
 | |
| /* L110: */
 | |
| 		}
 | |
| 		i__2 = *k;
 | |
| 		for (i__ = j + 1; i__ <= i__2; ++i__) {
 | |
| 		    if (z__[j] == 0.) {
 | |
| 			rwork[i__] = 0.;
 | |
| 		    } else {
 | |
| 			d__1 = -poles[i__ + (poles_dim1 << 1)];
 | |
| 			rwork[i__] = z__[j] / (dlamc3_(&dsigj, &d__1) - difl[
 | |
| 				i__]) / (dsigj + poles[i__ + poles_dim1]) / 
 | |
| 				difr[i__ + (difr_dim1 << 1)];
 | |
| 		    }
 | |
| /* L120: */
 | |
| 		}
 | |
| 
 | |
| /*              Since B and BX are complex, the following call to DGEMV */
 | |
| /*              is performed in two steps (real and imaginary parts). */
 | |
| 
 | |
| /*              CALL DGEMV( 'T', K, NRHS, ONE, B, LDB, WORK, 1, ZERO, */
 | |
| /*    $                     BX( J, 1 ), LDBX ) */
 | |
| 
 | |
| 		i__ = *k + (*nrhs << 1);
 | |
| 		i__2 = *nrhs;
 | |
| 		for (jcol = 1; jcol <= i__2; ++jcol) {
 | |
| 		    i__3 = *k;
 | |
| 		    for (jrow = 1; jrow <= i__3; ++jrow) {
 | |
| 			++i__;
 | |
| 			i__4 = jrow + jcol * b_dim1;
 | |
| 			rwork[i__] = b[i__4].r;
 | |
| /* L130: */
 | |
| 		    }
 | |
| /* L140: */
 | |
| 		}
 | |
| 		dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
 | |
| 			 &rwork[1], &c__1, &c_b15, &rwork[*k + 1], &c__1);
 | |
| 		i__ = *k + (*nrhs << 1);
 | |
| 		i__2 = *nrhs;
 | |
| 		for (jcol = 1; jcol <= i__2; ++jcol) {
 | |
| 		    i__3 = *k;
 | |
| 		    for (jrow = 1; jrow <= i__3; ++jrow) {
 | |
| 			++i__;
 | |
| 			rwork[i__] = d_imag(&b[jrow + jcol * b_dim1]);
 | |
| /* L150: */
 | |
| 		    }
 | |
| /* L160: */
 | |
| 		}
 | |
| 		dgemv_("T", k, nrhs, &c_b13, &rwork[*k + 1 + (*nrhs << 1)], k,
 | |
| 			 &rwork[1], &c__1, &c_b15, &rwork[*k + 1 + *nrhs], &
 | |
| 			c__1);
 | |
| 		i__2 = *nrhs;
 | |
| 		for (jcol = 1; jcol <= i__2; ++jcol) {
 | |
| 		    i__3 = j + jcol * bx_dim1;
 | |
| 		    i__4 = jcol + *k;
 | |
| 		    i__5 = jcol + *k + *nrhs;
 | |
| 		    z__1.r = rwork[i__4], z__1.i = rwork[i__5];
 | |
| 		    bx[i__3].r = z__1.r, bx[i__3].i = z__1.i;
 | |
| /* L170: */
 | |
| 		}
 | |
| /* L180: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Step (2R): if SQRE = 1, apply back the rotation that is */
 | |
| /*        related to the right null space of the subproblem. */
 | |
| 
 | |
| 	if (*sqre == 1) {
 | |
| 	    zcopy_(nrhs, &b[m + b_dim1], ldb, &bx[m + bx_dim1], ldbx);
 | |
| 	    zdrot_(nrhs, &bx[bx_dim1 + 1], ldbx, &bx[m + bx_dim1], ldbx, c__, 
 | |
| 		    s);
 | |
| 	}
 | |
| 	if (*k < f2cmax(m,n)) {
 | |
| 	    i__1 = n - *k;
 | |
| 	    zlacpy_("A", &i__1, nrhs, &b[*k + 1 + b_dim1], ldb, &bx[*k + 1 + 
 | |
| 		    bx_dim1], ldbx);
 | |
| 	}
 | |
| 
 | |
| /*        Step (3R): permute rows of B. */
 | |
| 
 | |
| 	zcopy_(nrhs, &bx[bx_dim1 + 1], ldbx, &b[nlp1 + b_dim1], ldb);
 | |
| 	if (*sqre == 1) {
 | |
| 	    zcopy_(nrhs, &bx[m + bx_dim1], ldbx, &b[m + b_dim1], ldb);
 | |
| 	}
 | |
| 	i__1 = n;
 | |
| 	for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	    zcopy_(nrhs, &bx[i__ + bx_dim1], ldbx, &b[perm[i__] + b_dim1], 
 | |
| 		    ldb);
 | |
| /* L190: */
 | |
| 	}
 | |
| 
 | |
| /*        Step (4R): apply back the Givens rotations performed. */
 | |
| 
 | |
| 	for (i__ = *givptr; i__ >= 1; --i__) {
 | |
| 	    d__1 = -givnum[i__ + givnum_dim1];
 | |
| 	    zdrot_(nrhs, &b[givcol[i__ + (givcol_dim1 << 1)] + b_dim1], ldb, &
 | |
| 		    b[givcol[i__ + givcol_dim1] + b_dim1], ldb, &givnum[i__ + 
 | |
| 		    (givnum_dim1 << 1)], &d__1);
 | |
| /* L200: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZLALS0 */
 | |
| 
 | |
| } /* zlals0_ */
 | |
| 
 |