502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			502 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> ZGEEV computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download ZGEEV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgeev.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgeev.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgeev.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
 | |
| *                         WORK, LWORK, RWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBVL, JOBVR
 | |
| *       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   RWORK( * )
 | |
| *       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
| *      $                   W( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> ZGEEV computes for an N-by-N complex nonsymmetric matrix A, the
 | |
| *> eigenvalues and, optionally, the left and/or right eigenvectors.
 | |
| *>
 | |
| *> The right eigenvector v(j) of A satisfies
 | |
| *>                  A * v(j) = lambda(j) * v(j)
 | |
| *> where lambda(j) is its eigenvalue.
 | |
| *> The left eigenvector u(j) of A satisfies
 | |
| *>               u(j)**H * A = lambda(j) * u(j)**H
 | |
| *> where u(j)**H denotes the conjugate transpose of u(j).
 | |
| *>
 | |
| *> The computed eigenvectors are normalized to have Euclidean norm
 | |
| *> equal to 1 and largest component real.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBVL
 | |
| *> \verbatim
 | |
| *>          JOBVL is CHARACTER*1
 | |
| *>          = 'N': left eigenvectors of A are not computed;
 | |
| *>          = 'V': left eigenvectors of are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBVR
 | |
| *> \verbatim
 | |
| *>          JOBVR is CHARACTER*1
 | |
| *>          = 'N': right eigenvectors of A are not computed;
 | |
| *>          = 'V': right eigenvectors of A are computed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is COMPLEX*16 array, dimension (LDA,N)
 | |
| *>          On entry, the N-by-N matrix A.
 | |
| *>          On exit, A has been overwritten.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A.  LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is COMPLEX*16 array, dimension (N)
 | |
| *>          W contains the computed eigenvalues.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VL
 | |
| *> \verbatim
 | |
| *>          VL is COMPLEX*16 array, dimension (LDVL,N)
 | |
| *>          If JOBVL = 'V', the left eigenvectors u(j) are stored one
 | |
| *>          after another in the columns of VL, in the same order
 | |
| *>          as their eigenvalues.
 | |
| *>          If JOBVL = 'N', VL is not referenced.
 | |
| *>          u(j) = VL(:,j), the j-th column of VL.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL.  LDVL >= 1; if
 | |
| *>          JOBVL = 'V', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] VR
 | |
| *> \verbatim
 | |
| *>          VR is COMPLEX*16 array, dimension (LDVR,N)
 | |
| *>          If JOBVR = 'V', the right eigenvectors v(j) are stored one
 | |
| *>          after another in the columns of VR, in the same order
 | |
| *>          as their eigenvalues.
 | |
| *>          If JOBVR = 'N', VR is not referenced.
 | |
| *>          v(j) = VR(:,j), the j-th column of VR.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR.  LDVR >= 1; if
 | |
| *>          JOBVR = 'V', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is COMPLEX*16 array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.  LWORK >= max(1,2*N).
 | |
| *>          For good performance, LWORK must generally be larger.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal size of the WORK array, returns
 | |
| *>          this value as the first entry of the WORK array, and no error
 | |
| *>          message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] RWORK
 | |
| *> \verbatim
 | |
| *>          RWORK is DOUBLE PRECISION array, dimension (2*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *>          > 0:  if INFO = i, the QR algorithm failed to compute all the
 | |
| *>                eigenvalues, and no eigenvectors have been computed;
 | |
| *>                elements i+1:N of W contain eigenvalues which have
 | |
| *>                converged.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *
 | |
| *  @precisions fortran z -> c
 | |
| *
 | |
| *> \ingroup complex16GEeigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE ZGEEV( JOBVL, JOBVR, N, A, LDA, W, VL, LDVL, VR, LDVR,
 | |
|      $                  WORK, LWORK, RWORK, INFO )
 | |
|       implicit none
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBVL, JOBVR
 | |
|       INTEGER            INFO, LDA, LDVL, LDVR, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   RWORK( * )
 | |
|       COMPLEX*16         A( LDA, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
|      $                   W( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0D0, ONE = 1.0D0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, SCALEA, WANTVL, WANTVR
 | |
|       CHARACTER          SIDE
 | |
|       INTEGER            HSWORK, I, IBAL, IERR, IHI, ILO, IRWORK, ITAU,
 | |
|      $                   IWRK, K, LWORK_TREVC, MAXWRK, MINWRK, NOUT
 | |
|       DOUBLE PRECISION   ANRM, BIGNUM, CSCALE, EPS, SCL, SMLNUM
 | |
|       COMPLEX*16         TMP
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       LOGICAL            SELECT( 1 )
 | |
|       DOUBLE PRECISION   DUM( 1 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           DLABAD, XERBLA, ZDSCAL, ZGEBAK, ZGEBAL, ZGEHRD,
 | |
|      $                   ZHSEQR, ZLACPY, ZLASCL, ZSCAL, ZTREVC3, ZUNGHR
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            IDAMAX, ILAENV
 | |
|       DOUBLE PRECISION   DLAMCH, DZNRM2, ZLANGE
 | |
|       EXTERNAL           LSAME, IDAMAX, ILAENV, DLAMCH, DZNRM2, ZLANGE
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          DBLE, DCMPLX, CONJG, AIMAG, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = ( LWORK.EQ.-1 )
 | |
|       WANTVL = LSAME( JOBVL, 'V' )
 | |
|       WANTVR = LSAME( JOBVR, 'V' )
 | |
|       IF( ( .NOT.WANTVL ) .AND. ( .NOT.LSAME( JOBVL, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( ( .NOT.WANTVR ) .AND. ( .NOT.LSAME( JOBVR, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDA.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( WANTVL .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( WANTVR .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *      (Note: Comments in the code beginning "Workspace:" describe the
 | |
| *       minimal amount of workspace needed at that point in the code,
 | |
| *       as well as the preferred amount for good performance.
 | |
| *       CWorkspace refers to complex workspace, and RWorkspace to real
 | |
| *       workspace. NB refers to the optimal block size for the
 | |
| *       immediately following subroutine, as returned by ILAENV.
 | |
| *       HSWORK refers to the workspace preferred by ZHSEQR, as
 | |
| *       calculated below. HSWORK is computed assuming ILO=1 and IHI=N,
 | |
| *       the worst case.)
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.EQ.0 ) THEN
 | |
|             MINWRK = 1
 | |
|             MAXWRK = 1
 | |
|          ELSE
 | |
|             MAXWRK = N + N*ILAENV( 1, 'ZGEHRD', ' ', N, 1, N, 0 )
 | |
|             MINWRK = 2*N
 | |
|             IF( WANTVL ) THEN
 | |
|                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
 | |
|      $                       ' ', N, 1, N, -1 ) )
 | |
|                CALL ZTREVC3( 'L', 'B', SELECT, N, A, LDA,
 | |
|      $                       VL, LDVL, VR, LDVR,
 | |
|      $                       N, NOUT, WORK, -1, RWORK, -1, IERR )
 | |
|                LWORK_TREVC = INT( WORK(1) )
 | |
|                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
 | |
|                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VL, LDVL,
 | |
|      $                      WORK, -1, INFO )
 | |
|             ELSE IF( WANTVR ) THEN
 | |
|                MAXWRK = MAX( MAXWRK, N + ( N - 1 )*ILAENV( 1, 'ZUNGHR',
 | |
|      $                       ' ', N, 1, N, -1 ) )
 | |
|                CALL ZTREVC3( 'R', 'B', SELECT, N, A, LDA,
 | |
|      $                       VL, LDVL, VR, LDVR,
 | |
|      $                       N, NOUT, WORK, -1, RWORK, -1, IERR )
 | |
|                LWORK_TREVC = INT( WORK(1) )
 | |
|                MAXWRK = MAX( MAXWRK, N + LWORK_TREVC )
 | |
|                CALL ZHSEQR( 'S', 'V', N, 1, N, A, LDA, W, VR, LDVR,
 | |
|      $                      WORK, -1, INFO )
 | |
|             ELSE
 | |
|                CALL ZHSEQR( 'E', 'N', N, 1, N, A, LDA, W, VR, LDVR,
 | |
|      $                      WORK, -1, INFO )
 | |
|             END IF
 | |
|             HSWORK = INT( WORK(1) )
 | |
|             MAXWRK = MAX( MAXWRK, HSWORK, MINWRK )
 | |
|          END IF
 | |
|          WORK( 1 ) = MAXWRK
 | |
| *
 | |
|          IF( LWORK.LT.MINWRK .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -12
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'ZGEEV ', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Get machine constants
 | |
| *
 | |
|       EPS = DLAMCH( 'P' )
 | |
|       SMLNUM = DLAMCH( 'S' )
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       CALL DLABAD( SMLNUM, BIGNUM )
 | |
|       SMLNUM = SQRT( SMLNUM ) / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
| *
 | |
| *     Scale A if max element outside range [SMLNUM,BIGNUM]
 | |
| *
 | |
|       ANRM = ZLANGE( 'M', N, N, A, LDA, DUM )
 | |
|       SCALEA = .FALSE.
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.SMLNUM ) THEN
 | |
|          SCALEA = .TRUE.
 | |
|          CSCALE = SMLNUM
 | |
|       ELSE IF( ANRM.GT.BIGNUM ) THEN
 | |
|          SCALEA = .TRUE.
 | |
|          CSCALE = BIGNUM
 | |
|       END IF
 | |
|       IF( SCALEA )
 | |
|      $   CALL ZLASCL( 'G', 0, 0, ANRM, CSCALE, N, N, A, LDA, IERR )
 | |
| *
 | |
| *     Balance the matrix
 | |
| *     (CWorkspace: none)
 | |
| *     (RWorkspace: need N)
 | |
| *
 | |
|       IBAL = 1
 | |
|       CALL ZGEBAL( 'B', N, A, LDA, ILO, IHI, RWORK( IBAL ), IERR )
 | |
| *
 | |
| *     Reduce to upper Hessenberg form
 | |
| *     (CWorkspace: need 2*N, prefer N+N*NB)
 | |
| *     (RWorkspace: none)
 | |
| *
 | |
|       ITAU = 1
 | |
|       IWRK = ITAU + N
 | |
|       CALL ZGEHRD( N, ILO, IHI, A, LDA, WORK( ITAU ), WORK( IWRK ),
 | |
|      $             LWORK-IWRK+1, IERR )
 | |
| *
 | |
|       IF( WANTVL ) THEN
 | |
| *
 | |
| *        Want left eigenvectors
 | |
| *        Copy Householder vectors to VL
 | |
| *
 | |
|          SIDE = 'L'
 | |
|          CALL ZLACPY( 'L', N, N, A, LDA, VL, LDVL )
 | |
| *
 | |
| *        Generate unitary matrix in VL
 | |
| *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL ZUNGHR( N, ILO, IHI, VL, LDVL, WORK( ITAU ), WORK( IWRK ),
 | |
|      $                LWORK-IWRK+1, IERR )
 | |
| *
 | |
| *        Perform QR iteration, accumulating Schur vectors in VL
 | |
| *        (CWorkspace: need 1, prefer HSWORK (see comments) )
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          IWRK = ITAU
 | |
|          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VL, LDVL,
 | |
|      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | |
| *
 | |
|          IF( WANTVR ) THEN
 | |
| *
 | |
| *           Want left and right eigenvectors
 | |
| *           Copy Schur vectors to VR
 | |
| *
 | |
|             SIDE = 'B'
 | |
|             CALL ZLACPY( 'F', N, N, VL, LDVL, VR, LDVR )
 | |
|          END IF
 | |
| *
 | |
|       ELSE IF( WANTVR ) THEN
 | |
| *
 | |
| *        Want right eigenvectors
 | |
| *        Copy Householder vectors to VR
 | |
| *
 | |
|          SIDE = 'R'
 | |
|          CALL ZLACPY( 'L', N, N, A, LDA, VR, LDVR )
 | |
| *
 | |
| *        Generate unitary matrix in VR
 | |
| *        (CWorkspace: need 2*N-1, prefer N+(N-1)*NB)
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          CALL ZUNGHR( N, ILO, IHI, VR, LDVR, WORK( ITAU ), WORK( IWRK ),
 | |
|      $                LWORK-IWRK+1, IERR )
 | |
| *
 | |
| *        Perform QR iteration, accumulating Schur vectors in VR
 | |
| *        (CWorkspace: need 1, prefer HSWORK (see comments) )
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          IWRK = ITAU
 | |
|          CALL ZHSEQR( 'S', 'V', N, ILO, IHI, A, LDA, W, VR, LDVR,
 | |
|      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute eigenvalues only
 | |
| *        (CWorkspace: need 1, prefer HSWORK (see comments) )
 | |
| *        (RWorkspace: none)
 | |
| *
 | |
|          IWRK = ITAU
 | |
|          CALL ZHSEQR( 'E', 'N', N, ILO, IHI, A, LDA, W, VR, LDVR,
 | |
|      $                WORK( IWRK ), LWORK-IWRK+1, INFO )
 | |
|       END IF
 | |
| *
 | |
| *     If INFO .NE. 0 from ZHSEQR, then quit
 | |
| *
 | |
|       IF( INFO.NE.0 )
 | |
|      $   GO TO 50
 | |
| *
 | |
|       IF( WANTVL .OR. WANTVR ) THEN
 | |
| *
 | |
| *        Compute left and/or right eigenvectors
 | |
| *        (CWorkspace: need 2*N, prefer N + 2*N*NB)
 | |
| *        (RWorkspace: need 2*N)
 | |
| *
 | |
|          IRWORK = IBAL + N
 | |
|          CALL ZTREVC3( SIDE, 'B', SELECT, N, A, LDA, VL, LDVL, VR, LDVR,
 | |
|      $                 N, NOUT, WORK( IWRK ), LWORK-IWRK+1,
 | |
|      $                 RWORK( IRWORK ), N, IERR )
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTVL ) THEN
 | |
| *
 | |
| *        Undo balancing of left eigenvectors
 | |
| *        (CWorkspace: none)
 | |
| *        (RWorkspace: need N)
 | |
| *
 | |
|          CALL ZGEBAK( 'B', 'L', N, ILO, IHI, RWORK( IBAL ), N, VL, LDVL,
 | |
|      $                IERR )
 | |
| *
 | |
| *        Normalize left eigenvectors and make largest component real
 | |
| *
 | |
|          DO 20 I = 1, N
 | |
|             SCL = ONE / DZNRM2( N, VL( 1, I ), 1 )
 | |
|             CALL ZDSCAL( N, SCL, VL( 1, I ), 1 )
 | |
|             DO 10 K = 1, N
 | |
|                RWORK( IRWORK+K-1 ) = DBLE( VL( K, I ) )**2 +
 | |
|      $                               AIMAG( VL( K, I ) )**2
 | |
|    10       CONTINUE
 | |
|             K = IDAMAX( N, RWORK( IRWORK ), 1 )
 | |
|             TMP = CONJG( VL( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
 | |
|             CALL ZSCAL( N, TMP, VL( 1, I ), 1 )
 | |
|             VL( K, I ) = DCMPLX( DBLE( VL( K, I ) ), ZERO )
 | |
|    20    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( WANTVR ) THEN
 | |
| *
 | |
| *        Undo balancing of right eigenvectors
 | |
| *        (CWorkspace: none)
 | |
| *        (RWorkspace: need N)
 | |
| *
 | |
|          CALL ZGEBAK( 'B', 'R', N, ILO, IHI, RWORK( IBAL ), N, VR, LDVR,
 | |
|      $                IERR )
 | |
| *
 | |
| *        Normalize right eigenvectors and make largest component real
 | |
| *
 | |
|          DO 40 I = 1, N
 | |
|             SCL = ONE / DZNRM2( N, VR( 1, I ), 1 )
 | |
|             CALL ZDSCAL( N, SCL, VR( 1, I ), 1 )
 | |
|             DO 30 K = 1, N
 | |
|                RWORK( IRWORK+K-1 ) = DBLE( VR( K, I ) )**2 +
 | |
|      $                               AIMAG( VR( K, I ) )**2
 | |
|    30       CONTINUE
 | |
|             K = IDAMAX( N, RWORK( IRWORK ), 1 )
 | |
|             TMP = CONJG( VR( K, I ) ) / SQRT( RWORK( IRWORK+K-1 ) )
 | |
|             CALL ZSCAL( N, TMP, VR( 1, I ), 1 )
 | |
|             VR( K, I ) = DCMPLX( DBLE( VR( K, I ) ), ZERO )
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
| *     Undo scaling if necessary
 | |
| *
 | |
|    50 CONTINUE
 | |
|       IF( SCALEA ) THEN
 | |
|          CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, N-INFO, 1, W( INFO+1 ),
 | |
|      $                MAX( N-INFO, 1 ), IERR )
 | |
|          IF( INFO.GT.0 ) THEN
 | |
|             CALL ZLASCL( 'G', 0, 0, CSCALE, ANRM, ILO-1, 1, W, N, IERR )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = MAXWRK
 | |
|       RETURN
 | |
| *
 | |
| *     End of ZGEEV
 | |
| *
 | |
|       END
 |