332 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			332 lines
		
	
	
		
			9.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b ZHETD2 reduces a Hermitian matrix to real symmetric tridiagonal form by an unitary similarity transformation (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZHETD2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhetd2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhetd2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhetd2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, LDA, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   D( * ), E( * )
 | |
| *       COMPLEX*16         A( LDA, * ), TAU( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZHETD2 reduces a complex Hermitian matrix A to real symmetric
 | |
| *> tridiagonal form T by a unitary similarity transformation:
 | |
| *> Q**H * A * Q = T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          Specifies whether the upper or lower triangular part of the
 | |
| *>          Hermitian matrix A is stored:
 | |
| *>          = 'U':  Upper triangular
 | |
| *>          = 'L':  Lower triangular
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the Hermitian matrix A.  If UPLO = 'U', the leading
 | |
| *>          n-by-n upper triangular part of A contains the upper
 | |
| *>          triangular part of the matrix A, and the strictly lower
 | |
| *>          triangular part of A is not referenced.  If UPLO = 'L', the
 | |
| *>          leading n-by-n lower triangular part of A contains the lower
 | |
| *>          triangular part of the matrix A, and the strictly upper
 | |
| *>          triangular part of A is not referenced.
 | |
| *>          On exit, if UPLO = 'U', the diagonal and first superdiagonal
 | |
| *>          of A are overwritten by the corresponding elements of the
 | |
| *>          tridiagonal matrix T, and the elements above the first
 | |
| *>          superdiagonal, with the array TAU, represent the unitary
 | |
| *>          matrix Q as a product of elementary reflectors; if UPLO
 | |
| *>          = 'L', the diagonal and first subdiagonal of A are over-
 | |
| *>          written by the corresponding elements of the tridiagonal
 | |
| *>          matrix T, and the elements below the first subdiagonal, with
 | |
| *>          the array TAU, represent the unitary matrix Q as a product
 | |
| *>          of elementary reflectors. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] D
 | |
| *> \verbatim
 | |
| *>          D is DOUBLE PRECISION array, dimension (N)
 | |
| *>          The diagonal elements of the tridiagonal matrix T:
 | |
| *>          D(i) = A(i,i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] E
 | |
| *> \verbatim
 | |
| *>          E is DOUBLE PRECISION array, dimension (N-1)
 | |
| *>          The off-diagonal elements of the tridiagonal matrix T:
 | |
| *>          E(i) = A(i,i+1) if UPLO = 'U', E(i) = A(i+1,i) if UPLO = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is COMPLEX*16 array, dimension (N-1)
 | |
| *>          The scalar factors of the elementary reflectors (see Further
 | |
| *>          Details).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup complex16HEcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  If UPLO = 'U', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(n-1) . . . H(2) H(1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**H
 | |
| *>
 | |
| *>  where tau is a complex scalar, and v is a complex vector with
 | |
| *>  v(i+1:n) = 0 and v(i) = 1; v(1:i-1) is stored on exit in
 | |
| *>  A(1:i-1,i+1), and tau in TAU(i).
 | |
| *>
 | |
| *>  If UPLO = 'L', the matrix Q is represented as a product of elementary
 | |
| *>  reflectors
 | |
| *>
 | |
| *>     Q = H(1) H(2) . . . H(n-1).
 | |
| *>
 | |
| *>  Each H(i) has the form
 | |
| *>
 | |
| *>     H(i) = I - tau * v * v**H
 | |
| *>
 | |
| *>  where tau is a complex scalar, and v is a complex vector with
 | |
| *>  v(1:i) = 0 and v(i+1) = 1; v(i+2:n) is stored on exit in A(i+2:n,i),
 | |
| *>  and tau in TAU(i).
 | |
| *>
 | |
| *>  The contents of A on exit are illustrated by the following examples
 | |
| *>  with n = 5:
 | |
| *>
 | |
| *>  if UPLO = 'U':                       if UPLO = 'L':
 | |
| *>
 | |
| *>    (  d   e   v2  v3  v4 )              (  d                  )
 | |
| *>    (      d   e   v3  v4 )              (  e   d              )
 | |
| *>    (          d   e   v4 )              (  v1  e   d          )
 | |
| *>    (              d   e  )              (  v1  v2  e   d      )
 | |
| *>    (                  d  )              (  v1  v2  v3  e   d  )
 | |
| *>
 | |
| *>  where d and e denote diagonal and off-diagonal elements of T, and vi
 | |
| *>  denotes an element of the vector defining H(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZHETD2( UPLO, N, A, LDA, D, E, TAU, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, LDA, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   D( * ), E( * )
 | |
|       COMPLEX*16         A( LDA, * ), TAU( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       COMPLEX*16         ONE, ZERO, HALF
 | |
|       PARAMETER          ( ONE = ( 1.0D+0, 0.0D+0 ),
 | |
|      $                   ZERO = ( 0.0D+0, 0.0D+0 ),
 | |
|      $                   HALF = ( 0.5D+0, 0.0D+0 ) )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            I
 | |
|       COMPLEX*16         ALPHA, TAUI
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           XERBLA, ZAXPY, ZHEMV, ZHER2, ZLARFG
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       COMPLEX*16         ZDOTC
 | |
|       EXTERNAL           LSAME, ZDOTC
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, MAX, MIN
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U')
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZHETD2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Reduce the upper triangle of A
 | |
| *
 | |
|          A( N, N ) = DBLE( A( N, N ) )
 | |
|          DO 10 I = N - 1, 1, -1
 | |
| *
 | |
| *           Generate elementary reflector H(i) = I - tau * v * v**H
 | |
| *           to annihilate A(1:i-1,i+1)
 | |
| *
 | |
|             ALPHA = A( I, I+1 )
 | |
|             CALL ZLARFG( I, ALPHA, A( 1, I+1 ), 1, TAUI )
 | |
|             E( I ) = DBLE( ALPHA )
 | |
| *
 | |
|             IF( TAUI.NE.ZERO ) THEN
 | |
| *
 | |
| *              Apply H(i) from both sides to A(1:i,1:i)
 | |
| *
 | |
|                A( I, I+1 ) = ONE
 | |
| *
 | |
| *              Compute  x := tau * A * v  storing x in TAU(1:i)
 | |
| *
 | |
|                CALL ZHEMV( UPLO, I, TAUI, A, LDA, A( 1, I+1 ), 1, ZERO,
 | |
|      $                     TAU, 1 )
 | |
| *
 | |
| *              Compute  w := x - 1/2 * tau * (x**H * v) * v
 | |
| *
 | |
|                ALPHA = -HALF*TAUI*ZDOTC( I, TAU, 1, A( 1, I+1 ), 1 )
 | |
|                CALL ZAXPY( I, ALPHA, A( 1, I+1 ), 1, TAU, 1 )
 | |
| *
 | |
| *              Apply the transformation as a rank-2 update:
 | |
| *                 A := A - v * w**H - w * v**H
 | |
| *
 | |
|                CALL ZHER2( UPLO, I, -ONE, A( 1, I+1 ), 1, TAU, 1, A,
 | |
|      $                     LDA )
 | |
| *
 | |
|             ELSE
 | |
|                A( I, I ) = DBLE( A( I, I ) )
 | |
|             END IF
 | |
|             A( I, I+1 ) = E( I )
 | |
|             D( I+1 ) = DBLE( A( I+1, I+1 ) )
 | |
|             TAU( I ) = TAUI
 | |
|    10    CONTINUE
 | |
|          D( 1 ) = DBLE( A( 1, 1 ) )
 | |
|       ELSE
 | |
| *
 | |
| *        Reduce the lower triangle of A
 | |
| *
 | |
|          A( 1, 1 ) = DBLE( A( 1, 1 ) )
 | |
|          DO 20 I = 1, N - 1
 | |
| *
 | |
| *           Generate elementary reflector H(i) = I - tau * v * v**H
 | |
| *           to annihilate A(i+2:n,i)
 | |
| *
 | |
|             ALPHA = A( I+1, I )
 | |
|             CALL ZLARFG( N-I, ALPHA, A( MIN( I+2, N ), I ), 1, TAUI )
 | |
|             E( I ) = DBLE( ALPHA )
 | |
| *
 | |
|             IF( TAUI.NE.ZERO ) THEN
 | |
| *
 | |
| *              Apply H(i) from both sides to A(i+1:n,i+1:n)
 | |
| *
 | |
|                A( I+1, I ) = ONE
 | |
| *
 | |
| *              Compute  x := tau * A * v  storing y in TAU(i:n-1)
 | |
| *
 | |
|                CALL ZHEMV( UPLO, N-I, TAUI, A( I+1, I+1 ), LDA,
 | |
|      $                     A( I+1, I ), 1, ZERO, TAU( I ), 1 )
 | |
| *
 | |
| *              Compute  w := x - 1/2 * tau * (x**H * v) * v
 | |
| *
 | |
|                ALPHA = -HALF*TAUI*ZDOTC( N-I, TAU( I ), 1, A( I+1, I ),
 | |
|      $                 1 )
 | |
|                CALL ZAXPY( N-I, ALPHA, A( I+1, I ), 1, TAU( I ), 1 )
 | |
| *
 | |
| *              Apply the transformation as a rank-2 update:
 | |
| *                 A := A - v * w**H - w * v**H
 | |
| *
 | |
|                CALL ZHER2( UPLO, N-I, -ONE, A( I+1, I ), 1, TAU( I ), 1,
 | |
|      $                     A( I+1, I+1 ), LDA )
 | |
| *
 | |
|             ELSE
 | |
|                A( I+1, I+1 ) = DBLE( A( I+1, I+1 ) )
 | |
|             END IF
 | |
|             A( I+1, I ) = E( I )
 | |
|             D( I ) = DBLE( A( I, I ) )
 | |
|             TAU( I ) = TAUI
 | |
|    20    CONTINUE
 | |
|          D( N ) = DBLE( A( N, N ) )
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZHETD2
 | |
| *
 | |
|       END
 |