1061 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1061 lines
		
	
	
		
			28 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b2 = {0.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZHPTRI */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZHPTRI + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhptri.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhptri.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhptri.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZHPTRI( UPLO, N, AP, IPIV, WORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO */
 | |
| /*       INTEGER            INFO, N */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       COMPLEX*16         AP( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZHPTRI computes the inverse of a complex Hermitian indefinite matrix */
 | |
| /* > A in packed storage using the factorization A = U*D*U**H or */
 | |
| /* > A = L*D*L**H computed by ZHPTRF. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          Specifies whether the details of the factorization are stored */
 | |
| /* >          as an upper or lower triangular matrix. */
 | |
| /* >          = 'U':  Upper triangular, form is A = U*D*U**H; */
 | |
| /* >          = 'L':  Lower triangular, form is A = L*D*L**H. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AP */
 | |
| /* > \verbatim */
 | |
| /* >          AP is COMPLEX*16 array, dimension (N*(N+1)/2) */
 | |
| /* >          On entry, the block diagonal matrix D and the multipliers */
 | |
| /* >          used to obtain the factor U or L as computed by ZHPTRF, */
 | |
| /* >          stored as a packed triangular matrix. */
 | |
| /* > */
 | |
| /* >          On exit, if INFO = 0, the (Hermitian) inverse of the original */
 | |
| /* >          matrix, stored as a packed triangular matrix. The j-th column */
 | |
| /* >          of inv(A) is stored in the array AP as follows: */
 | |
| /* >          if UPLO = 'U', AP(i + (j-1)*j/2) = inv(A)(i,j) for 1<=i<=j; */
 | |
| /* >          if UPLO = 'L', */
 | |
| /* >             AP(i + (j-1)*(2n-j)/2) = inv(A)(i,j) for j<=i<=n. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          Details of the interchanges and the block structure of D */
 | |
| /* >          as determined by ZHPTRF. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          < 0: if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0: if INFO = i, D(i,i) = 0; the matrix is singular and its */
 | |
| /* >               inverse could not be computed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zhptri_(char *uplo, integer *n, doublecomplex *ap, 
 | |
| 	integer *ipiv, doublecomplex *work, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2, i__3;
 | |
|     doublereal d__1;
 | |
|     doublecomplex z__1, z__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublecomplex temp, akkp1;
 | |
|     doublereal d__;
 | |
|     integer j, k;
 | |
|     doublereal t;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Double Complex */ VOID zdotc_(doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *);
 | |
|     integer kstep;
 | |
|     logical upper;
 | |
|     extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *), zhpmv_(char *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, integer *), zswap_(
 | |
| 	    integer *, doublecomplex *, integer *, doublecomplex *, integer *)
 | |
| 	    ;
 | |
|     doublereal ak;
 | |
|     integer kc, kp, kx;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer kcnext, kpc, npp;
 | |
|     doublereal akp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --work;
 | |
|     --ipiv;
 | |
|     --ap;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZHPTRI", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Check that the diagonal matrix D is nonsingular. */
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Upper triangular storage: examine D from bottom to top */
 | |
| 
 | |
| 	kp = *n * (*n + 1) / 2;
 | |
| 	for (*info = *n; *info >= 1; --(*info)) {
 | |
| 	    i__1 = kp;
 | |
| 	    if (ipiv[*info] > 0 && (ap[i__1].r == 0. && ap[i__1].i == 0.)) {
 | |
| 		return;
 | |
| 	    }
 | |
| 	    kp -= *info;
 | |
| /* L10: */
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        Lower triangular storage: examine D from top to bottom. */
 | |
| 
 | |
| 	kp = 1;
 | |
| 	i__1 = *n;
 | |
| 	for (*info = 1; *info <= i__1; ++(*info)) {
 | |
| 	    i__2 = kp;
 | |
| 	    if (ipiv[*info] > 0 && (ap[i__2].r == 0. && ap[i__2].i == 0.)) {
 | |
| 		return;
 | |
| 	    }
 | |
| 	    kp = kp + *n - *info + 1;
 | |
| /* L20: */
 | |
| 	}
 | |
|     }
 | |
|     *info = 0;
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Compute inv(A) from the factorization A = U*D*U**H. */
 | |
| 
 | |
| /*        K is the main loop index, increasing from 1 to N in steps of */
 | |
| /*        1 or 2, depending on the size of the diagonal blocks. */
 | |
| 
 | |
| 	k = 1;
 | |
| 	kc = 1;
 | |
| L30:
 | |
| 
 | |
| /*        If K > N, exit from loop. */
 | |
| 
 | |
| 	if (k > *n) {
 | |
| 	    goto L50;
 | |
| 	}
 | |
| 
 | |
| 	kcnext = kc + k;
 | |
| 	if (ipiv[k] > 0) {
 | |
| 
 | |
| /*           1 x 1 diagonal block */
 | |
| 
 | |
| /*           Invert the diagonal block. */
 | |
| 
 | |
| 	    i__1 = kc + k - 1;
 | |
| 	    i__2 = kc + k - 1;
 | |
| 	    d__1 = 1. / ap[i__2].r;
 | |
| 	    ap[i__1].r = d__1, ap[i__1].i = 0.;
 | |
| 
 | |
| /*           Compute column K of the inverse. */
 | |
| 
 | |
| 	    if (k > 1) {
 | |
| 		i__1 = k - 1;
 | |
| 		zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
 | |
| 		i__1 = k - 1;
 | |
| 		z__1.r = -1., z__1.i = 0.;
 | |
| 		zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
 | |
| 			ap[kc], &c__1);
 | |
| 		i__1 = kc + k - 1;
 | |
| 		i__2 = kc + k - 1;
 | |
| 		i__3 = k - 1;
 | |
| 		zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
 | |
| 		d__1 = z__2.r;
 | |
| 		z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 	    }
 | |
| 	    kstep = 1;
 | |
| 	} else {
 | |
| 
 | |
| /*           2 x 2 diagonal block */
 | |
| 
 | |
| /*           Invert the diagonal block. */
 | |
| 
 | |
| 	    t = z_abs(&ap[kcnext + k - 1]);
 | |
| 	    i__1 = kc + k - 1;
 | |
| 	    ak = ap[i__1].r / t;
 | |
| 	    i__1 = kcnext + k;
 | |
| 	    akp1 = ap[i__1].r / t;
 | |
| 	    i__1 = kcnext + k - 1;
 | |
| 	    z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t;
 | |
| 	    akkp1.r = z__1.r, akkp1.i = z__1.i;
 | |
| 	    d__ = t * (ak * akp1 - 1.);
 | |
| 	    i__1 = kc + k - 1;
 | |
| 	    d__1 = akp1 / d__;
 | |
| 	    ap[i__1].r = d__1, ap[i__1].i = 0.;
 | |
| 	    i__1 = kcnext + k;
 | |
| 	    d__1 = ak / d__;
 | |
| 	    ap[i__1].r = d__1, ap[i__1].i = 0.;
 | |
| 	    i__1 = kcnext + k - 1;
 | |
| 	    z__2.r = -akkp1.r, z__2.i = -akkp1.i;
 | |
| 	    z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
 | |
| 	    ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 
 | |
| /*           Compute columns K and K+1 of the inverse. */
 | |
| 
 | |
| 	    if (k > 1) {
 | |
| 		i__1 = k - 1;
 | |
| 		zcopy_(&i__1, &ap[kc], &c__1, &work[1], &c__1);
 | |
| 		i__1 = k - 1;
 | |
| 		z__1.r = -1., z__1.i = 0.;
 | |
| 		zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
 | |
| 			ap[kc], &c__1);
 | |
| 		i__1 = kc + k - 1;
 | |
| 		i__2 = kc + k - 1;
 | |
| 		i__3 = k - 1;
 | |
| 		zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc], &c__1);
 | |
| 		d__1 = z__2.r;
 | |
| 		z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 		i__1 = kcnext + k - 1;
 | |
| 		i__2 = kcnext + k - 1;
 | |
| 		i__3 = k - 1;
 | |
| 		zdotc_(&z__2, &i__3, &ap[kc], &c__1, &ap[kcnext], &c__1);
 | |
| 		z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 		i__1 = k - 1;
 | |
| 		zcopy_(&i__1, &ap[kcnext], &c__1, &work[1], &c__1);
 | |
| 		i__1 = k - 1;
 | |
| 		z__1.r = -1., z__1.i = 0.;
 | |
| 		zhpmv_(uplo, &i__1, &z__1, &ap[1], &work[1], &c__1, &c_b2, &
 | |
| 			ap[kcnext], &c__1);
 | |
| 		i__1 = kcnext + k;
 | |
| 		i__2 = kcnext + k;
 | |
| 		i__3 = k - 1;
 | |
| 		zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext], &c__1);
 | |
| 		d__1 = z__2.r;
 | |
| 		z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 	    }
 | |
| 	    kstep = 2;
 | |
| 	    kcnext = kcnext + k + 1;
 | |
| 	}
 | |
| 
 | |
| 	kp = (i__1 = ipiv[k], abs(i__1));
 | |
| 	if (kp != k) {
 | |
| 
 | |
| /*           Interchange rows and columns K and KP in the leading */
 | |
| /*           submatrix A(1:k+1,1:k+1) */
 | |
| 
 | |
| 	    kpc = (kp - 1) * kp / 2 + 1;
 | |
| 	    i__1 = kp - 1;
 | |
| 	    zswap_(&i__1, &ap[kc], &c__1, &ap[kpc], &c__1);
 | |
| 	    kx = kpc + kp - 1;
 | |
| 	    i__1 = k - 1;
 | |
| 	    for (j = kp + 1; j <= i__1; ++j) {
 | |
| 		kx = kx + j - 1;
 | |
| 		d_cnjg(&z__1, &ap[kc + j - 1]);
 | |
| 		temp.r = z__1.r, temp.i = z__1.i;
 | |
| 		i__2 = kc + j - 1;
 | |
| 		d_cnjg(&z__1, &ap[kx]);
 | |
| 		ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
 | |
| 		i__2 = kx;
 | |
| 		ap[i__2].r = temp.r, ap[i__2].i = temp.i;
 | |
| /* L40: */
 | |
| 	    }
 | |
| 	    i__1 = kc + kp - 1;
 | |
| 	    d_cnjg(&z__1, &ap[kc + kp - 1]);
 | |
| 	    ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 	    i__1 = kc + k - 1;
 | |
| 	    temp.r = ap[i__1].r, temp.i = ap[i__1].i;
 | |
| 	    i__1 = kc + k - 1;
 | |
| 	    i__2 = kpc + kp - 1;
 | |
| 	    ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
 | |
| 	    i__1 = kpc + kp - 1;
 | |
| 	    ap[i__1].r = temp.r, ap[i__1].i = temp.i;
 | |
| 	    if (kstep == 2) {
 | |
| 		i__1 = kc + k + k - 1;
 | |
| 		temp.r = ap[i__1].r, temp.i = ap[i__1].i;
 | |
| 		i__1 = kc + k + k - 1;
 | |
| 		i__2 = kc + k + kp - 1;
 | |
| 		ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
 | |
| 		i__1 = kc + k + kp - 1;
 | |
| 		ap[i__1].r = temp.r, ap[i__1].i = temp.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	k += kstep;
 | |
| 	kc = kcnext;
 | |
| 	goto L30;
 | |
| L50:
 | |
| 
 | |
| 	;
 | |
|     } else {
 | |
| 
 | |
| /*        Compute inv(A) from the factorization A = L*D*L**H. */
 | |
| 
 | |
| /*        K is the main loop index, increasing from 1 to N in steps of */
 | |
| /*        1 or 2, depending on the size of the diagonal blocks. */
 | |
| 
 | |
| 	npp = *n * (*n + 1) / 2;
 | |
| 	k = *n;
 | |
| 	kc = npp;
 | |
| L60:
 | |
| 
 | |
| /*        If K < 1, exit from loop. */
 | |
| 
 | |
| 	if (k < 1) {
 | |
| 	    goto L80;
 | |
| 	}
 | |
| 
 | |
| 	kcnext = kc - (*n - k + 2);
 | |
| 	if (ipiv[k] > 0) {
 | |
| 
 | |
| /*           1 x 1 diagonal block */
 | |
| 
 | |
| /*           Invert the diagonal block. */
 | |
| 
 | |
| 	    i__1 = kc;
 | |
| 	    i__2 = kc;
 | |
| 	    d__1 = 1. / ap[i__2].r;
 | |
| 	    ap[i__1].r = d__1, ap[i__1].i = 0.;
 | |
| 
 | |
| /*           Compute column K of the inverse. */
 | |
| 
 | |
| 	    if (k < *n) {
 | |
| 		i__1 = *n - k;
 | |
| 		zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
 | |
| 		i__1 = *n - k;
 | |
| 		z__1.r = -1., z__1.i = 0.;
 | |
| 		zhpmv_(uplo, &i__1, &z__1, &ap[kc + *n - k + 1], &work[1], &
 | |
| 			c__1, &c_b2, &ap[kc + 1], &c__1);
 | |
| 		i__1 = kc;
 | |
| 		i__2 = kc;
 | |
| 		i__3 = *n - k;
 | |
| 		zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
 | |
| 		d__1 = z__2.r;
 | |
| 		z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 	    }
 | |
| 	    kstep = 1;
 | |
| 	} else {
 | |
| 
 | |
| /*           2 x 2 diagonal block */
 | |
| 
 | |
| /*           Invert the diagonal block. */
 | |
| 
 | |
| 	    t = z_abs(&ap[kcnext + 1]);
 | |
| 	    i__1 = kcnext;
 | |
| 	    ak = ap[i__1].r / t;
 | |
| 	    i__1 = kc;
 | |
| 	    akp1 = ap[i__1].r / t;
 | |
| 	    i__1 = kcnext + 1;
 | |
| 	    z__1.r = ap[i__1].r / t, z__1.i = ap[i__1].i / t;
 | |
| 	    akkp1.r = z__1.r, akkp1.i = z__1.i;
 | |
| 	    d__ = t * (ak * akp1 - 1.);
 | |
| 	    i__1 = kcnext;
 | |
| 	    d__1 = akp1 / d__;
 | |
| 	    ap[i__1].r = d__1, ap[i__1].i = 0.;
 | |
| 	    i__1 = kc;
 | |
| 	    d__1 = ak / d__;
 | |
| 	    ap[i__1].r = d__1, ap[i__1].i = 0.;
 | |
| 	    i__1 = kcnext + 1;
 | |
| 	    z__2.r = -akkp1.r, z__2.i = -akkp1.i;
 | |
| 	    z__1.r = z__2.r / d__, z__1.i = z__2.i / d__;
 | |
| 	    ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 
 | |
| /*           Compute columns K-1 and K of the inverse. */
 | |
| 
 | |
| 	    if (k < *n) {
 | |
| 		i__1 = *n - k;
 | |
| 		zcopy_(&i__1, &ap[kc + 1], &c__1, &work[1], &c__1);
 | |
| 		i__1 = *n - k;
 | |
| 		z__1.r = -1., z__1.i = 0.;
 | |
| 		zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
 | |
| 			c__1, &c_b2, &ap[kc + 1], &c__1);
 | |
| 		i__1 = kc;
 | |
| 		i__2 = kc;
 | |
| 		i__3 = *n - k;
 | |
| 		zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kc + 1], &c__1);
 | |
| 		d__1 = z__2.r;
 | |
| 		z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 		i__1 = kcnext + 1;
 | |
| 		i__2 = kcnext + 1;
 | |
| 		i__3 = *n - k;
 | |
| 		zdotc_(&z__2, &i__3, &ap[kc + 1], &c__1, &ap[kcnext + 2], &
 | |
| 			c__1);
 | |
| 		z__1.r = ap[i__2].r - z__2.r, z__1.i = ap[i__2].i - z__2.i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 		i__1 = *n - k;
 | |
| 		zcopy_(&i__1, &ap[kcnext + 2], &c__1, &work[1], &c__1);
 | |
| 		i__1 = *n - k;
 | |
| 		z__1.r = -1., z__1.i = 0.;
 | |
| 		zhpmv_(uplo, &i__1, &z__1, &ap[kc + (*n - k + 1)], &work[1], &
 | |
| 			c__1, &c_b2, &ap[kcnext + 2], &c__1);
 | |
| 		i__1 = kcnext;
 | |
| 		i__2 = kcnext;
 | |
| 		i__3 = *n - k;
 | |
| 		zdotc_(&z__2, &i__3, &work[1], &c__1, &ap[kcnext + 2], &c__1);
 | |
| 		d__1 = z__2.r;
 | |
| 		z__1.r = ap[i__2].r - d__1, z__1.i = ap[i__2].i;
 | |
| 		ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 	    }
 | |
| 	    kstep = 2;
 | |
| 	    kcnext -= *n - k + 3;
 | |
| 	}
 | |
| 
 | |
| 	kp = (i__1 = ipiv[k], abs(i__1));
 | |
| 	if (kp != k) {
 | |
| 
 | |
| /*           Interchange rows and columns K and KP in the trailing */
 | |
| /*           submatrix A(k-1:n,k-1:n) */
 | |
| 
 | |
| 	    kpc = npp - (*n - kp + 1) * (*n - kp + 2) / 2 + 1;
 | |
| 	    if (kp < *n) {
 | |
| 		i__1 = *n - kp;
 | |
| 		zswap_(&i__1, &ap[kc + kp - k + 1], &c__1, &ap[kpc + 1], &
 | |
| 			c__1);
 | |
| 	    }
 | |
| 	    kx = kc + kp - k;
 | |
| 	    i__1 = kp - 1;
 | |
| 	    for (j = k + 1; j <= i__1; ++j) {
 | |
| 		kx = kx + *n - j + 1;
 | |
| 		d_cnjg(&z__1, &ap[kc + j - k]);
 | |
| 		temp.r = z__1.r, temp.i = z__1.i;
 | |
| 		i__2 = kc + j - k;
 | |
| 		d_cnjg(&z__1, &ap[kx]);
 | |
| 		ap[i__2].r = z__1.r, ap[i__2].i = z__1.i;
 | |
| 		i__2 = kx;
 | |
| 		ap[i__2].r = temp.r, ap[i__2].i = temp.i;
 | |
| /* L70: */
 | |
| 	    }
 | |
| 	    i__1 = kc + kp - k;
 | |
| 	    d_cnjg(&z__1, &ap[kc + kp - k]);
 | |
| 	    ap[i__1].r = z__1.r, ap[i__1].i = z__1.i;
 | |
| 	    i__1 = kc;
 | |
| 	    temp.r = ap[i__1].r, temp.i = ap[i__1].i;
 | |
| 	    i__1 = kc;
 | |
| 	    i__2 = kpc;
 | |
| 	    ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
 | |
| 	    i__1 = kpc;
 | |
| 	    ap[i__1].r = temp.r, ap[i__1].i = temp.i;
 | |
| 	    if (kstep == 2) {
 | |
| 		i__1 = kc - *n + k - 1;
 | |
| 		temp.r = ap[i__1].r, temp.i = ap[i__1].i;
 | |
| 		i__1 = kc - *n + k - 1;
 | |
| 		i__2 = kc - *n + kp - 1;
 | |
| 		ap[i__1].r = ap[i__2].r, ap[i__1].i = ap[i__2].i;
 | |
| 		i__1 = kc - *n + kp - 1;
 | |
| 		ap[i__1].r = temp.r, ap[i__1].i = temp.i;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	k -= kstep;
 | |
| 	kc = kcnext;
 | |
| 	goto L60;
 | |
| L80:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZHPTRI */
 | |
| 
 | |
| } /* zhptri_ */
 | |
| 
 |