1109 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1109 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/Cd(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static doublecomplex c_b2 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZLAHEF_AA */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZLAHEF_AA + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zlahef_
 | |
| aa.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zlahef_
 | |
| aa.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zlahef_
 | |
| aa.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZLAHEF_AA( UPLO, J1, M, NB, A, LDA, IPIV, */
 | |
| /*                             H, LDH, WORK ) */
 | |
| 
 | |
| /*       CHARACTER    UPLO */
 | |
| /*       INTEGER      J1, M, NB, LDA, LDH */
 | |
| /*       INTEGER      IPIV( * ) */
 | |
| /*       COMPLEX*16   A( LDA, * ), H( LDH, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > DLAHEF_AA factorizes a panel of a complex hermitian matrix A using */
 | |
| /* > the Aasen's algorithm. The panel consists of a set of NB rows of A */
 | |
| /* > when UPLO is U, or a set of NB columns when UPLO is L. */
 | |
| /* > */
 | |
| /* > In order to factorize the panel, the Aasen's algorithm requires the */
 | |
| /* > last row, or column, of the previous panel. The first row, or column, */
 | |
| /* > of A is set to be the first row, or column, of an identity matrix, */
 | |
| /* > which is used to factorize the first panel. */
 | |
| /* > */
 | |
| /* > The resulting J-th row of U, or J-th column of L, is stored in the */
 | |
| /* > (J-1)-th row, or column, of A (without the unit diagonals), while */
 | |
| /* > the diagonal and subdiagonal of A are overwritten by those of T. */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] J1 */
 | |
| /* > \verbatim */
 | |
| /* >          J1 is INTEGER */
 | |
| /* >          The location of the first row, or column, of the panel */
 | |
| /* >          within the submatrix of A, passed to this routine, e.g., */
 | |
| /* >          when called by ZHETRF_AA, for the first panel, J1 is 1, */
 | |
| /* >          while for the remaining panels, J1 is 2. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The dimension of the submatrix. M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NB */
 | |
| /* > \verbatim */
 | |
| /* >          NB is INTEGER */
 | |
| /* >          The dimension of the panel to be facotorized. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,M) for */
 | |
| /* >          the first panel, while dimension (LDA,M+1) for the */
 | |
| /* >          remaining panels. */
 | |
| /* > */
 | |
| /* >          On entry, A contains the last row, or column, of */
 | |
| /* >          the previous panel, and the trailing submatrix of A */
 | |
| /* >          to be factorized, except for the first panel, only */
 | |
| /* >          the panel is passed. */
 | |
| /* > */
 | |
| /* >          On exit, the leading panel is factorized. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          Details of the row and column interchanges, */
 | |
| /* >          the row and column k were interchanged with the row and */
 | |
| /* >          column IPIV(k). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is COMPLEX*16 workspace, dimension (LDH,NB). */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >          The leading dimension of the workspace H. LDH >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 workspace, dimension (M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2017 */
 | |
| 
 | |
| /* > \ingroup complex16HEcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zlahef_aa_(char *uplo, integer *j1, integer *m, integer 
 | |
| 	*nb, doublecomplex *a, integer *lda, integer *ipiv, doublecomplex *
 | |
| 	h__, integer *ldh, doublecomplex *work)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, h_dim1, h_offset, i__1, i__2;
 | |
|     doublereal d__1;
 | |
|     doublecomplex z__1, z__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer j, k;
 | |
|     doublecomplex alpha;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void zscal_(integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *), zgemv_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, integer *);
 | |
|     integer i1, k1, i2;
 | |
|     extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *), zswap_(integer *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, integer *), zaxpy_(integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     integer mj;
 | |
|     extern /* Subroutine */ void zlacgv_(integer *, doublecomplex *, integer *)
 | |
| 	    ;
 | |
|     extern integer izamax_(integer *, doublecomplex *, integer *);
 | |
|     extern /* Subroutine */ void zlaset_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *);
 | |
|     doublecomplex piv;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2017 */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --ipiv;
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     j = 1;
 | |
| 
 | |
| /*     K1 is the first column of the panel to be factorized */
 | |
| /*     i.e.,  K1 is 2 for the first block column, and 1 for the rest of the blocks */
 | |
| 
 | |
|     k1 = 2 - *j1 + 1;
 | |
| 
 | |
|     if (lsame_(uplo, "U")) {
 | |
| 
 | |
| /*        ..................................................... */
 | |
| /*        Factorize A as U**T*D*U using the upper triangle of A */
 | |
| /*        ..................................................... */
 | |
| 
 | |
| L10:
 | |
| 	if (j > f2cmin(*m,*nb)) {
 | |
| 	    goto L20;
 | |
| 	}
 | |
| 
 | |
| /*        K is the column to be factorized */
 | |
| /*         when being called from ZHETRF_AA, */
 | |
| /*         > for the first block column, J1 is 1, hence J1+J-1 is J, */
 | |
| /*         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
 | |
| 
 | |
| 	k = *j1 + j - 1;
 | |
| 	if (j == *m) {
 | |
| 
 | |
| /*            Only need to compute T(J, J) */
 | |
| 
 | |
| 	    mj = 1;
 | |
| 	} else {
 | |
| 	    mj = *m - j + 1;
 | |
| 	}
 | |
| 
 | |
| /*        H(J:N, J) := A(J, J:N) - H(J:N, 1:(J-1)) * L(J1:(J-1), J), */
 | |
| /*         where H(J:N, J) has been initialized to be A(J, J:N) */
 | |
| 
 | |
| 	if (k > 2) {
 | |
| 
 | |
| /*        K is the column to be factorized */
 | |
| /*         > for the first block column, K is J, skipping the first two */
 | |
| /*           columns */
 | |
| /*         > for the rest of the columns, K is J+1, skipping only the */
 | |
| /*           first column */
 | |
| 
 | |
| 	    i__1 = j - k1;
 | |
| 	    zlacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
 | |
| 	    i__1 = j - k1;
 | |
| 	    z__1.r = -1., z__1.i = 0.;
 | |
| 	    zgemv_("No transpose", &mj, &i__1, &z__1, &h__[j + k1 * h_dim1], 
 | |
| 		    ldh, &a[j * a_dim1 + 1], &c__1, &c_b2, &h__[j + j * 
 | |
| 		    h_dim1], &c__1);
 | |
| 	    i__1 = j - k1;
 | |
| 	    zlacgv_(&i__1, &a[j * a_dim1 + 1], &c__1);
 | |
| 	}
 | |
| 
 | |
| /*        Copy H(i:n, i) into WORK */
 | |
| 
 | |
| 	zcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
 | |
| 
 | |
| 	if (j > k1) {
 | |
| 
 | |
| /*           Compute WORK := WORK - L(J-1, J:N) * T(J-1,J), */
 | |
| /*            where A(J-1, J) stores T(J-1, J) and A(J-2, J:N) stores U(J-1, J:N) */
 | |
| 
 | |
| 	    d_cnjg(&z__2, &a[k - 1 + j * a_dim1]);
 | |
| 	    z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
| 	    alpha.r = z__1.r, alpha.i = z__1.i;
 | |
| 	    zaxpy_(&mj, &alpha, &a[k - 2 + j * a_dim1], lda, &work[1], &c__1);
 | |
| 	}
 | |
| 
 | |
| /*        Set A(J, J) = T(J, J) */
 | |
| 
 | |
| 	i__1 = k + j * a_dim1;
 | |
| 	d__1 = work[1].r;
 | |
| 	a[i__1].r = d__1, a[i__1].i = 0.;
 | |
| 
 | |
| 	if (j < *m) {
 | |
| 
 | |
| /*           Compute WORK(2:N) = T(J, J) L(J, (J+1):N) */
 | |
| /*            where A(J, J) stores T(J, J) and A(J-1, (J+1):N) stores U(J, (J+1):N) */
 | |
| 
 | |
| 	    if (k > 1) {
 | |
| 		i__1 = k + j * a_dim1;
 | |
| 		z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
 | |
| 		alpha.r = z__1.r, alpha.i = z__1.i;
 | |
| 		i__1 = *m - j;
 | |
| 		zaxpy_(&i__1, &alpha, &a[k - 1 + (j + 1) * a_dim1], lda, &
 | |
| 			work[2], &c__1);
 | |
| 	    }
 | |
| 
 | |
| /*           Find f2cmax(|WORK(2:n)|) */
 | |
| 
 | |
| 	    i__1 = *m - j;
 | |
| 	    i2 = izamax_(&i__1, &work[2], &c__1) + 1;
 | |
| 	    i__1 = i2;
 | |
| 	    piv.r = work[i__1].r, piv.i = work[i__1].i;
 | |
| 
 | |
| /*           Apply hermitian pivot */
 | |
| 
 | |
| 	    if (i2 != 2 && (piv.r != 0. || piv.i != 0.)) {
 | |
| 
 | |
| /*              Swap WORK(I1) and WORK(I2) */
 | |
| 
 | |
| 		i1 = 2;
 | |
| 		i__1 = i2;
 | |
| 		i__2 = i1;
 | |
| 		work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
 | |
| 		i__1 = i1;
 | |
| 		work[i__1].r = piv.r, work[i__1].i = piv.i;
 | |
| 
 | |
| /*              Swap A(I1, I1+1:N) with A(I1+1:N, I2) */
 | |
| 
 | |
| 		i1 = i1 + j - 1;
 | |
| 		i2 = i2 + j - 1;
 | |
| 		i__1 = i2 - i1 - 1;
 | |
| 		zswap_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda, &a[*
 | |
| 			j1 + i1 + i2 * a_dim1], &c__1);
 | |
| 		i__1 = i2 - i1;
 | |
| 		zlacgv_(&i__1, &a[*j1 + i1 - 1 + (i1 + 1) * a_dim1], lda);
 | |
| 		i__1 = i2 - i1 - 1;
 | |
| 		zlacgv_(&i__1, &a[*j1 + i1 + i2 * a_dim1], &c__1);
 | |
| 
 | |
| /*              Swap A(I1, I2+1:N) with A(I2, I2+1:N) */
 | |
| 
 | |
| 		if (i2 < *m) {
 | |
| 		    i__1 = *m - i2;
 | |
| 		    zswap_(&i__1, &a[*j1 + i1 - 1 + (i2 + 1) * a_dim1], lda, &
 | |
| 			    a[*j1 + i2 - 1 + (i2 + 1) * a_dim1], lda);
 | |
| 		}
 | |
| 
 | |
| /*              Swap A(I1, I1) with A(I2,I2) */
 | |
| 
 | |
| 		i__1 = i1 + *j1 - 1 + i1 * a_dim1;
 | |
| 		piv.r = a[i__1].r, piv.i = a[i__1].i;
 | |
| 		i__1 = *j1 + i1 - 1 + i1 * a_dim1;
 | |
| 		i__2 = *j1 + i2 - 1 + i2 * a_dim1;
 | |
| 		a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
 | |
| 		i__1 = *j1 + i2 - 1 + i2 * a_dim1;
 | |
| 		a[i__1].r = piv.r, a[i__1].i = piv.i;
 | |
| 
 | |
| /*              Swap H(I1, 1:J1) with H(I2, 1:J1) */
 | |
| 
 | |
| 		i__1 = i1 - 1;
 | |
| 		zswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
 | |
| 		ipiv[i1] = i2;
 | |
| 
 | |
| 		if (i1 > k1 - 1) {
 | |
| 
 | |
| /*                 Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
 | |
| /*                  skipping the first column */
 | |
| 
 | |
| 		    i__1 = i1 - k1 + 1;
 | |
| 		    zswap_(&i__1, &a[i1 * a_dim1 + 1], &c__1, &a[i2 * a_dim1 
 | |
| 			    + 1], &c__1);
 | |
| 		}
 | |
| 	    } else {
 | |
| 		ipiv[j + 1] = j + 1;
 | |
| 	    }
 | |
| 
 | |
| /*           Set A(J, J+1) = T(J, J+1) */
 | |
| 
 | |
| 	    i__1 = k + (j + 1) * a_dim1;
 | |
| 	    a[i__1].r = work[2].r, a[i__1].i = work[2].i;
 | |
| 
 | |
| 	    if (j < *nb) {
 | |
| 
 | |
| /*              Copy A(J+1:N, J+1) into H(J:N, J), */
 | |
| 
 | |
| 		i__1 = *m - j;
 | |
| 		zcopy_(&i__1, &a[k + 1 + (j + 1) * a_dim1], lda, &h__[j + 1 + 
 | |
| 			(j + 1) * h_dim1], &c__1);
 | |
| 	    }
 | |
| 
 | |
| /*           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
 | |
| /*            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
 | |
| 
 | |
| 	    if (j < *m - 1) {
 | |
| 		i__1 = k + (j + 1) * a_dim1;
 | |
| 		if (a[i__1].r != 0. || a[i__1].i != 0.) {
 | |
| 		    z_div(&z__1, &c_b2, &a[k + (j + 1) * a_dim1]);
 | |
| 		    alpha.r = z__1.r, alpha.i = z__1.i;
 | |
| 		    i__1 = *m - j - 1;
 | |
| 		    zcopy_(&i__1, &work[3], &c__1, &a[k + (j + 2) * a_dim1], 
 | |
| 			    lda);
 | |
| 		    i__1 = *m - j - 1;
 | |
| 		    zscal_(&i__1, &alpha, &a[k + (j + 2) * a_dim1], lda);
 | |
| 		} else {
 | |
| 		    i__1 = *m - j - 1;
 | |
| 		    zlaset_("Full", &c__1, &i__1, &c_b1, &c_b1, &a[k + (j + 2)
 | |
| 			     * a_dim1], lda);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	++j;
 | |
| 	goto L10;
 | |
| L20:
 | |
| 
 | |
| 	;
 | |
|     } else {
 | |
| 
 | |
| /*        ..................................................... */
 | |
| /*        Factorize A as L*D*L**T using the lower triangle of A */
 | |
| /*        ..................................................... */
 | |
| 
 | |
| L30:
 | |
| 	if (j > f2cmin(*m,*nb)) {
 | |
| 	    goto L40;
 | |
| 	}
 | |
| 
 | |
| /*        K is the column to be factorized */
 | |
| /*         when being called from ZHETRF_AA, */
 | |
| /*         > for the first block column, J1 is 1, hence J1+J-1 is J, */
 | |
| /*         > for the rest of the columns, J1 is 2, and J1+J-1 is J+1, */
 | |
| 
 | |
| 	k = *j1 + j - 1;
 | |
| 	if (j == *m) {
 | |
| 
 | |
| /*            Only need to compute T(J, J) */
 | |
| 
 | |
| 	    mj = 1;
 | |
| 	} else {
 | |
| 	    mj = *m - j + 1;
 | |
| 	}
 | |
| 
 | |
| /*        H(J:N, J) := A(J:N, J) - H(J:N, 1:(J-1)) * L(J, J1:(J-1))^T, */
 | |
| /*         where H(J:N, J) has been initialized to be A(J:N, J) */
 | |
| 
 | |
| 	if (k > 2) {
 | |
| 
 | |
| /*        K is the column to be factorized */
 | |
| /*         > for the first block column, K is J, skipping the first two */
 | |
| /*           columns */
 | |
| /*         > for the rest of the columns, K is J+1, skipping only the */
 | |
| /*           first column */
 | |
| 
 | |
| 	    i__1 = j - k1;
 | |
| 	    zlacgv_(&i__1, &a[j + a_dim1], lda);
 | |
| 	    i__1 = j - k1;
 | |
| 	    z__1.r = -1., z__1.i = 0.;
 | |
| 	    zgemv_("No transpose", &mj, &i__1, &z__1, &h__[j + k1 * h_dim1], 
 | |
| 		    ldh, &a[j + a_dim1], lda, &c_b2, &h__[j + j * h_dim1], &
 | |
| 		    c__1);
 | |
| 	    i__1 = j - k1;
 | |
| 	    zlacgv_(&i__1, &a[j + a_dim1], lda);
 | |
| 	}
 | |
| 
 | |
| /*        Copy H(J:N, J) into WORK */
 | |
| 
 | |
| 	zcopy_(&mj, &h__[j + j * h_dim1], &c__1, &work[1], &c__1);
 | |
| 
 | |
| 	if (j > k1) {
 | |
| 
 | |
| /*           Compute WORK := WORK - L(J:N, J-1) * T(J-1,J), */
 | |
| /*            where A(J-1, J) = T(J-1, J) and A(J, J-2) = L(J, J-1) */
 | |
| 
 | |
| 	    d_cnjg(&z__2, &a[j + (k - 1) * a_dim1]);
 | |
| 	    z__1.r = -z__2.r, z__1.i = -z__2.i;
 | |
| 	    alpha.r = z__1.r, alpha.i = z__1.i;
 | |
| 	    zaxpy_(&mj, &alpha, &a[j + (k - 2) * a_dim1], &c__1, &work[1], &
 | |
| 		    c__1);
 | |
| 	}
 | |
| 
 | |
| /*        Set A(J, J) = T(J, J) */
 | |
| 
 | |
| 	i__1 = j + k * a_dim1;
 | |
| 	d__1 = work[1].r;
 | |
| 	a[i__1].r = d__1, a[i__1].i = 0.;
 | |
| 
 | |
| 	if (j < *m) {
 | |
| 
 | |
| /*           Compute WORK(2:N) = T(J, J) L((J+1):N, J) */
 | |
| /*            where A(J, J) = T(J, J) and A((J+1):N, J-1) = L((J+1):N, J) */
 | |
| 
 | |
| 	    if (k > 1) {
 | |
| 		i__1 = j + k * a_dim1;
 | |
| 		z__1.r = -a[i__1].r, z__1.i = -a[i__1].i;
 | |
| 		alpha.r = z__1.r, alpha.i = z__1.i;
 | |
| 		i__1 = *m - j;
 | |
| 		zaxpy_(&i__1, &alpha, &a[j + 1 + (k - 1) * a_dim1], &c__1, &
 | |
| 			work[2], &c__1);
 | |
| 	    }
 | |
| 
 | |
| /*           Find f2cmax(|WORK(2:n)|) */
 | |
| 
 | |
| 	    i__1 = *m - j;
 | |
| 	    i2 = izamax_(&i__1, &work[2], &c__1) + 1;
 | |
| 	    i__1 = i2;
 | |
| 	    piv.r = work[i__1].r, piv.i = work[i__1].i;
 | |
| 
 | |
| /*           Apply hermitian pivot */
 | |
| 
 | |
| 	    if (i2 != 2 && (piv.r != 0. || piv.i != 0.)) {
 | |
| 
 | |
| /*              Swap WORK(I1) and WORK(I2) */
 | |
| 
 | |
| 		i1 = 2;
 | |
| 		i__1 = i2;
 | |
| 		i__2 = i1;
 | |
| 		work[i__1].r = work[i__2].r, work[i__1].i = work[i__2].i;
 | |
| 		i__1 = i1;
 | |
| 		work[i__1].r = piv.r, work[i__1].i = piv.i;
 | |
| 
 | |
| /*              Swap A(I1+1:N, I1) with A(I2, I1+1:N) */
 | |
| 
 | |
| 		i1 = i1 + j - 1;
 | |
| 		i2 = i2 + j - 1;
 | |
| 		i__1 = i2 - i1 - 1;
 | |
| 		zswap_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1, &a[
 | |
| 			i2 + (*j1 + i1) * a_dim1], lda);
 | |
| 		i__1 = i2 - i1;
 | |
| 		zlacgv_(&i__1, &a[i1 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1);
 | |
| 		i__1 = i2 - i1 - 1;
 | |
| 		zlacgv_(&i__1, &a[i2 + (*j1 + i1) * a_dim1], lda);
 | |
| 
 | |
| /*              Swap A(I2+1:N, I1) with A(I2+1:N, I2) */
 | |
| 
 | |
| 		if (i2 < *m) {
 | |
| 		    i__1 = *m - i2;
 | |
| 		    zswap_(&i__1, &a[i2 + 1 + (*j1 + i1 - 1) * a_dim1], &c__1,
 | |
| 			     &a[i2 + 1 + (*j1 + i2 - 1) * a_dim1], &c__1);
 | |
| 		}
 | |
| 
 | |
| /*              Swap A(I1, I1) with A(I2, I2) */
 | |
| 
 | |
| 		i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
 | |
| 		piv.r = a[i__1].r, piv.i = a[i__1].i;
 | |
| 		i__1 = i1 + (*j1 + i1 - 1) * a_dim1;
 | |
| 		i__2 = i2 + (*j1 + i2 - 1) * a_dim1;
 | |
| 		a[i__1].r = a[i__2].r, a[i__1].i = a[i__2].i;
 | |
| 		i__1 = i2 + (*j1 + i2 - 1) * a_dim1;
 | |
| 		a[i__1].r = piv.r, a[i__1].i = piv.i;
 | |
| 
 | |
| /*              Swap H(I1, I1:J1) with H(I2, I2:J1) */
 | |
| 
 | |
| 		i__1 = i1 - 1;
 | |
| 		zswap_(&i__1, &h__[i1 + h_dim1], ldh, &h__[i2 + h_dim1], ldh);
 | |
| 		ipiv[i1] = i2;
 | |
| 
 | |
| 		if (i1 > k1 - 1) {
 | |
| 
 | |
| /*                 Swap L(1:I1-1, I1) with L(1:I1-1, I2), */
 | |
| /*                  skipping the first column */
 | |
| 
 | |
| 		    i__1 = i1 - k1 + 1;
 | |
| 		    zswap_(&i__1, &a[i1 + a_dim1], lda, &a[i2 + a_dim1], lda);
 | |
| 		}
 | |
| 	    } else {
 | |
| 		ipiv[j + 1] = j + 1;
 | |
| 	    }
 | |
| 
 | |
| /*           Set A(J+1, J) = T(J+1, J) */
 | |
| 
 | |
| 	    i__1 = j + 1 + k * a_dim1;
 | |
| 	    a[i__1].r = work[2].r, a[i__1].i = work[2].i;
 | |
| 
 | |
| 	    if (j < *nb) {
 | |
| 
 | |
| /*              Copy A(J+1:N, J+1) into H(J+1:N, J), */
 | |
| 
 | |
| 		i__1 = *m - j;
 | |
| 		zcopy_(&i__1, &a[j + 1 + (k + 1) * a_dim1], &c__1, &h__[j + 1 
 | |
| 			+ (j + 1) * h_dim1], &c__1);
 | |
| 	    }
 | |
| 
 | |
| /*           Compute L(J+2, J+1) = WORK( 3:N ) / T(J, J+1), */
 | |
| /*            where A(J, J+1) = T(J, J+1) and A(J+2:N, J) = L(J+2:N, J+1) */
 | |
| 
 | |
| 	    if (j < *m - 1) {
 | |
| 		i__1 = j + 1 + k * a_dim1;
 | |
| 		if (a[i__1].r != 0. || a[i__1].i != 0.) {
 | |
| 		    z_div(&z__1, &c_b2, &a[j + 1 + k * a_dim1]);
 | |
| 		    alpha.r = z__1.r, alpha.i = z__1.i;
 | |
| 		    i__1 = *m - j - 1;
 | |
| 		    zcopy_(&i__1, &work[3], &c__1, &a[j + 2 + k * a_dim1], &
 | |
| 			    c__1);
 | |
| 		    i__1 = *m - j - 1;
 | |
| 		    zscal_(&i__1, &alpha, &a[j + 2 + k * a_dim1], &c__1);
 | |
| 		} else {
 | |
| 		    i__1 = *m - j - 1;
 | |
| 		    zlaset_("Full", &i__1, &c__1, &c_b1, &c_b1, &a[j + 2 + k *
 | |
| 			     a_dim1], lda);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	++j;
 | |
| 	goto L30;
 | |
| L40:
 | |
| 	;
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| /*     End of ZLAHEF_AA */
 | |
| 
 | |
| } /* zlahef_aa__ */
 | |
| 
 |