1006 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1006 lines
		
	
	
		
			29 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static doublecomplex c_b1 = {-1.,0.};
 | |
| static doublecomplex c_b2 = {1.,0.};
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief <b> ZCGESV computes the solution to system of linear equations A * X = B for GE matrices</b> (mixe
 | |
| d precision with iterative refinement) */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download ZCGESV + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/zcgesv.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/zcgesv.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/zcgesv.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE ZCGESV( N, NRHS, A, LDA, IPIV, B, LDB, X, LDX, WORK, */
 | |
| /*                          SWORK, RWORK, ITER, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, ITER, LDA, LDB, LDX, N, NRHS */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       DOUBLE PRECISION   RWORK( * ) */
 | |
| /*       COMPLEX            SWORK( * ) */
 | |
| /*       COMPLEX*16         A( LDA, * ), B( LDB, * ), WORK( N, * ), */
 | |
| /*      $                   X( LDX, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > ZCGESV computes the solution to a complex system of linear equations */
 | |
| /* >    A * X = B, */
 | |
| /* > where A is an N-by-N matrix and X and B are N-by-NRHS matrices. */
 | |
| /* > */
 | |
| /* > ZCGESV first attempts to factorize the matrix in COMPLEX and use this */
 | |
| /* > factorization within an iterative refinement procedure to produce a */
 | |
| /* > solution with COMPLEX*16 normwise backward error quality (see below). */
 | |
| /* > If the approach fails the method switches to a COMPLEX*16 */
 | |
| /* > factorization and solve. */
 | |
| /* > */
 | |
| /* > The iterative refinement is not going to be a winning strategy if */
 | |
| /* > the ratio COMPLEX performance over COMPLEX*16 performance is too */
 | |
| /* > small. A reasonable strategy should take the number of right-hand */
 | |
| /* > sides and the size of the matrix into account. This might be done */
 | |
| /* > with a call to ILAENV in the future. Up to now, we always try */
 | |
| /* > iterative refinement. */
 | |
| /* > */
 | |
| /* > The iterative refinement process is stopped if */
 | |
| /* >     ITER > ITERMAX */
 | |
| /* > or for all the RHS we have: */
 | |
| /* >     RNRM < SQRT(N)*XNRM*ANRM*EPS*BWDMAX */
 | |
| /* > where */
 | |
| /* >     o ITER is the number of the current iteration in the iterative */
 | |
| /* >       refinement process */
 | |
| /* >     o RNRM is the infinity-norm of the residual */
 | |
| /* >     o XNRM is the infinity-norm of the solution */
 | |
| /* >     o ANRM is the infinity-operator-norm of the matrix A */
 | |
| /* >     o EPS is the machine epsilon returned by DLAMCH('Epsilon') */
 | |
| /* > The value ITERMAX and BWDMAX are fixed to 30 and 1.0D+00 */
 | |
| /* > respectively. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of linear equations, i.e., the order of the */
 | |
| /* >          matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >          The number of right hand sides, i.e., the number of columns */
 | |
| /* >          of the matrix B.  NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is COMPLEX*16 array, */
 | |
| /* >          dimension (LDA,N) */
 | |
| /* >          On entry, the N-by-N coefficient matrix A. */
 | |
| /* >          On exit, if iterative refinement has been successfully used */
 | |
| /* >          (INFO = 0 and ITER >= 0, see description below), then A is */
 | |
| /* >          unchanged, if double precision factorization has been used */
 | |
| /* >          (INFO = 0 and ITER < 0, see description below), then the */
 | |
| /* >          array A contains the factors L and U from the factorization */
 | |
| /* >          A = P*L*U; the unit diagonal elements of L are not stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          The pivot indices that define the permutation matrix P; */
 | |
| /* >          row i of the matrix was interchanged with row IPIV(i). */
 | |
| /* >          Corresponds either to the single precision factorization */
 | |
| /* >          (if INFO = 0 and ITER >= 0) or the double precision */
 | |
| /* >          factorization (if INFO = 0 and ITER < 0). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is COMPLEX*16 array, dimension (LDB,NRHS) */
 | |
| /* >          The N-by-NRHS right hand side matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is COMPLEX*16 array, dimension (LDX,NRHS) */
 | |
| /* >          If INFO = 0, the N-by-NRHS solution matrix X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >          The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is COMPLEX*16 array, dimension (N,NRHS) */
 | |
| /* >          This array is used to hold the residual vectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SWORK */
 | |
| /* > \verbatim */
 | |
| /* >          SWORK is COMPLEX array, dimension (N*(N+NRHS)) */
 | |
| /* >          This array is used to use the single precision matrix and the */
 | |
| /* >          right-hand sides or solutions in single precision. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RWORK */
 | |
| /* > \verbatim */
 | |
| /* >          RWORK is DOUBLE PRECISION array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ITER */
 | |
| /* > \verbatim */
 | |
| /* >          ITER is INTEGER */
 | |
| /* >          < 0: iterative refinement has failed, COMPLEX*16 */
 | |
| /* >               factorization has been performed */
 | |
| /* >               -1 : the routine fell back to full precision for */
 | |
| /* >                    implementation- or machine-specific reasons */
 | |
| /* >               -2 : narrowing the precision induced an overflow, */
 | |
| /* >                    the routine fell back to full precision */
 | |
| /* >               -3 : failure of CGETRF */
 | |
| /* >               -31: stop the iterative refinement after the 30th */
 | |
| /* >                    iterations */
 | |
| /* >          > 0: iterative refinement has been successfully used. */
 | |
| /* >               Returns the number of iterations */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0:  if INFO = i, U(i,i) computed in COMPLEX*16 is exactly */
 | |
| /* >                zero.  The factorization has been completed, but the */
 | |
| /* >                factor U is exactly singular, so the solution */
 | |
| /* >                could not be computed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup complex16GEsolve */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void zcgesv_(integer *n, integer *nrhs, doublecomplex *a, 
 | |
| 	integer *lda, integer *ipiv, doublecomplex *b, integer *ldb, 
 | |
| 	doublecomplex *x, integer *ldx, doublecomplex *work, complex *swork, 
 | |
| 	doublereal *rwork, integer *iter, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, work_dim1, work_offset, 
 | |
| 	    x_dim1, x_offset, i__1, i__2;
 | |
|     doublereal d__1, d__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     doublereal anrm;
 | |
|     integer ptsa;
 | |
|     doublereal rnrm, xnrm;
 | |
|     integer ptsx, i__, iiter;
 | |
|     extern /* Subroutine */ void zgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, doublecomplex *, doublecomplex *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, doublecomplex *, 
 | |
| 	    integer *), zaxpy_(integer *, doublecomplex *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *), clag2z_(
 | |
| 	    integer *, integer *, complex *, integer *, doublecomplex *, 
 | |
| 	    integer *, integer *), zlag2c_(integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, complex *, integer *, integer *);
 | |
|     extern doublereal dlamch_(char *);
 | |
|     extern /* Subroutine */ int cgetrf_(integer *, integer *, complex *, 
 | |
| 	    integer *, integer *, integer *);
 | |
|     extern int xerbla_(char *, integer *, ftnlen);
 | |
|     extern doublereal zlange_(char *, integer *, integer *, doublecomplex *, 
 | |
| 	    integer *, doublereal *);
 | |
|     extern /* Subroutine */ int cgetrs_(char *, integer *, integer *, complex 
 | |
| 	    *, integer *, integer *, complex *, integer *, integer *);
 | |
|     extern integer izamax_(integer *, doublecomplex *, integer *);
 | |
|     extern /* Subroutine */ void zlacpy_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, doublecomplex *, integer *); 
 | |
|     extern int zgetrf_(integer *, integer *, doublecomplex *, integer *, integer 
 | |
| 	    *, integer *);
 | |
|     extern int zgetrs_(char *, integer *, integer *, 
 | |
| 	    doublecomplex *, integer *, integer *, doublecomplex *, integer *,
 | |
| 	     integer *);
 | |
|     doublereal cte, eps;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     work_dim1 = *n;
 | |
|     work_offset = 1 + work_dim1 * 1;
 | |
|     work -= work_offset;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --ipiv;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --swork;
 | |
|     --rwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     *iter = 0;
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     if (*n < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldx < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("ZCGESV", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if (N.EQ.0). */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Skip single precision iterative refinement if a priori slower */
 | |
| /*     than double precision factorization. */
 | |
| 
 | |
|     if (FALSE_) {
 | |
| 	*iter = -1;
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     Compute some constants. */
 | |
| 
 | |
|     anrm = zlange_("I", n, n, &a[a_offset], lda, &rwork[1]);
 | |
|     eps = dlamch_("Epsilon");
 | |
|     cte = anrm * eps * sqrt((doublereal) (*n)) * 1.;
 | |
| 
 | |
| /*     Set the indices PTSA, PTSX for referencing SA and SX in SWORK. */
 | |
| 
 | |
|     ptsa = 1;
 | |
|     ptsx = ptsa + *n * *n;
 | |
| 
 | |
| /*     Convert B from double precision to single precision and store the */
 | |
| /*     result in SX. */
 | |
| 
 | |
|     zlag2c_(n, nrhs, &b[b_offset], ldb, &swork[ptsx], n, info);
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	*iter = -2;
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     Convert A from double precision to single precision and store the */
 | |
| /*     result in SA. */
 | |
| 
 | |
|     zlag2c_(n, n, &a[a_offset], lda, &swork[ptsa], n, info);
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	*iter = -2;
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     Compute the LU factorization of SA. */
 | |
| 
 | |
|     cgetrf_(n, n, &swork[ptsa], n, &ipiv[1], info);
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	*iter = -3;
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     Solve the system SA*SX = SB. */
 | |
| 
 | |
|     cgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[ptsx], 
 | |
| 	    n, info);
 | |
| 
 | |
| /*     Convert SX back to double precision */
 | |
| 
 | |
|     clag2z_(n, nrhs, &swork[ptsx], n, &x[x_offset], ldx, info);
 | |
| 
 | |
| /*     Compute R = B - AX (R is WORK). */
 | |
| 
 | |
|     zlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
 | |
| 
 | |
|     zgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b1, &a[a_offset], 
 | |
| 	    lda, &x[x_offset], ldx, &c_b2, &work[work_offset], n);
 | |
| 
 | |
| /*     Check whether the NRHS normwise backward errors satisfy the */
 | |
| /*     stopping criterion. If yes, set ITER=0 and return. */
 | |
| 
 | |
|     i__1 = *nrhs;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	i__2 = izamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1;
 | |
| 	xnrm = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[izamax_(n, &
 | |
| 		x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1]), abs(d__2));
 | |
| 	i__2 = izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ * 
 | |
| 		work_dim1;
 | |
| 	rnrm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(&work[
 | |
| 		izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ * 
 | |
| 		work_dim1]), abs(d__2));
 | |
| 	if (rnrm > xnrm * cte) {
 | |
| 	    goto L10;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     If we are here, the NRHS normwise backward errors satisfy the */
 | |
| /*     stopping criterion. We are good to exit. */
 | |
| 
 | |
|     *iter = 0;
 | |
|     return;
 | |
| 
 | |
| L10:
 | |
| 
 | |
|     for (iiter = 1; iiter <= 30; ++iiter) {
 | |
| 
 | |
| /*        Convert R (in WORK) from double precision to single precision */
 | |
| /*        and store the result in SX. */
 | |
| 
 | |
| 	zlag2c_(n, nrhs, &work[work_offset], n, &swork[ptsx], n, info);
 | |
| 
 | |
| 	if (*info != 0) {
 | |
| 	    *iter = -2;
 | |
| 	    goto L40;
 | |
| 	}
 | |
| 
 | |
| /*        Solve the system SA*SX = SR. */
 | |
| 
 | |
| 	cgetrs_("No transpose", n, nrhs, &swork[ptsa], n, &ipiv[1], &swork[
 | |
| 		ptsx], n, info);
 | |
| 
 | |
| /*        Convert SX back to double precision and update the current */
 | |
| /*        iterate. */
 | |
| 
 | |
| 	clag2z_(n, nrhs, &swork[ptsx], n, &work[work_offset], n, info);
 | |
| 
 | |
| 	i__1 = *nrhs;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    zaxpy_(n, &c_b2, &work[i__ * work_dim1 + 1], &c__1, &x[i__ * 
 | |
| 		    x_dim1 + 1], &c__1);
 | |
| 	}
 | |
| 
 | |
| /*        Compute R = B - AX (R is WORK). */
 | |
| 
 | |
| 	zlacpy_("All", n, nrhs, &b[b_offset], ldb, &work[work_offset], n);
 | |
| 
 | |
| 	zgemm_("No Transpose", "No Transpose", n, nrhs, n, &c_b1, &a[a_offset]
 | |
| 		, lda, &x[x_offset], ldx, &c_b2, &work[work_offset], n);
 | |
| 
 | |
| /*        Check whether the NRHS normwise backward errors satisfy the */
 | |
| /*        stopping criterion. If yes, set ITER=IITER>0 and return. */
 | |
| 
 | |
| 	i__1 = *nrhs;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    i__2 = izamax_(n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1;
 | |
| 	    xnrm = (d__1 = x[i__2].r, abs(d__1)) + (d__2 = d_imag(&x[izamax_(
 | |
| 		    n, &x[i__ * x_dim1 + 1], &c__1) + i__ * x_dim1]), abs(
 | |
| 		    d__2));
 | |
| 	    i__2 = izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ * 
 | |
| 		    work_dim1;
 | |
| 	    rnrm = (d__1 = work[i__2].r, abs(d__1)) + (d__2 = d_imag(&work[
 | |
| 		    izamax_(n, &work[i__ * work_dim1 + 1], &c__1) + i__ * 
 | |
| 		    work_dim1]), abs(d__2));
 | |
| 	    if (rnrm > xnrm * cte) {
 | |
| 		goto L20;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        If we are here, the NRHS normwise backward errors satisfy the */
 | |
| /*        stopping criterion, we are good to exit. */
 | |
| 
 | |
| 	*iter = iiter;
 | |
| 
 | |
| 	return;
 | |
| 
 | |
| L20:
 | |
| 
 | |
| /* L30: */
 | |
| 	;
 | |
|     }
 | |
| 
 | |
| /*     If we are at this place of the code, this is because we have */
 | |
| /*     performed ITER=ITERMAX iterations and never satisfied the stopping */
 | |
| /*     criterion, set up the ITER flag accordingly and follow up on double */
 | |
| /*     precision routine. */
 | |
| 
 | |
|     *iter = -31;
 | |
| 
 | |
| L40:
 | |
| 
 | |
| /*     Single-precision iterative refinement failed to converge to a */
 | |
| /*     satisfactory solution, so we resort to double precision. */
 | |
| 
 | |
|     zgetrf_(n, n, &a[a_offset], lda, &ipiv[1], info);
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     zlacpy_("All", n, nrhs, &b[b_offset], ldb, &x[x_offset], ldx);
 | |
|     zgetrs_("No transpose", n, nrhs, &a[a_offset], lda, &ipiv[1], &x[x_offset]
 | |
| 	    , ldx, info);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of ZCGESV. */
 | |
| 
 | |
| } /* zcgesv_ */
 | |
| 
 |