1223 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1223 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static doublereal c_b36 = 10.;
 | |
| static doublereal c_b72 = .5;
 | |
| 
 | |
| /* > \brief \b ZGGBAL */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZGGBAL + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zggbal.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zggbal.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zggbal.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZGGBAL( JOB, N, A, LDA, B, LDB, ILO, IHI, LSCALE, */
 | |
| /*                          RSCALE, WORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOB */
 | |
| /*       INTEGER            IHI, ILO, INFO, LDA, LDB, N */
 | |
| /*       DOUBLE PRECISION   LSCALE( * ), RSCALE( * ), WORK( * ) */
 | |
| /*       COMPLEX*16         A( LDA, * ), B( LDB, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZGGBAL balances a pair of general complex matrices (A,B).  This */
 | |
| /* > involves, first, permuting A and B by similarity transformations to */
 | |
| /* > isolate eigenvalues in the first 1 to ILO$-$1 and last IHI+1 to N */
 | |
| /* > elements on the diagonal; and second, applying a diagonal similarity */
 | |
| /* > transformation to rows and columns ILO to IHI to make the rows */
 | |
| /* > and columns as close in norm as possible. Both steps are optional. */
 | |
| /* > */
 | |
| /* > Balancing may reduce the 1-norm of the matrices, and improve the */
 | |
| /* > accuracy of the computed eigenvalues and/or eigenvectors in the */
 | |
| /* > generalized eigenvalue problem A*x = lambda*B*x. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOB */
 | |
| /* > \verbatim */
 | |
| /* >          JOB is CHARACTER*1 */
 | |
| /* >          Specifies the operations to be performed on A and B: */
 | |
| /* >          = 'N':  none:  simply set ILO = 1, IHI = N, LSCALE(I) = 1.0 */
 | |
| /* >                  and RSCALE(I) = 1.0 for i=1,...,N; */
 | |
| /* >          = 'P':  permute only; */
 | |
| /* >          = 'S':  scale only; */
 | |
| /* >          = 'B':  both permute and scale. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A and B.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, dimension (LDA,N) */
 | |
| /* >          On entry, the input matrix A. */
 | |
| /* >          On exit, A is overwritten by the balanced matrix. */
 | |
| /* >          If JOB = 'N', A is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension (LDB,N) */
 | |
| /* >          On entry, the input matrix B. */
 | |
| /* >          On exit, B is overwritten by the balanced matrix. */
 | |
| /* >          If JOB = 'N', B is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* >          ILO and IHI are set to integers such that on exit */
 | |
| /* >          A(i,j) = 0 and B(i,j) = 0 if i > j and */
 | |
| /* >          j = 1,...,ILO-1 or i = IHI+1,...,N. */
 | |
| /* >          If JOB = 'N' or 'S', ILO = 1 and IHI = N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] LSCALE */
 | |
| /* > \verbatim */
 | |
| /* >          LSCALE is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          Details of the permutations and scaling factors applied */
 | |
| /* >          to the left side of A and B.  If P(j) is the index of the */
 | |
| /* >          row interchanged with row j, and D(j) is the scaling factor */
 | |
| /* >          applied to row j, then */
 | |
| /* >            LSCALE(j) = P(j)    for J = 1,...,ILO-1 */
 | |
| /* >                      = D(j)    for J = ILO,...,IHI */
 | |
| /* >                      = P(j)    for J = IHI+1,...,N. */
 | |
| /* >          The order in which the interchanges are made is N to IHI+1, */
 | |
| /* >          then 1 to ILO-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RSCALE */
 | |
| /* > \verbatim */
 | |
| /* >          RSCALE is DOUBLE PRECISION array, dimension (N) */
 | |
| /* >          Details of the permutations and scaling factors applied */
 | |
| /* >          to the right side of A and B.  If P(j) is the index of the */
 | |
| /* >          column interchanged with column j, and D(j) is the scaling */
 | |
| /* >          factor applied to column j, then */
 | |
| /* >            RSCALE(j) = P(j)    for J = 1,...,ILO-1 */
 | |
| /* >                      = D(j)    for J = ILO,...,IHI */
 | |
| /* >                      = P(j)    for J = IHI+1,...,N. */
 | |
| /* >          The order in which the interchanges are made is N to IHI+1, */
 | |
| /* >          then 1 to ILO-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is DOUBLE PRECISION array, dimension (lwork) */
 | |
| /* >          lwork must be at least f2cmax(1,6*N) when JOB = 'S' or 'B', and */
 | |
| /* >          at least 1 when JOB = 'N' or 'P'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup complex16GBcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  See R.C. WARD, Balancing the generalized eigenvalue problem, */
 | |
| /* >                 SIAM J. Sci. Stat. Comp. 2 (1981), 141-152. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zggbal_(char *job, integer *n, doublecomplex *a, integer 
 | |
| 	*lda, doublecomplex *b, integer *ldb, integer *ilo, integer *ihi, 
 | |
| 	doublereal *lscale, doublereal *rscale, doublereal *work, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
 | |
|     doublereal d__1, d__2, d__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer lcab;
 | |
|     doublereal beta, coef;
 | |
|     integer irab, lrab;
 | |
|     doublereal basl, cmax;
 | |
|     extern doublereal ddot_(integer *, doublereal *, integer *, doublereal *, 
 | |
| 	    integer *);
 | |
|     doublereal coef2, coef5;
 | |
|     integer i__, j, k, l, m;
 | |
|     doublereal gamma, t, alpha;
 | |
|     extern /* Subroutine */ void dscal_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *);
 | |
|     extern logical lsame_(char *, char *);
 | |
|     doublereal sfmin, sfmax;
 | |
|     integer iflow;
 | |
|     extern /* Subroutine */ void daxpy_(integer *, doublereal *, doublereal *, 
 | |
| 	    integer *, doublereal *, integer *);
 | |
|     integer kount;
 | |
|     extern /* Subroutine */ void zswap_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     integer jc;
 | |
|     doublereal ta, tb, tc;
 | |
|     extern doublereal dlamch_(char *);
 | |
|     integer ir, it;
 | |
|     doublereal ew;
 | |
|     integer nr;
 | |
|     doublereal pgamma;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void zdscal_(
 | |
| 	    integer *, doublereal *, doublecomplex *, integer *);
 | |
|     integer lsfmin;
 | |
|     extern integer izamax_(integer *, doublecomplex *, integer *);
 | |
|     integer lsfmax, ip1, jp1, lm1;
 | |
|     doublereal cab, rab, ewc, cor, sum;
 | |
|     integer nrp2, icab;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --lscale;
 | |
|     --rscale;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     if (! lsame_(job, "N") && ! lsame_(job, "P") && ! lsame_(job, "S") 
 | |
| 	    && ! lsame_(job, "B")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZGGBAL", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	*ilo = 1;
 | |
| 	*ihi = *n;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	*ilo = 1;
 | |
| 	*ihi = *n;
 | |
| 	lscale[1] = 1.;
 | |
| 	rscale[1] = 1.;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(job, "N")) {
 | |
| 	*ilo = 1;
 | |
| 	*ihi = *n;
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    lscale[i__] = 1.;
 | |
| 	    rscale[i__] = 1.;
 | |
| /* L10: */
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     k = 1;
 | |
|     l = *n;
 | |
|     if (lsame_(job, "S")) {
 | |
| 	goto L190;
 | |
|     }
 | |
| 
 | |
|     goto L30;
 | |
| 
 | |
| /*     Permute the matrices A and B to isolate the eigenvalues. */
 | |
| 
 | |
| /*     Find row with one nonzero in columns 1 through L */
 | |
| 
 | |
| L20:
 | |
|     l = lm1;
 | |
|     if (l != 1) {
 | |
| 	goto L30;
 | |
|     }
 | |
| 
 | |
|     rscale[1] = 1.;
 | |
|     lscale[1] = 1.;
 | |
|     goto L190;
 | |
| 
 | |
| L30:
 | |
|     lm1 = l - 1;
 | |
|     for (i__ = l; i__ >= 1; --i__) {
 | |
| 	i__1 = lm1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    jp1 = j + 1;
 | |
| 	    i__2 = i__ + j * a_dim1;
 | |
| 	    i__3 = i__ + j * b_dim1;
 | |
| 	    if (a[i__2].r != 0. || a[i__2].i != 0. || (b[i__3].r != 0. || b[
 | |
| 		    i__3].i != 0.)) {
 | |
| 		goto L50;
 | |
| 	    }
 | |
| /* L40: */
 | |
| 	}
 | |
| 	j = l;
 | |
| 	goto L70;
 | |
| 
 | |
| L50:
 | |
| 	i__1 = l;
 | |
| 	for (j = jp1; j <= i__1; ++j) {
 | |
| 	    i__2 = i__ + j * a_dim1;
 | |
| 	    i__3 = i__ + j * b_dim1;
 | |
| 	    if (a[i__2].r != 0. || a[i__2].i != 0. || (b[i__3].r != 0. || b[
 | |
| 		    i__3].i != 0.)) {
 | |
| 		goto L80;
 | |
| 	    }
 | |
| /* L60: */
 | |
| 	}
 | |
| 	j = jp1 - 1;
 | |
| 
 | |
| L70:
 | |
| 	m = l;
 | |
| 	iflow = 1;
 | |
| 	goto L160;
 | |
| L80:
 | |
| 	;
 | |
|     }
 | |
|     goto L100;
 | |
| 
 | |
| /*     Find column with one nonzero in rows K through N */
 | |
| 
 | |
| L90:
 | |
|     ++k;
 | |
| 
 | |
| L100:
 | |
|     i__1 = l;
 | |
|     for (j = k; j <= i__1; ++j) {
 | |
| 	i__2 = lm1;
 | |
| 	for (i__ = k; i__ <= i__2; ++i__) {
 | |
| 	    ip1 = i__ + 1;
 | |
| 	    i__3 = i__ + j * a_dim1;
 | |
| 	    i__4 = i__ + j * b_dim1;
 | |
| 	    if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r != 0. || b[
 | |
| 		    i__4].i != 0.)) {
 | |
| 		goto L120;
 | |
| 	    }
 | |
| /* L110: */
 | |
| 	}
 | |
| 	i__ = l;
 | |
| 	goto L140;
 | |
| L120:
 | |
| 	i__2 = l;
 | |
| 	for (i__ = ip1; i__ <= i__2; ++i__) {
 | |
| 	    i__3 = i__ + j * a_dim1;
 | |
| 	    i__4 = i__ + j * b_dim1;
 | |
| 	    if (a[i__3].r != 0. || a[i__3].i != 0. || (b[i__4].r != 0. || b[
 | |
| 		    i__4].i != 0.)) {
 | |
| 		goto L150;
 | |
| 	    }
 | |
| /* L130: */
 | |
| 	}
 | |
| 	i__ = ip1 - 1;
 | |
| L140:
 | |
| 	m = k;
 | |
| 	iflow = 2;
 | |
| 	goto L160;
 | |
| L150:
 | |
| 	;
 | |
|     }
 | |
|     goto L190;
 | |
| 
 | |
| /*     Permute rows M and I */
 | |
| 
 | |
| L160:
 | |
|     lscale[m] = (doublereal) i__;
 | |
|     if (i__ == m) {
 | |
| 	goto L170;
 | |
|     }
 | |
|     i__1 = *n - k + 1;
 | |
|     zswap_(&i__1, &a[i__ + k * a_dim1], lda, &a[m + k * a_dim1], lda);
 | |
|     i__1 = *n - k + 1;
 | |
|     zswap_(&i__1, &b[i__ + k * b_dim1], ldb, &b[m + k * b_dim1], ldb);
 | |
| 
 | |
| /*     Permute columns M and J */
 | |
| 
 | |
| L170:
 | |
|     rscale[m] = (doublereal) j;
 | |
|     if (j == m) {
 | |
| 	goto L180;
 | |
|     }
 | |
|     zswap_(&l, &a[j * a_dim1 + 1], &c__1, &a[m * a_dim1 + 1], &c__1);
 | |
|     zswap_(&l, &b[j * b_dim1 + 1], &c__1, &b[m * b_dim1 + 1], &c__1);
 | |
| 
 | |
| L180:
 | |
|     switch (iflow) {
 | |
| 	case 1:  goto L20;
 | |
| 	case 2:  goto L90;
 | |
|     }
 | |
| 
 | |
| L190:
 | |
|     *ilo = k;
 | |
|     *ihi = l;
 | |
| 
 | |
|     if (lsame_(job, "P")) {
 | |
| 	i__1 = *ihi;
 | |
| 	for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	    lscale[i__] = 1.;
 | |
| 	    rscale[i__] = 1.;
 | |
| /* L195: */
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (*ilo == *ihi) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Balance the submatrix in rows ILO to IHI. */
 | |
| 
 | |
|     nr = *ihi - *ilo + 1;
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	rscale[i__] = 0.;
 | |
| 	lscale[i__] = 0.;
 | |
| 
 | |
| 	work[i__] = 0.;
 | |
| 	work[i__ + *n] = 0.;
 | |
| 	work[i__ + (*n << 1)] = 0.;
 | |
| 	work[i__ + *n * 3] = 0.;
 | |
| 	work[i__ + (*n << 2)] = 0.;
 | |
| 	work[i__ + *n * 5] = 0.;
 | |
| /* L200: */
 | |
|     }
 | |
| 
 | |
| /*     Compute right side vector in resulting linear equations */
 | |
| 
 | |
|     basl = d_lg10(&c_b36);
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	i__2 = *ihi;
 | |
| 	for (j = *ilo; j <= i__2; ++j) {
 | |
| 	    i__3 = i__ + j * a_dim1;
 | |
| 	    if (a[i__3].r == 0. && a[i__3].i == 0.) {
 | |
| 		ta = 0.;
 | |
| 		goto L210;
 | |
| 	    }
 | |
| 	    i__3 = i__ + j * a_dim1;
 | |
| 	    d__3 = (d__1 = a[i__3].r, abs(d__1)) + (d__2 = d_imag(&a[i__ + j *
 | |
| 		     a_dim1]), abs(d__2));
 | |
| 	    ta = d_lg10(&d__3) / basl;
 | |
| 
 | |
| L210:
 | |
| 	    i__3 = i__ + j * b_dim1;
 | |
| 	    if (b[i__3].r == 0. && b[i__3].i == 0.) {
 | |
| 		tb = 0.;
 | |
| 		goto L220;
 | |
| 	    }
 | |
| 	    i__3 = i__ + j * b_dim1;
 | |
| 	    d__3 = (d__1 = b[i__3].r, abs(d__1)) + (d__2 = d_imag(&b[i__ + j *
 | |
| 		     b_dim1]), abs(d__2));
 | |
| 	    tb = d_lg10(&d__3) / basl;
 | |
| 
 | |
| L220:
 | |
| 	    work[i__ + (*n << 2)] = work[i__ + (*n << 2)] - ta - tb;
 | |
| 	    work[j + *n * 5] = work[j + *n * 5] - ta - tb;
 | |
| /* L230: */
 | |
| 	}
 | |
| /* L240: */
 | |
|     }
 | |
| 
 | |
|     coef = 1. / (doublereal) (nr << 1);
 | |
|     coef2 = coef * coef;
 | |
|     coef5 = coef2 * .5;
 | |
|     nrp2 = nr + 2;
 | |
|     beta = 0.;
 | |
|     it = 1;
 | |
| 
 | |
| /*     Start generalized conjugate gradient iteration */
 | |
| 
 | |
| L250:
 | |
| 
 | |
|     gamma = ddot_(&nr, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + (*n << 2)]
 | |
| 	    , &c__1) + ddot_(&nr, &work[*ilo + *n * 5], &c__1, &work[*ilo + *
 | |
| 	    n * 5], &c__1);
 | |
| 
 | |
|     ew = 0.;
 | |
|     ewc = 0.;
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	ew += work[i__ + (*n << 2)];
 | |
| 	ewc += work[i__ + *n * 5];
 | |
| /* L260: */
 | |
|     }
 | |
| 
 | |
| /* Computing 2nd power */
 | |
|     d__1 = ew;
 | |
| /* Computing 2nd power */
 | |
|     d__2 = ewc;
 | |
| /* Computing 2nd power */
 | |
|     d__3 = ew - ewc;
 | |
|     gamma = coef * gamma - coef2 * (d__1 * d__1 + d__2 * d__2) - coef5 * (
 | |
| 	    d__3 * d__3);
 | |
|     if (gamma == 0.) {
 | |
| 	goto L350;
 | |
|     }
 | |
|     if (it != 1) {
 | |
| 	beta = gamma / pgamma;
 | |
|     }
 | |
|     t = coef5 * (ewc - ew * 3.);
 | |
|     tc = coef5 * (ew - ewc * 3.);
 | |
| 
 | |
|     dscal_(&nr, &beta, &work[*ilo], &c__1);
 | |
|     dscal_(&nr, &beta, &work[*ilo + *n], &c__1);
 | |
| 
 | |
|     daxpy_(&nr, &coef, &work[*ilo + (*n << 2)], &c__1, &work[*ilo + *n], &
 | |
| 	    c__1);
 | |
|     daxpy_(&nr, &coef, &work[*ilo + *n * 5], &c__1, &work[*ilo], &c__1);
 | |
| 
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	work[i__] += tc;
 | |
| 	work[i__ + *n] += t;
 | |
| /* L270: */
 | |
|     }
 | |
| 
 | |
| /*     Apply matrix to vector */
 | |
| 
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	kount = 0;
 | |
| 	sum = 0.;
 | |
| 	i__2 = *ihi;
 | |
| 	for (j = *ilo; j <= i__2; ++j) {
 | |
| 	    i__3 = i__ + j * a_dim1;
 | |
| 	    if (a[i__3].r == 0. && a[i__3].i == 0.) {
 | |
| 		goto L280;
 | |
| 	    }
 | |
| 	    ++kount;
 | |
| 	    sum += work[j];
 | |
| L280:
 | |
| 	    i__3 = i__ + j * b_dim1;
 | |
| 	    if (b[i__3].r == 0. && b[i__3].i == 0.) {
 | |
| 		goto L290;
 | |
| 	    }
 | |
| 	    ++kount;
 | |
| 	    sum += work[j];
 | |
| L290:
 | |
| 	    ;
 | |
| 	}
 | |
| 	work[i__ + (*n << 1)] = (doublereal) kount * work[i__ + *n] + sum;
 | |
| /* L300: */
 | |
|     }
 | |
| 
 | |
|     i__1 = *ihi;
 | |
|     for (j = *ilo; j <= i__1; ++j) {
 | |
| 	kount = 0;
 | |
| 	sum = 0.;
 | |
| 	i__2 = *ihi;
 | |
| 	for (i__ = *ilo; i__ <= i__2; ++i__) {
 | |
| 	    i__3 = i__ + j * a_dim1;
 | |
| 	    if (a[i__3].r == 0. && a[i__3].i == 0.) {
 | |
| 		goto L310;
 | |
| 	    }
 | |
| 	    ++kount;
 | |
| 	    sum += work[i__ + *n];
 | |
| L310:
 | |
| 	    i__3 = i__ + j * b_dim1;
 | |
| 	    if (b[i__3].r == 0. && b[i__3].i == 0.) {
 | |
| 		goto L320;
 | |
| 	    }
 | |
| 	    ++kount;
 | |
| 	    sum += work[i__ + *n];
 | |
| L320:
 | |
| 	    ;
 | |
| 	}
 | |
| 	work[j + *n * 3] = (doublereal) kount * work[j] + sum;
 | |
| /* L330: */
 | |
|     }
 | |
| 
 | |
|     sum = ddot_(&nr, &work[*ilo + *n], &c__1, &work[*ilo + (*n << 1)], &c__1) 
 | |
| 	    + ddot_(&nr, &work[*ilo], &c__1, &work[*ilo + *n * 3], &c__1);
 | |
|     alpha = gamma / sum;
 | |
| 
 | |
| /*     Determine correction to current iteration */
 | |
| 
 | |
|     cmax = 0.;
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	cor = alpha * work[i__ + *n];
 | |
| 	if (abs(cor) > cmax) {
 | |
| 	    cmax = abs(cor);
 | |
| 	}
 | |
| 	lscale[i__] += cor;
 | |
| 	cor = alpha * work[i__];
 | |
| 	if (abs(cor) > cmax) {
 | |
| 	    cmax = abs(cor);
 | |
| 	}
 | |
| 	rscale[i__] += cor;
 | |
| /* L340: */
 | |
|     }
 | |
|     if (cmax < .5) {
 | |
| 	goto L350;
 | |
|     }
 | |
| 
 | |
|     d__1 = -alpha;
 | |
|     daxpy_(&nr, &d__1, &work[*ilo + (*n << 1)], &c__1, &work[*ilo + (*n << 2)]
 | |
| 	    , &c__1);
 | |
|     d__1 = -alpha;
 | |
|     daxpy_(&nr, &d__1, &work[*ilo + *n * 3], &c__1, &work[*ilo + *n * 5], &
 | |
| 	    c__1);
 | |
| 
 | |
|     pgamma = gamma;
 | |
|     ++it;
 | |
|     if (it <= nrp2) {
 | |
| 	goto L250;
 | |
|     }
 | |
| 
 | |
| /*     End generalized conjugate gradient iteration */
 | |
| 
 | |
| L350:
 | |
|     sfmin = dlamch_("S");
 | |
|     sfmax = 1. / sfmin;
 | |
|     lsfmin = (integer) (d_lg10(&sfmin) / basl + 1.);
 | |
|     lsfmax = (integer) (d_lg10(&sfmax) / basl);
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	i__2 = *n - *ilo + 1;
 | |
| 	irab = izamax_(&i__2, &a[i__ + *ilo * a_dim1], lda);
 | |
| 	rab = z_abs(&a[i__ + (irab + *ilo - 1) * a_dim1]);
 | |
| 	i__2 = *n - *ilo + 1;
 | |
| 	irab = izamax_(&i__2, &b[i__ + *ilo * b_dim1], ldb);
 | |
| /* Computing MAX */
 | |
| 	d__1 = rab, d__2 = z_abs(&b[i__ + (irab + *ilo - 1) * b_dim1]);
 | |
| 	rab = f2cmax(d__1,d__2);
 | |
| 	d__1 = rab + sfmin;
 | |
| 	lrab = (integer) (d_lg10(&d__1) / basl + 1.);
 | |
| 	ir = (integer) (lscale[i__] + d_sign(&c_b72, &lscale[i__]));
 | |
| /* Computing MIN */
 | |
| 	i__2 = f2cmax(ir,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lrab;
 | |
| 	ir = f2cmin(i__2,i__3);
 | |
| 	lscale[i__] = pow_di(&c_b36, &ir);
 | |
| 	icab = izamax_(ihi, &a[i__ * a_dim1 + 1], &c__1);
 | |
| 	cab = z_abs(&a[icab + i__ * a_dim1]);
 | |
| 	icab = izamax_(ihi, &b[i__ * b_dim1 + 1], &c__1);
 | |
| /* Computing MAX */
 | |
| 	d__1 = cab, d__2 = z_abs(&b[icab + i__ * b_dim1]);
 | |
| 	cab = f2cmax(d__1,d__2);
 | |
| 	d__1 = cab + sfmin;
 | |
| 	lcab = (integer) (d_lg10(&d__1) / basl + 1.);
 | |
| 	jc = (integer) (rscale[i__] + d_sign(&c_b72, &rscale[i__]));
 | |
| /* Computing MIN */
 | |
| 	i__2 = f2cmax(jc,lsfmin), i__2 = f2cmin(i__2,lsfmax), i__3 = lsfmax - lcab;
 | |
| 	jc = f2cmin(i__2,i__3);
 | |
| 	rscale[i__] = pow_di(&c_b36, &jc);
 | |
| /* L360: */
 | |
|     }
 | |
| 
 | |
| /*     Row scaling of matrices A and B */
 | |
| 
 | |
|     i__1 = *ihi;
 | |
|     for (i__ = *ilo; i__ <= i__1; ++i__) {
 | |
| 	i__2 = *n - *ilo + 1;
 | |
| 	zdscal_(&i__2, &lscale[i__], &a[i__ + *ilo * a_dim1], lda);
 | |
| 	i__2 = *n - *ilo + 1;
 | |
| 	zdscal_(&i__2, &lscale[i__], &b[i__ + *ilo * b_dim1], ldb);
 | |
| /* L370: */
 | |
|     }
 | |
| 
 | |
| /*     Column scaling of matrices A and B */
 | |
| 
 | |
|     i__1 = *ihi;
 | |
|     for (j = *ilo; j <= i__1; ++j) {
 | |
| 	zdscal_(ihi, &rscale[j], &a[j * a_dim1 + 1], &c__1);
 | |
| 	zdscal_(ihi, &rscale[j], &b[j * b_dim1 + 1], &c__1);
 | |
| /* L380: */
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZGGBAL */
 | |
| 
 | |
| } /* zggbal_ */
 | |
| 
 |