1140 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1140 lines
		
	
	
		
			33 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static doublecomplex c_b2 = {1.,0.};
 | |
| static doublereal c_b16 = 1.;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief <b> ZHBEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER 
 | |
| matrices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZHBEVX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zhbevx.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zhbevx.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zhbevx.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZHBEVX( JOBZ, RANGE, UPLO, N, KD, AB, LDAB, Q, LDQ, VL, */
 | |
| /*                          VU, IL, IU, ABSTOL, M, W, Z, LDZ, WORK, RWORK, */
 | |
| /*                          IWORK, IFAIL, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBZ, RANGE, UPLO */
 | |
| /*       INTEGER            IL, INFO, IU, KD, LDAB, LDQ, LDZ, M, N */
 | |
| /*       DOUBLE PRECISION   ABSTOL, VL, VU */
 | |
| /*       INTEGER            IFAIL( * ), IWORK( * ) */
 | |
| /*       DOUBLE PRECISION   RWORK( * ), W( * ) */
 | |
| /*       COMPLEX*16         AB( LDAB, * ), Q( LDQ, * ), WORK( * ), */
 | |
| /*      $                   Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZHBEVX computes selected eigenvalues and, optionally, eigenvectors */
 | |
| /* > of a complex Hermitian band matrix A.  Eigenvalues and eigenvectors */
 | |
| /* > can be selected by specifying either a range of values or a range of */
 | |
| /* > indices for the desired eigenvalues. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBZ */
 | |
| /* > \verbatim */
 | |
| /* >          JOBZ is CHARACTER*1 */
 | |
| /* >          = 'N':  Compute eigenvalues only; */
 | |
| /* >          = 'V':  Compute eigenvalues and eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RANGE */
 | |
| /* > \verbatim */
 | |
| /* >          RANGE is CHARACTER*1 */
 | |
| /* >          = 'A': all eigenvalues will be found; */
 | |
| /* >          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 | |
| /* >                 will be found; */
 | |
| /* >          = 'I': the IL-th through IU-th eigenvalues will be found. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KD */
 | |
| /* > \verbatim */
 | |
| /* >          KD is INTEGER */
 | |
| /* >          The number of superdiagonals of the matrix A if UPLO = 'U', */
 | |
| /* >          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is COMPLEX*16 array, dimension (LDAB, N) */
 | |
| /* >          On entry, the upper or lower triangle of the Hermitian band */
 | |
| /* >          matrix A, stored in the first KD+1 rows of the array.  The */
 | |
| /* >          j-th column of A is stored in the j-th column of the array AB */
 | |
| /* >          as follows: */
 | |
| /* >          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
 | |
| /* >          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=f2cmin(n,j+kd). */
 | |
| /* > */
 | |
| /* >          On exit, AB is overwritten by values generated during the */
 | |
| /* >          reduction to tridiagonal form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array AB.  LDAB >= KD + 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is COMPLEX*16 array, dimension (LDQ, N) */
 | |
| /* >          If JOBZ = 'V', the N-by-N unitary matrix used in the */
 | |
| /* >                          reduction to tridiagonal form. */
 | |
| /* >          If JOBZ = 'N', the array Q is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q.  If JOBZ = 'V', then */
 | |
| /* >          LDQ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is DOUBLE PRECISION */
 | |
| /* >          If RANGE='V', the lower bound of the interval to */
 | |
| /* >          be searched for eigenvalues. VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VU */
 | |
| /* > \verbatim */
 | |
| /* >          VU is DOUBLE PRECISION */
 | |
| /* >          If RANGE='V', the upper bound of the interval to */
 | |
| /* >          be searched for eigenvalues. VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IL */
 | |
| /* > \verbatim */
 | |
| /* >          IL is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          smallest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IU */
 | |
| /* > \verbatim */
 | |
| /* >          IU is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          largest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ABSTOL */
 | |
| /* > \verbatim */
 | |
| /* >          ABSTOL is DOUBLE PRECISION */
 | |
| /* >          The absolute error tolerance for the eigenvalues. */
 | |
| /* >          An approximate eigenvalue is accepted as converged */
 | |
| /* >          when it is determined to lie in an interval [a,b] */
 | |
| /* >          of width less than or equal to */
 | |
| /* > */
 | |
| /* >                  ABSTOL + EPS *   f2cmax( |a|,|b| ) , */
 | |
| /* > */
 | |
| /* >          where EPS is the machine precision.  If ABSTOL is less than */
 | |
| /* >          or equal to zero, then  EPS*|T|  will be used in its place, */
 | |
| /* >          where |T| is the 1-norm of the tridiagonal matrix obtained */
 | |
| /* >          by reducing AB to tridiagonal form. */
 | |
| /* > */
 | |
| /* >          Eigenvalues will be computed most accurately when ABSTOL is */
 | |
| /* >          set to twice the underflow threshold 2*DLAMCH('S'), not zero. */
 | |
| /* >          If this routine returns with INFO>0, indicating that some */
 | |
| /* >          eigenvectors did not converge, try setting ABSTOL to */
 | |
| /* >          2*DLAMCH('S'). */
 | |
| /* > */
 | |
| /* >          See "Computing Small Singular Values of Bidiagonal Matrices */
 | |
| /* >          with Guaranteed High Relative Accuracy," by Demmel and */
 | |
| /* >          Kahan, LAPACK Working Note #3. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The total number of eigenvalues found.  0 <= M <= N. */
 | |
| /* >          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          The first M elements contain the selected eigenvalues in */
 | |
| /* >          ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is COMPLEX*16 array, dimension (LDZ, f2cmax(1,M)) */
 | |
| /* >          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
 | |
| /* >          contain the orthonormal eigenvectors of the matrix A */
 | |
| /* >          corresponding to the selected eigenvalues, with the i-th */
 | |
| /* >          column of Z holding the eigenvector associated with W(i). */
 | |
| /* >          If an eigenvector fails to converge, then that column of Z */
 | |
| /* >          contains the latest approximation to the eigenvector, and the */
 | |
| /* >          index of the eigenvector is returned in IFAIL. */
 | |
| /* >          If JOBZ = 'N', then Z is not referenced. */
 | |
| /* >          Note: the user must ensure that at least f2cmax(1,M) columns are */
 | |
| /* >          supplied in the array Z; if RANGE = 'V', the exact value of M */
 | |
| /* >          is not known in advance and an upper bound must be used. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z.  LDZ >= 1, and if */
 | |
| /* >          JOBZ = 'V', LDZ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension (7*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (5*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IFAIL */
 | |
| /* > \verbatim */
 | |
| /* >          IFAIL is INTEGER array, dimension (N) */
 | |
| /* >          If JOBZ = 'V', then if INFO = 0, the first M elements of */
 | |
| /* >          IFAIL are zero.  If INFO > 0, then IFAIL contains the */
 | |
| /* >          indices of the eigenvectors that failed to converge. */
 | |
| /* >          If JOBZ = 'N', then IFAIL is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0:  if INFO = i, then i eigenvectors failed to converge. */
 | |
| /* >                Their indices are stored in array IFAIL. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup complex16OTHEReigen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zhbevx_(char *jobz, char *range, char *uplo, integer *n, 
 | |
| 	integer *kd, doublecomplex *ab, integer *ldab, doublecomplex *q, 
 | |
| 	integer *ldq, doublereal *vl, doublereal *vu, integer *il, integer *
 | |
| 	iu, doublereal *abstol, integer *m, doublereal *w, doublecomplex *z__,
 | |
| 	 integer *ldz, doublecomplex *work, doublereal *rwork, integer *iwork,
 | |
| 	 integer *ifail, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, q_dim1, q_offset, z_dim1, z_offset, i__1, 
 | |
| 	    i__2;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer indd, inde;
 | |
|     doublereal anrm;
 | |
|     integer imax;
 | |
|     doublereal rmin, rmax;
 | |
|     logical test;
 | |
|     doublecomplex ctmp1;
 | |
|     integer itmp1, i__, j, indee;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal sigma;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo;
 | |
|     char order[1];
 | |
|     extern /* Subroutine */ void dcopy_(integer *, doublereal *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     logical lower;
 | |
|     extern /* Subroutine */ void zgemv_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, integer *);
 | |
|     logical wantz;
 | |
|     extern /* Subroutine */ void zcopy_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *), zswap_(integer *, doublecomplex *, 
 | |
| 	    integer *, doublecomplex *, integer *);
 | |
|     integer jj;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     logical alleig, indeig;
 | |
|     integer iscale, indibl;
 | |
|     logical valeig;
 | |
|     doublereal safmin;
 | |
|     extern doublereal zlanhb_(char *, char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     doublereal abstll, bignum;
 | |
|     integer indiwk, indisp;
 | |
|     extern /* Subroutine */ void dsterf_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *), zlascl_(char *, integer *, integer *, doublereal *, 
 | |
| 	    doublereal *, integer *, integer *, doublecomplex *, integer *, 
 | |
| 	    integer *), dstebz_(char *, char *, integer *, doublereal 
 | |
| 	    *, doublereal *, integer *, integer *, doublereal *, doublereal *,
 | |
| 	     doublereal *, integer *, integer *, doublereal *, integer *, 
 | |
| 	    integer *, doublereal *, integer *, integer *), 
 | |
| 	    zhbtrd_(char *, char *, integer *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublereal *, doublereal *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *);
 | |
|     integer indrwk, indwrk;
 | |
|     extern /* Subroutine */ void zlacpy_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *);
 | |
|     integer nsplit;
 | |
|     doublereal smlnum;
 | |
|     extern /* Subroutine */ void zstein_(integer *, doublereal *, doublereal *,
 | |
| 	     integer *, doublereal *, integer *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublereal *, integer *, integer *, integer *), 
 | |
| 	    zsteqr_(char *, integer *, doublereal *, doublereal *, 
 | |
| 	    doublecomplex *, integer *, doublereal *, integer *);
 | |
|     doublereal eps, vll, vuu, tmp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     --w;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --work;
 | |
|     --rwork;
 | |
|     --iwork;
 | |
|     --ifail;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantz = lsame_(jobz, "V");
 | |
|     alleig = lsame_(range, "A");
 | |
|     valeig = lsame_(range, "V");
 | |
|     indeig = lsame_(range, "I");
 | |
|     lower = lsame_(uplo, "L");
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! (wantz || lsame_(jobz, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (alleig || valeig || indeig)) {
 | |
| 	*info = -2;
 | |
|     } else if (! (lower || lsame_(uplo, "U"))) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*kd < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldab < *kd + 1) {
 | |
| 	*info = -7;
 | |
|     } else if (wantz && *ldq < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else {
 | |
| 	if (valeig) {
 | |
| 	    if (*n > 0 && *vu <= *vl) {
 | |
| 		*info = -11;
 | |
| 	    }
 | |
| 	} else if (indeig) {
 | |
| 	    if (*il < 1 || *il > f2cmax(1,*n)) {
 | |
| 		*info = -12;
 | |
| 	    } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
 | |
| 		*info = -13;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     if (*info == 0) {
 | |
| 	if (*ldz < 1 || wantz && *ldz < *n) {
 | |
| 	    *info = -18;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZHBEVX", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     *m = 0;
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	*m = 1;
 | |
| 	if (lower) {
 | |
| 	    i__1 = ab_dim1 + 1;
 | |
| 	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
 | |
| 	} else {
 | |
| 	    i__1 = *kd + 1 + ab_dim1;
 | |
| 	    ctmp1.r = ab[i__1].r, ctmp1.i = ab[i__1].i;
 | |
| 	}
 | |
| 	tmp1 = ctmp1.r;
 | |
| 	if (valeig) {
 | |
| 	    if (! (*vl < tmp1 && *vu >= tmp1)) {
 | |
| 		*m = 0;
 | |
| 	    }
 | |
| 	}
 | |
| 	if (*m == 1) {
 | |
| 	    w[1] = ctmp1.r;
 | |
| 	    if (wantz) {
 | |
| 		i__1 = z_dim1 + 1;
 | |
| 		z__[i__1].r = 1., z__[i__1].i = 0.;
 | |
| 	    }
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants. */
 | |
| 
 | |
|     safmin = dlamch_("Safe minimum");
 | |
|     eps = dlamch_("Precision");
 | |
|     smlnum = safmin / eps;
 | |
|     bignum = 1. / smlnum;
 | |
|     rmin = sqrt(smlnum);
 | |
| /* Computing MIN */
 | |
|     d__1 = sqrt(bignum), d__2 = 1. / sqrt(sqrt(safmin));
 | |
|     rmax = f2cmin(d__1,d__2);
 | |
| 
 | |
| /*     Scale matrix to allowable range, if necessary. */
 | |
| 
 | |
|     iscale = 0;
 | |
|     abstll = *abstol;
 | |
|     if (valeig) {
 | |
| 	vll = *vl;
 | |
| 	vuu = *vu;
 | |
|     } else {
 | |
| 	vll = 0.;
 | |
| 	vuu = 0.;
 | |
|     }
 | |
|     anrm = zlanhb_("M", uplo, n, kd, &ab[ab_offset], ldab, &rwork[1]);
 | |
|     if (anrm > 0. && anrm < rmin) {
 | |
| 	iscale = 1;
 | |
| 	sigma = rmin / anrm;
 | |
|     } else if (anrm > rmax) {
 | |
| 	iscale = 1;
 | |
| 	sigma = rmax / anrm;
 | |
|     }
 | |
|     if (iscale == 1) {
 | |
| 	if (lower) {
 | |
| 	    zlascl_("B", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab, 
 | |
| 		    info);
 | |
| 	} else {
 | |
| 	    zlascl_("Q", kd, kd, &c_b16, &sigma, n, n, &ab[ab_offset], ldab, 
 | |
| 		    info);
 | |
| 	}
 | |
| 	if (*abstol > 0.) {
 | |
| 	    abstll = *abstol * sigma;
 | |
| 	}
 | |
| 	if (valeig) {
 | |
| 	    vll = *vl * sigma;
 | |
| 	    vuu = *vu * sigma;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Call ZHBTRD to reduce Hermitian band matrix to tridiagonal form. */
 | |
| 
 | |
|     indd = 1;
 | |
|     inde = indd + *n;
 | |
|     indrwk = inde + *n;
 | |
|     indwrk = 1;
 | |
|     zhbtrd_(jobz, uplo, n, kd, &ab[ab_offset], ldab, &rwork[indd], &rwork[
 | |
| 	    inde], &q[q_offset], ldq, &work[indwrk], &iinfo);
 | |
| 
 | |
| /*     If all eigenvalues are desired and ABSTOL is less than or equal */
 | |
| /*     to zero, then call DSTERF or ZSTEQR.  If this fails for some */
 | |
| /*     eigenvalue, then try DSTEBZ. */
 | |
| 
 | |
|     test = FALSE_;
 | |
|     if (indeig) {
 | |
| 	if (*il == 1 && *iu == *n) {
 | |
| 	    test = TRUE_;
 | |
| 	}
 | |
|     }
 | |
|     if ((alleig || test) && *abstol <= 0.) {
 | |
| 	dcopy_(n, &rwork[indd], &c__1, &w[1], &c__1);
 | |
| 	indee = indrwk + (*n << 1);
 | |
| 	if (! wantz) {
 | |
| 	    i__1 = *n - 1;
 | |
| 	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
 | |
| 	    dsterf_(n, &w[1], &rwork[indee], info);
 | |
| 	} else {
 | |
| 	    zlacpy_("A", n, n, &q[q_offset], ldq, &z__[z_offset], ldz);
 | |
| 	    i__1 = *n - 1;
 | |
| 	    dcopy_(&i__1, &rwork[inde], &c__1, &rwork[indee], &c__1);
 | |
| 	    zsteqr_(jobz, n, &w[1], &rwork[indee], &z__[z_offset], ldz, &
 | |
| 		    rwork[indrwk], info);
 | |
| 	    if (*info == 0) {
 | |
| 		i__1 = *n;
 | |
| 		for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		    ifail[i__] = 0;
 | |
| /* L10: */
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	if (*info == 0) {
 | |
| 	    *m = *n;
 | |
| 	    goto L30;
 | |
| 	}
 | |
| 	*info = 0;
 | |
|     }
 | |
| 
 | |
| /*     Otherwise, call DSTEBZ and, if eigenvectors are desired, ZSTEIN. */
 | |
| 
 | |
|     if (wantz) {
 | |
| 	*(unsigned char *)order = 'B';
 | |
|     } else {
 | |
| 	*(unsigned char *)order = 'E';
 | |
|     }
 | |
|     indibl = 1;
 | |
|     indisp = indibl + *n;
 | |
|     indiwk = indisp + *n;
 | |
|     dstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &rwork[indd], &
 | |
| 	    rwork[inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &
 | |
| 	    rwork[indrwk], &iwork[indiwk], info);
 | |
| 
 | |
|     if (wantz) {
 | |
| 	zstein_(n, &rwork[indd], &rwork[inde], m, &w[1], &iwork[indibl], &
 | |
| 		iwork[indisp], &z__[z_offset], ldz, &rwork[indrwk], &iwork[
 | |
| 		indiwk], &ifail[1], info);
 | |
| 
 | |
| /*        Apply unitary matrix used in reduction to tridiagonal */
 | |
| /*        form to eigenvectors returned by ZSTEIN. */
 | |
| 
 | |
| 	i__1 = *m;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    zcopy_(n, &z__[j * z_dim1 + 1], &c__1, &work[1], &c__1);
 | |
| 	    zgemv_("N", n, n, &c_b2, &q[q_offset], ldq, &work[1], &c__1, &
 | |
| 		    c_b1, &z__[j * z_dim1 + 1], &c__1);
 | |
| /* L20: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 | |
| 
 | |
| L30:
 | |
|     if (iscale == 1) {
 | |
| 	if (*info == 0) {
 | |
| 	    imax = *m;
 | |
| 	} else {
 | |
| 	    imax = *info - 1;
 | |
| 	}
 | |
| 	d__1 = 1. / sigma;
 | |
| 	dscal_(&imax, &d__1, &w[1], &c__1);
 | |
|     }
 | |
| 
 | |
| /*     If eigenvalues are not in order, then sort them, along with */
 | |
| /*     eigenvectors. */
 | |
| 
 | |
|     if (wantz) {
 | |
| 	i__1 = *m - 1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__ = 0;
 | |
| 	    tmp1 = w[j];
 | |
| 	    i__2 = *m;
 | |
| 	    for (jj = j + 1; jj <= i__2; ++jj) {
 | |
| 		if (w[jj] < tmp1) {
 | |
| 		    i__ = jj;
 | |
| 		    tmp1 = w[jj];
 | |
| 		}
 | |
| /* L40: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (i__ != 0) {
 | |
| 		itmp1 = iwork[indibl + i__ - 1];
 | |
| 		w[i__] = w[j];
 | |
| 		iwork[indibl + i__ - 1] = iwork[indibl + j - 1];
 | |
| 		w[j] = tmp1;
 | |
| 		iwork[indibl + j - 1] = itmp1;
 | |
| 		zswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
 | |
| 			 &c__1);
 | |
| 		if (*info != 0) {
 | |
| 		    itmp1 = ifail[i__];
 | |
| 		    ifail[i__] = ifail[j];
 | |
| 		    ifail[j] = itmp1;
 | |
| 		}
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZHBEVX */
 | |
| 
 | |
| } /* zhbevx_ */
 | |
| 
 |