1245 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1245 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {0.,0.};
 | |
| static doublecomplex c_b2 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b ZGBBRD */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZGBBRD + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zgbbrd.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zgbbrd.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zgbbrd.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZGBBRD( VECT, M, N, NCC, KL, KU, AB, LDAB, D, E, Q, */
 | |
| /*                          LDQ, PT, LDPT, C, LDC, WORK, RWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          VECT */
 | |
| /*       INTEGER            INFO, KL, KU, LDAB, LDC, LDPT, LDQ, M, N, NCC */
 | |
| /*       DOUBLE PRECISION   D( * ), E( * ), RWORK( * ) */
 | |
| /*       COMPLEX*16         AB( LDAB, * ), C( LDC, * ), PT( LDPT, * ), */
 | |
| /*      $                   Q( LDQ, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZGBBRD reduces a complex general m-by-n band matrix A to real upper */
 | |
| /* > bidiagonal form B by a unitary transformation: Q**H * A * P = B. */
 | |
| /* > */
 | |
| /* > The routine computes B, and optionally forms Q or P**H, or computes */
 | |
| /* > Q**H*C for a given matrix C. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] VECT */
 | |
| /* > \verbatim */
 | |
| /* >          VECT is CHARACTER*1 */
 | |
| /* >          Specifies whether or not the matrices Q and P**H are to be */
 | |
| /* >          formed. */
 | |
| /* >          = 'N': do not form Q or P**H; */
 | |
| /* >          = 'Q': form Q only; */
 | |
| /* >          = 'P': form P**H only; */
 | |
| /* >          = 'B': form both. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NCC */
 | |
| /* > \verbatim */
 | |
| /* >          NCC is INTEGER */
 | |
| /* >          The number of columns of the matrix C.  NCC >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KL */
 | |
| /* > \verbatim */
 | |
| /* >          KL is INTEGER */
 | |
| /* >          The number of subdiagonals of the matrix A. KL >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KU */
 | |
| /* > \verbatim */
 | |
| /* >          KU is INTEGER */
 | |
| /* >          The number of superdiagonals of the matrix A. KU >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is COMPLEX*16 array, dimension (LDAB,N) */
 | |
| /* >          On entry, the m-by-n band matrix A, stored in rows 1 to */
 | |
| /* >          KL+KU+1. The j-th column of A is stored in the j-th column of */
 | |
| /* >          the array AB as follows: */
 | |
| /* >          AB(ku+1+i-j,j) = A(i,j) for f2cmax(1,j-ku)<=i<=f2cmin(m,j+kl). */
 | |
| /* >          On exit, A is overwritten by values generated during the */
 | |
| /* >          reduction. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDAB >= KL+KU+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is DOUBLE PRECISION array, dimension (f2cmin(M,N)) */
 | |
| /* >          The diagonal elements of the bidiagonal matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is DOUBLE PRECISION array, dimension (f2cmin(M,N)-1) */
 | |
| /* >          The superdiagonal elements of the bidiagonal matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is COMPLEX*16 array, dimension (LDQ,M) */
 | |
| /* >          If VECT = 'Q' or 'B', the m-by-m unitary matrix Q. */
 | |
| /* >          If VECT = 'N' or 'P', the array Q is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q. */
 | |
| /* >          LDQ >= f2cmax(1,M) if VECT = 'Q' or 'B'; LDQ >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] PT */
 | |
| /* > \verbatim */
 | |
| /* >          PT is COMPLEX*16 array, dimension (LDPT,N) */
 | |
| /* >          If VECT = 'P' or 'B', the n-by-n unitary matrix P'. */
 | |
| /* >          If VECT = 'N' or 'Q', the array PT is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDPT */
 | |
| /* > \verbatim */
 | |
| /* >          LDPT is INTEGER */
 | |
| /* >          The leading dimension of the array PT. */
 | |
| /* >          LDPT >= f2cmax(1,N) if VECT = 'P' or 'B'; LDPT >= 1 otherwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is COMPLEX*16 array, dimension (LDC,NCC) */
 | |
| /* >          On entry, an m-by-ncc matrix C. */
 | |
| /* >          On exit, C is overwritten by Q**H*C. */
 | |
| /* >          C is not referenced if NCC = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the array C. */
 | |
| /* >          LDC >= f2cmax(1,M) if NCC > 0; LDC >= 1 if NCC = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (f2cmax(M,N)) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension (f2cmax(M,N)) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup complex16GBcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zgbbrd_(char *vect, integer *m, integer *n, integer *ncc,
 | |
| 	 integer *kl, integer *ku, doublecomplex *ab, integer *ldab, 
 | |
| 	doublereal *d__, doublereal *e, doublecomplex *q, integer *ldq, 
 | |
| 	doublecomplex *pt, integer *ldpt, doublecomplex *c__, integer *ldc, 
 | |
| 	doublecomplex *work, doublereal *rwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, c_dim1, c_offset, pt_dim1, pt_offset, q_dim1, 
 | |
| 	    q_offset, i__1, i__2, i__3, i__4, i__5, i__6, i__7;
 | |
|     doublecomplex z__1, z__2, z__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer inca;
 | |
|     doublereal abst;
 | |
|     extern /* Subroutine */ void zrot_(integer *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublereal *, doublecomplex *);
 | |
|     integer i__, j, l;
 | |
|     doublecomplex t;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     logical wantb, wantc;
 | |
|     extern /* Subroutine */ void zscal_(integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *);
 | |
|     integer minmn;
 | |
|     logical wantq;
 | |
|     integer j1, j2, kb;
 | |
|     doublecomplex ra, rb;
 | |
|     doublereal rc;
 | |
|     integer kk, ml, nr, mu;
 | |
|     doublecomplex rs;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     integer kb1;
 | |
|     extern /* Subroutine */ void zlaset_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, doublecomplex *, doublecomplex *, integer *), zlartg_(doublecomplex *, doublecomplex *, doublereal *, 
 | |
| 	    doublecomplex *, doublecomplex *), zlargv_(integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *, 
 | |
| 	    doublereal *, integer *);
 | |
|     integer ml0;
 | |
|     logical wantpt;
 | |
|     integer mu0;
 | |
|     extern /* Subroutine */ void zlartv_(integer *, doublecomplex *, integer *,
 | |
| 	     doublecomplex *, integer *, doublereal *, doublecomplex *, 
 | |
| 	    integer *);
 | |
|     integer klm, kun, nrt, klu1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     --d__;
 | |
|     --e;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     pt_dim1 = *ldpt;
 | |
|     pt_offset = 1 + pt_dim1 * 1;
 | |
|     pt -= pt_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     --work;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     wantb = lsame_(vect, "B");
 | |
|     wantq = lsame_(vect, "Q") || wantb;
 | |
|     wantpt = lsame_(vect, "P") || wantb;
 | |
|     wantc = *ncc > 0;
 | |
|     klu1 = *kl + *ku + 1;
 | |
|     *info = 0;
 | |
|     if (! wantq && ! wantpt && ! lsame_(vect, "N")) {
 | |
| 	*info = -1;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*ncc < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*kl < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*ku < 0) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldab < klu1) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldq < 1 || wantq && *ldq < f2cmax(1,*m)) {
 | |
| 	*info = -12;
 | |
|     } else if (*ldpt < 1 || wantpt && *ldpt < f2cmax(1,*n)) {
 | |
| 	*info = -14;
 | |
|     } else if (*ldc < 1 || wantc && *ldc < f2cmax(1,*m)) {
 | |
| 	*info = -16;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZGBBRD", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize Q and P**H to the unit matrix, if needed */
 | |
| 
 | |
|     if (wantq) {
 | |
| 	zlaset_("Full", m, m, &c_b1, &c_b2, &q[q_offset], ldq);
 | |
|     }
 | |
|     if (wantpt) {
 | |
| 	zlaset_("Full", n, n, &c_b1, &c_b2, &pt[pt_offset], ldpt);
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     minmn = f2cmin(*m,*n);
 | |
| 
 | |
|     if (*kl + *ku > 1) {
 | |
| 
 | |
| /*        Reduce to upper bidiagonal form if KU > 0; if KU = 0, reduce */
 | |
| /*        first to lower bidiagonal form and then transform to upper */
 | |
| /*        bidiagonal */
 | |
| 
 | |
| 	if (*ku > 0) {
 | |
| 	    ml0 = 1;
 | |
| 	    mu0 = 2;
 | |
| 	} else {
 | |
| 	    ml0 = 2;
 | |
| 	    mu0 = 1;
 | |
| 	}
 | |
| 
 | |
| /*        Wherever possible, plane rotations are generated and applied in */
 | |
| /*        vector operations of length NR over the index set J1:J2:KLU1. */
 | |
| 
 | |
| /*        The complex sines of the plane rotations are stored in WORK, */
 | |
| /*        and the real cosines in RWORK. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__1 = *m - 1;
 | |
| 	klm = f2cmin(i__1,*kl);
 | |
| /* Computing MIN */
 | |
| 	i__1 = *n - 1;
 | |
| 	kun = f2cmin(i__1,*ku);
 | |
| 	kb = klm + kun;
 | |
| 	kb1 = kb + 1;
 | |
| 	inca = kb1 * *ldab;
 | |
| 	nr = 0;
 | |
| 	j1 = klm + 2;
 | |
| 	j2 = 1 - kun;
 | |
| 
 | |
| 	i__1 = minmn;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*           Reduce i-th column and i-th row of matrix to bidiagonal form */
 | |
| 
 | |
| 	    ml = klm + 1;
 | |
| 	    mu = kun + 1;
 | |
| 	    i__2 = kb;
 | |
| 	    for (kk = 1; kk <= i__2; ++kk) {
 | |
| 		j1 += kb;
 | |
| 		j2 += kb;
 | |
| 
 | |
| /*              generate plane rotations to annihilate nonzero elements */
 | |
| /*              which have been created below the band */
 | |
| 
 | |
| 		if (nr > 0) {
 | |
| 		    zlargv_(&nr, &ab[klu1 + (j1 - klm - 1) * ab_dim1], &inca, 
 | |
| 			    &work[j1], &kb1, &rwork[j1], &kb1);
 | |
| 		}
 | |
| 
 | |
| /*              apply plane rotations from the left */
 | |
| 
 | |
| 		i__3 = kb;
 | |
| 		for (l = 1; l <= i__3; ++l) {
 | |
| 		    if (j2 - klm + l - 1 > *n) {
 | |
| 			nrt = nr - 1;
 | |
| 		    } else {
 | |
| 			nrt = nr;
 | |
| 		    }
 | |
| 		    if (nrt > 0) {
 | |
| 			zlartv_(&nrt, &ab[klu1 - l + (j1 - klm + l - 1) * 
 | |
| 				ab_dim1], &inca, &ab[klu1 - l + 1 + (j1 - klm 
 | |
| 				+ l - 1) * ab_dim1], &inca, &rwork[j1], &work[
 | |
| 				j1], &kb1);
 | |
| 		    }
 | |
| /* L10: */
 | |
| 		}
 | |
| 
 | |
| 		if (ml > ml0) {
 | |
| 		    if (ml <= *m - i__ + 1) {
 | |
| 
 | |
| /*                    generate plane rotation to annihilate a(i+ml-1,i) */
 | |
| /*                    within the band, and apply rotation from the left */
 | |
| 
 | |
| 			zlartg_(&ab[*ku + ml - 1 + i__ * ab_dim1], &ab[*ku + 
 | |
| 				ml + i__ * ab_dim1], &rwork[i__ + ml - 1], &
 | |
| 				work[i__ + ml - 1], &ra);
 | |
| 			i__3 = *ku + ml - 1 + i__ * ab_dim1;
 | |
| 			ab[i__3].r = ra.r, ab[i__3].i = ra.i;
 | |
| 			if (i__ < *n) {
 | |
| /* Computing MIN */
 | |
| 			    i__4 = *ku + ml - 2, i__5 = *n - i__;
 | |
| 			    i__3 = f2cmin(i__4,i__5);
 | |
| 			    i__6 = *ldab - 1;
 | |
| 			    i__7 = *ldab - 1;
 | |
| 			    zrot_(&i__3, &ab[*ku + ml - 2 + (i__ + 1) * 
 | |
| 				    ab_dim1], &i__6, &ab[*ku + ml - 1 + (i__ 
 | |
| 				    + 1) * ab_dim1], &i__7, &rwork[i__ + ml - 
 | |
| 				    1], &work[i__ + ml - 1]);
 | |
| 			}
 | |
| 		    }
 | |
| 		    ++nr;
 | |
| 		    j1 -= kb1;
 | |
| 		}
 | |
| 
 | |
| 		if (wantq) {
 | |
| 
 | |
| /*                 accumulate product of plane rotations in Q */
 | |
| 
 | |
| 		    i__3 = j2;
 | |
| 		    i__4 = kb1;
 | |
| 		    for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) 
 | |
| 			    {
 | |
| 			d_cnjg(&z__1, &work[j]);
 | |
| 			zrot_(m, &q[(j - 1) * q_dim1 + 1], &c__1, &q[j * 
 | |
| 				q_dim1 + 1], &c__1, &rwork[j], &z__1);
 | |
| /* L20: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (wantc) {
 | |
| 
 | |
| /*                 apply plane rotations to C */
 | |
| 
 | |
| 		    i__4 = j2;
 | |
| 		    i__3 = kb1;
 | |
| 		    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) 
 | |
| 			    {
 | |
| 			zrot_(ncc, &c__[j - 1 + c_dim1], ldc, &c__[j + c_dim1]
 | |
| 				, ldc, &rwork[j], &work[j]);
 | |
| /* L30: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (j2 + kun > *n) {
 | |
| 
 | |
| /*                 adjust J2 to keep within the bounds of the matrix */
 | |
| 
 | |
| 		    --nr;
 | |
| 		    j2 -= kb1;
 | |
| 		}
 | |
| 
 | |
| 		i__3 = j2;
 | |
| 		i__4 = kb1;
 | |
| 		for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 | |
| 
 | |
| /*                 create nonzero element a(j-1,j+ku) above the band */
 | |
| /*                 and store it in WORK(n+1:2*n) */
 | |
| 
 | |
| 		    i__5 = j + kun;
 | |
| 		    i__6 = j;
 | |
| 		    i__7 = (j + kun) * ab_dim1 + 1;
 | |
| 		    z__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
 | |
| 			    i__7].i, z__1.i = work[i__6].r * ab[i__7].i + 
 | |
| 			    work[i__6].i * ab[i__7].r;
 | |
| 		    work[i__5].r = z__1.r, work[i__5].i = z__1.i;
 | |
| 		    i__5 = (j + kun) * ab_dim1 + 1;
 | |
| 		    i__6 = j;
 | |
| 		    i__7 = (j + kun) * ab_dim1 + 1;
 | |
| 		    z__1.r = rwork[i__6] * ab[i__7].r, z__1.i = rwork[i__6] * 
 | |
| 			    ab[i__7].i;
 | |
| 		    ab[i__5].r = z__1.r, ab[i__5].i = z__1.i;
 | |
| /* L40: */
 | |
| 		}
 | |
| 
 | |
| /*              generate plane rotations to annihilate nonzero elements */
 | |
| /*              which have been generated above the band */
 | |
| 
 | |
| 		if (nr > 0) {
 | |
| 		    zlargv_(&nr, &ab[(j1 + kun - 1) * ab_dim1 + 1], &inca, &
 | |
| 			    work[j1 + kun], &kb1, &rwork[j1 + kun], &kb1);
 | |
| 		}
 | |
| 
 | |
| /*              apply plane rotations from the right */
 | |
| 
 | |
| 		i__4 = kb;
 | |
| 		for (l = 1; l <= i__4; ++l) {
 | |
| 		    if (j2 + l - 1 > *m) {
 | |
| 			nrt = nr - 1;
 | |
| 		    } else {
 | |
| 			nrt = nr;
 | |
| 		    }
 | |
| 		    if (nrt > 0) {
 | |
| 			zlartv_(&nrt, &ab[l + 1 + (j1 + kun - 1) * ab_dim1], &
 | |
| 				inca, &ab[l + (j1 + kun) * ab_dim1], &inca, &
 | |
| 				rwork[j1 + kun], &work[j1 + kun], &kb1);
 | |
| 		    }
 | |
| /* L50: */
 | |
| 		}
 | |
| 
 | |
| 		if (ml == ml0 && mu > mu0) {
 | |
| 		    if (mu <= *n - i__ + 1) {
 | |
| 
 | |
| /*                    generate plane rotation to annihilate a(i,i+mu-1) */
 | |
| /*                    within the band, and apply rotation from the right */
 | |
| 
 | |
| 			zlartg_(&ab[*ku - mu + 3 + (i__ + mu - 2) * ab_dim1], 
 | |
| 				&ab[*ku - mu + 2 + (i__ + mu - 1) * ab_dim1], 
 | |
| 				&rwork[i__ + mu - 1], &work[i__ + mu - 1], &
 | |
| 				ra);
 | |
| 			i__4 = *ku - mu + 3 + (i__ + mu - 2) * ab_dim1;
 | |
| 			ab[i__4].r = ra.r, ab[i__4].i = ra.i;
 | |
| /* Computing MIN */
 | |
| 			i__3 = *kl + mu - 2, i__5 = *m - i__;
 | |
| 			i__4 = f2cmin(i__3,i__5);
 | |
| 			zrot_(&i__4, &ab[*ku - mu + 4 + (i__ + mu - 2) * 
 | |
| 				ab_dim1], &c__1, &ab[*ku - mu + 3 + (i__ + mu 
 | |
| 				- 1) * ab_dim1], &c__1, &rwork[i__ + mu - 1], 
 | |
| 				&work[i__ + mu - 1]);
 | |
| 		    }
 | |
| 		    ++nr;
 | |
| 		    j1 -= kb1;
 | |
| 		}
 | |
| 
 | |
| 		if (wantpt) {
 | |
| 
 | |
| /*                 accumulate product of plane rotations in P**H */
 | |
| 
 | |
| 		    i__4 = j2;
 | |
| 		    i__3 = kb1;
 | |
| 		    for (j = j1; i__3 < 0 ? j >= i__4 : j <= i__4; j += i__3) 
 | |
| 			    {
 | |
| 			d_cnjg(&z__1, &work[j + kun]);
 | |
| 			zrot_(n, &pt[j + kun - 1 + pt_dim1], ldpt, &pt[j + 
 | |
| 				kun + pt_dim1], ldpt, &rwork[j + kun], &z__1);
 | |
| /* L60: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (j2 + kb > *m) {
 | |
| 
 | |
| /*                 adjust J2 to keep within the bounds of the matrix */
 | |
| 
 | |
| 		    --nr;
 | |
| 		    j2 -= kb1;
 | |
| 		}
 | |
| 
 | |
| 		i__3 = j2;
 | |
| 		i__4 = kb1;
 | |
| 		for (j = j1; i__4 < 0 ? j >= i__3 : j <= i__3; j += i__4) {
 | |
| 
 | |
| /*                 create nonzero element a(j+kl+ku,j+ku-1) below the */
 | |
| /*                 band and store it in WORK(1:n) */
 | |
| 
 | |
| 		    i__5 = j + kb;
 | |
| 		    i__6 = j + kun;
 | |
| 		    i__7 = klu1 + (j + kun) * ab_dim1;
 | |
| 		    z__1.r = work[i__6].r * ab[i__7].r - work[i__6].i * ab[
 | |
| 			    i__7].i, z__1.i = work[i__6].r * ab[i__7].i + 
 | |
| 			    work[i__6].i * ab[i__7].r;
 | |
| 		    work[i__5].r = z__1.r, work[i__5].i = z__1.i;
 | |
| 		    i__5 = klu1 + (j + kun) * ab_dim1;
 | |
| 		    i__6 = j + kun;
 | |
| 		    i__7 = klu1 + (j + kun) * ab_dim1;
 | |
| 		    z__1.r = rwork[i__6] * ab[i__7].r, z__1.i = rwork[i__6] * 
 | |
| 			    ab[i__7].i;
 | |
| 		    ab[i__5].r = z__1.r, ab[i__5].i = z__1.i;
 | |
| /* L70: */
 | |
| 		}
 | |
| 
 | |
| 		if (ml > ml0) {
 | |
| 		    --ml;
 | |
| 		} else {
 | |
| 		    --mu;
 | |
| 		}
 | |
| /* L80: */
 | |
| 	    }
 | |
| /* L90: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*ku == 0 && *kl > 0) {
 | |
| 
 | |
| /*        A has been reduced to complex lower bidiagonal form */
 | |
| 
 | |
| /*        Transform lower bidiagonal form to upper bidiagonal by applying */
 | |
| /*        plane rotations from the left, overwriting superdiagonal */
 | |
| /*        elements on subdiagonal elements */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__2 = *m - 1;
 | |
| 	i__1 = f2cmin(i__2,*n);
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    zlartg_(&ab[i__ * ab_dim1 + 1], &ab[i__ * ab_dim1 + 2], &rc, &rs, 
 | |
| 		    &ra);
 | |
| 	    i__2 = i__ * ab_dim1 + 1;
 | |
| 	    ab[i__2].r = ra.r, ab[i__2].i = ra.i;
 | |
| 	    if (i__ < *n) {
 | |
| 		i__2 = i__ * ab_dim1 + 2;
 | |
| 		i__4 = (i__ + 1) * ab_dim1 + 1;
 | |
| 		z__1.r = rs.r * ab[i__4].r - rs.i * ab[i__4].i, z__1.i = rs.r 
 | |
| 			* ab[i__4].i + rs.i * ab[i__4].r;
 | |
| 		ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| 		i__2 = (i__ + 1) * ab_dim1 + 1;
 | |
| 		i__4 = (i__ + 1) * ab_dim1 + 1;
 | |
| 		z__1.r = rc * ab[i__4].r, z__1.i = rc * ab[i__4].i;
 | |
| 		ab[i__2].r = z__1.r, ab[i__2].i = z__1.i;
 | |
| 	    }
 | |
| 	    if (wantq) {
 | |
| 		d_cnjg(&z__1, &rs);
 | |
| 		zrot_(m, &q[i__ * q_dim1 + 1], &c__1, &q[(i__ + 1) * q_dim1 + 
 | |
| 			1], &c__1, &rc, &z__1);
 | |
| 	    }
 | |
| 	    if (wantc) {
 | |
| 		zrot_(ncc, &c__[i__ + c_dim1], ldc, &c__[i__ + 1 + c_dim1], 
 | |
| 			ldc, &rc, &rs);
 | |
| 	    }
 | |
| /* L100: */
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        A has been reduced to complex upper bidiagonal form or is */
 | |
| /*        diagonal */
 | |
| 
 | |
| 	if (*ku > 0 && *m < *n) {
 | |
| 
 | |
| /*           Annihilate a(m,m+1) by applying plane rotations from the */
 | |
| /*           right */
 | |
| 
 | |
| 	    i__1 = *ku + (*m + 1) * ab_dim1;
 | |
| 	    rb.r = ab[i__1].r, rb.i = ab[i__1].i;
 | |
| 	    for (i__ = *m; i__ >= 1; --i__) {
 | |
| 		zlartg_(&ab[*ku + 1 + i__ * ab_dim1], &rb, &rc, &rs, &ra);
 | |
| 		i__1 = *ku + 1 + i__ * ab_dim1;
 | |
| 		ab[i__1].r = ra.r, ab[i__1].i = ra.i;
 | |
| 		if (i__ > 1) {
 | |
| 		    d_cnjg(&z__3, &rs);
 | |
| 		    z__2.r = -z__3.r, z__2.i = -z__3.i;
 | |
| 		    i__1 = *ku + i__ * ab_dim1;
 | |
| 		    z__1.r = z__2.r * ab[i__1].r - z__2.i * ab[i__1].i, 
 | |
| 			    z__1.i = z__2.r * ab[i__1].i + z__2.i * ab[i__1]
 | |
| 			    .r;
 | |
| 		    rb.r = z__1.r, rb.i = z__1.i;
 | |
| 		    i__1 = *ku + i__ * ab_dim1;
 | |
| 		    i__2 = *ku + i__ * ab_dim1;
 | |
| 		    z__1.r = rc * ab[i__2].r, z__1.i = rc * ab[i__2].i;
 | |
| 		    ab[i__1].r = z__1.r, ab[i__1].i = z__1.i;
 | |
| 		}
 | |
| 		if (wantpt) {
 | |
| 		    d_cnjg(&z__1, &rs);
 | |
| 		    zrot_(n, &pt[i__ + pt_dim1], ldpt, &pt[*m + 1 + pt_dim1], 
 | |
| 			    ldpt, &rc, &z__1);
 | |
| 		}
 | |
| /* L110: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Make diagonal and superdiagonal elements real, storing them in D */
 | |
| /*     and E */
 | |
| 
 | |
|     i__1 = *ku + 1 + ab_dim1;
 | |
|     t.r = ab[i__1].r, t.i = ab[i__1].i;
 | |
|     i__1 = minmn;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	abst = z_abs(&t);
 | |
| 	d__[i__] = abst;
 | |
| 	if (abst != 0.) {
 | |
| 	    z__1.r = t.r / abst, z__1.i = t.i / abst;
 | |
| 	    t.r = z__1.r, t.i = z__1.i;
 | |
| 	} else {
 | |
| 	    t.r = 1., t.i = 0.;
 | |
| 	}
 | |
| 	if (wantq) {
 | |
| 	    zscal_(m, &t, &q[i__ * q_dim1 + 1], &c__1);
 | |
| 	}
 | |
| 	if (wantc) {
 | |
| 	    d_cnjg(&z__1, &t);
 | |
| 	    zscal_(ncc, &z__1, &c__[i__ + c_dim1], ldc);
 | |
| 	}
 | |
| 	if (i__ < minmn) {
 | |
| 	    if (*ku == 0 && *kl == 0) {
 | |
| 		e[i__] = 0.;
 | |
| 		i__2 = (i__ + 1) * ab_dim1 + 1;
 | |
| 		t.r = ab[i__2].r, t.i = ab[i__2].i;
 | |
| 	    } else {
 | |
| 		if (*ku == 0) {
 | |
| 		    i__2 = i__ * ab_dim1 + 2;
 | |
| 		    d_cnjg(&z__2, &t);
 | |
| 		    z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i, 
 | |
| 			    z__1.i = ab[i__2].r * z__2.i + ab[i__2].i * 
 | |
| 			    z__2.r;
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		} else {
 | |
| 		    i__2 = *ku + (i__ + 1) * ab_dim1;
 | |
| 		    d_cnjg(&z__2, &t);
 | |
| 		    z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i, 
 | |
| 			    z__1.i = ab[i__2].r * z__2.i + ab[i__2].i * 
 | |
| 			    z__2.r;
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		}
 | |
| 		abst = z_abs(&t);
 | |
| 		e[i__] = abst;
 | |
| 		if (abst != 0.) {
 | |
| 		    z__1.r = t.r / abst, z__1.i = t.i / abst;
 | |
| 		    t.r = z__1.r, t.i = z__1.i;
 | |
| 		} else {
 | |
| 		    t.r = 1., t.i = 0.;
 | |
| 		}
 | |
| 		if (wantpt) {
 | |
| 		    zscal_(n, &t, &pt[i__ + 1 + pt_dim1], ldpt);
 | |
| 		}
 | |
| 		i__2 = *ku + 1 + (i__ + 1) * ab_dim1;
 | |
| 		d_cnjg(&z__2, &t);
 | |
| 		z__1.r = ab[i__2].r * z__2.r - ab[i__2].i * z__2.i, z__1.i = 
 | |
| 			ab[i__2].r * z__2.i + ab[i__2].i * z__2.r;
 | |
| 		t.r = z__1.r, t.i = z__1.i;
 | |
| 	    }
 | |
| 	}
 | |
| /* L120: */
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| /*     End of ZGBBRD */
 | |
| 
 | |
| } /* zgbbrd_ */
 | |
| 
 |