2058 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2058 lines
		
	
	
		
			59 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__2 = 2;
 | |
| static real c_b17 = 0.f;
 | |
| static logical c_false = FALSE_;
 | |
| static real c_b29 = 1.f;
 | |
| static logical c_true = TRUE_;
 | |
| 
 | |
| /* > \brief \b STREVC3 */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download STREVC3 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strevc3
 | |
| .f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strevc3
 | |
| .f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strevc3
 | |
| .f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE STREVC3( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, */
 | |
| /*                           VR, LDVR, MM, M, WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          HOWMNY, SIDE */
 | |
| /*       INTEGER            INFO, LDT, LDVL, LDVR, LWORK, M, MM, N */
 | |
| /*       LOGICAL            SELECT( * ) */
 | |
| /*       REAL               T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ), */
 | |
| /*      $                   WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > STREVC3 computes some or all of the right and/or left eigenvectors of */
 | |
| /* > a real upper quasi-triangular matrix T. */
 | |
| /* > Matrices of this type are produced by the Schur factorization of */
 | |
| /* > a real general matrix:  A = Q*T*Q**T, as computed by SHSEQR. */
 | |
| /* > */
 | |
| /* > The right eigenvector x and the left eigenvector y of T corresponding */
 | |
| /* > to an eigenvalue w are defined by: */
 | |
| /* > */
 | |
| /* >    T*x = w*x,     (y**T)*T = w*(y**T) */
 | |
| /* > */
 | |
| /* > where y**T denotes the transpose of the vector y. */
 | |
| /* > The eigenvalues are not input to this routine, but are read directly */
 | |
| /* > from the diagonal blocks of T. */
 | |
| /* > */
 | |
| /* > This routine returns the matrices X and/or Y of right and left */
 | |
| /* > eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an */
 | |
| /* > input matrix. If Q is the orthogonal factor that reduces a matrix */
 | |
| /* > A to Schur form T, then Q*X and Q*Y are the matrices of right and */
 | |
| /* > left eigenvectors of A. */
 | |
| /* > */
 | |
| /* > This uses a Level 3 BLAS version of the back transformation. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >          = 'R':  compute right eigenvectors only; */
 | |
| /* >          = 'L':  compute left eigenvectors only; */
 | |
| /* >          = 'B':  compute both right and left eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] HOWMNY */
 | |
| /* > \verbatim */
 | |
| /* >          HOWMNY is CHARACTER*1 */
 | |
| /* >          = 'A':  compute all right and/or left eigenvectors; */
 | |
| /* >          = 'B':  compute all right and/or left eigenvectors, */
 | |
| /* >                  backtransformed by the matrices in VR and/or VL; */
 | |
| /* >          = 'S':  compute selected right and/or left eigenvectors, */
 | |
| /* >                  as indicated by the logical array SELECT. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] SELECT */
 | |
| /* > \verbatim */
 | |
| /* >          SELECT is LOGICAL array, dimension (N) */
 | |
| /* >          If HOWMNY = 'S', SELECT specifies the eigenvectors to be */
 | |
| /* >          computed. */
 | |
| /* >          If w(j) is a real eigenvalue, the corresponding real */
 | |
| /* >          eigenvector is computed if SELECT(j) is .TRUE.. */
 | |
| /* >          If w(j) and w(j+1) are the real and imaginary parts of a */
 | |
| /* >          complex eigenvalue, the corresponding complex eigenvector is */
 | |
| /* >          computed if either SELECT(j) or SELECT(j+1) is .TRUE., and */
 | |
| /* >          on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to */
 | |
| /* >          .FALSE.. */
 | |
| /* >          Not referenced if HOWMNY = 'A' or 'B'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix T. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is REAL array, dimension (LDT,N) */
 | |
| /* >          The upper quasi-triangular matrix T in Schur canonical form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T. LDT >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is REAL array, dimension (LDVL,MM) */
 | |
| /* >          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must */
 | |
| /* >          contain an N-by-N matrix Q (usually the orthogonal matrix Q */
 | |
| /* >          of Schur vectors returned by SHSEQR). */
 | |
| /* >          On exit, if SIDE = 'L' or 'B', VL contains: */
 | |
| /* >          if HOWMNY = 'A', the matrix Y of left eigenvectors of T; */
 | |
| /* >          if HOWMNY = 'B', the matrix Q*Y; */
 | |
| /* >          if HOWMNY = 'S', the left eigenvectors of T specified by */
 | |
| /* >                           SELECT, stored consecutively in the columns */
 | |
| /* >                           of VL, in the same order as their */
 | |
| /* >                           eigenvalues. */
 | |
| /* >          A complex eigenvector corresponding to a complex eigenvalue */
 | |
| /* >          is stored in two consecutive columns, the first holding the */
 | |
| /* >          real part, and the second the imaginary part. */
 | |
| /* >          Not referenced if SIDE = 'R'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of the array VL. */
 | |
| /* >          LDVL >= 1, and if SIDE = 'L' or 'B', LDVL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is REAL array, dimension (LDVR,MM) */
 | |
| /* >          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must */
 | |
| /* >          contain an N-by-N matrix Q (usually the orthogonal matrix Q */
 | |
| /* >          of Schur vectors returned by SHSEQR). */
 | |
| /* >          On exit, if SIDE = 'R' or 'B', VR contains: */
 | |
| /* >          if HOWMNY = 'A', the matrix X of right eigenvectors of T; */
 | |
| /* >          if HOWMNY = 'B', the matrix Q*X; */
 | |
| /* >          if HOWMNY = 'S', the right eigenvectors of T specified by */
 | |
| /* >                           SELECT, stored consecutively in the columns */
 | |
| /* >                           of VR, in the same order as their */
 | |
| /* >                           eigenvalues. */
 | |
| /* >          A complex eigenvector corresponding to a complex eigenvalue */
 | |
| /* >          is stored in two consecutive columns, the first holding the */
 | |
| /* >          real part and the second the imaginary part. */
 | |
| /* >          Not referenced if SIDE = 'L'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the array VR. */
 | |
| /* >          LDVR >= 1, and if SIDE = 'R' or 'B', LDVR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MM */
 | |
| /* > \verbatim */
 | |
| /* >          MM is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR. MM >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of columns in the arrays VL and/or VR actually */
 | |
| /* >          used to store the eigenvectors. */
 | |
| /* >          If HOWMNY = 'A' or 'B', M is set to N. */
 | |
| /* >          Each selected real eigenvector occupies one column and each */
 | |
| /* >          selected complex eigenvector occupies two columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of array WORK. LWORK >= f2cmax(1,3*N). */
 | |
| /* >          For optimum performance, LWORK >= N + 2*N*NB, where NB is */
 | |
| /* >          the optimal blocksize. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2017 */
 | |
| 
 | |
| /*  @generated from dtrevc3.f, fortran d -> s, Tue Apr 19 01:47:44 2016 */
 | |
| 
 | |
| /* > \ingroup realOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The algorithm used in this program is basically backward (forward) */
 | |
| /* >  substitution, with scaling to make the the code robust against */
 | |
| /* >  possible overflow. */
 | |
| /* > */
 | |
| /* >  Each eigenvector is normalized so that the element of largest */
 | |
| /* >  magnitude has magnitude 1; here the magnitude of a complex number */
 | |
| /* >  (x,y) is taken to be |x| + |y|. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void strevc3_(char *side, char *howmny, logical *select, 
 | |
| 	integer *n, real *t, integer *ldt, real *vl, integer *ldvl, real *vr, 
 | |
| 	integer *ldvr, integer *mm, integer *m, real *work, integer *lwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     address a__1[2];
 | |
|     integer t_dim1, t_offset, vl_dim1, vl_offset, vr_dim1, vr_offset, i__1[2],
 | |
| 	     i__2, i__3, i__4;
 | |
|     real r__1, r__2, r__3, r__4;
 | |
|     char ch__1[2];
 | |
| 
 | |
|     /* Local variables */
 | |
|     real beta, emax;
 | |
|     logical pair, allv;
 | |
|     integer ierr;
 | |
|     real unfl, ovfl, smin;
 | |
|     extern real sdot_(integer *, real *, integer *, real *, integer *);
 | |
|     logical over;
 | |
|     real vmax;
 | |
|     integer jnxt, i__, j, k;
 | |
|     real scale, x[4]	/* was [2][2] */;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *), 
 | |
| 	    sgemm_(char *, char *, integer *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, real *, integer *, real *, real *, integer *);
 | |
|     real remax;
 | |
|     logical leftv;
 | |
|     extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, real *, integer *, real *, real *, integer *);
 | |
|     logical bothv;
 | |
|     real vcrit;
 | |
|     logical somev;
 | |
|     integer j1, j2;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     real xnorm;
 | |
|     extern /* Subroutine */ void saxpy_(integer *, real *, real *, integer *, 
 | |
| 	    real *, integer *);
 | |
|     integer iscomplex[128];
 | |
|     extern /* Subroutine */ void slaln2_(logical *, integer *, integer *, real 
 | |
| 	    *, real *, real *, integer *, real *, real *, real *, integer *, 
 | |
| 	    real *, real *, real *, integer *, real *, real *, integer *);
 | |
|     integer nb, ii, ki;
 | |
|     extern /* Subroutine */ void slabad_(real *, real *);
 | |
|     integer ip, is, iv;
 | |
|     real wi;
 | |
|     extern real slamch_(char *);
 | |
|     real wr;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     real bignum;
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, integer *), slaset_(char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *);
 | |
|     logical rightv;
 | |
|     integer ki2, maxwrk;
 | |
|     real smlnum;
 | |
|     logical lquery;
 | |
|     real rec, ulp;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode and test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --select;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     bothv = lsame_(side, "B");
 | |
|     rightv = lsame_(side, "R") || bothv;
 | |
|     leftv = lsame_(side, "L") || bothv;
 | |
| 
 | |
|     allv = lsame_(howmny, "A");
 | |
|     over = lsame_(howmny, "B");
 | |
|     somev = lsame_(howmny, "S");
 | |
| 
 | |
|     *info = 0;
 | |
| /* Writing concatenation */
 | |
|     i__1[0] = 1, a__1[0] = side;
 | |
|     i__1[1] = 1, a__1[1] = howmny;
 | |
|     s_cat(ch__1, a__1, i__1, &c__2, (ftnlen)2);
 | |
|     nb = ilaenv_(&c__1, "STREVC", ch__1, n, &c_n1, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 	    ftnlen)2);
 | |
|     maxwrk = *n + (*n << 1) * nb;
 | |
|     work[1] = (real) maxwrk;
 | |
|     lquery = *lwork == -1;
 | |
|     if (! rightv && ! leftv) {
 | |
| 	*info = -1;
 | |
|     } else if (! allv && ! over && ! somev) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldt < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldvl < 1 || leftv && *ldvl < *n) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldvr < 1 || rightv && *ldvr < *n) {
 | |
| 	*info = -10;
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__2 = 1, i__3 = *n * 3;
 | |
| 	if (*lwork < f2cmax(i__2,i__3) && ! lquery) {
 | |
| 	    *info = -14;
 | |
| 	} else {
 | |
| 
 | |
| /*        Set M to the number of columns required to store the selected */
 | |
| /*        eigenvectors, standardize the array SELECT if necessary, and */
 | |
| /*        test MM. */
 | |
| 
 | |
| 	    if (somev) {
 | |
| 		*m = 0;
 | |
| 		pair = FALSE_;
 | |
| 		i__2 = *n;
 | |
| 		for (j = 1; j <= i__2; ++j) {
 | |
| 		    if (pair) {
 | |
| 			pair = FALSE_;
 | |
| 			select[j] = FALSE_;
 | |
| 		    } else {
 | |
| 			if (j < *n) {
 | |
| 			    if (t[j + 1 + j * t_dim1] == 0.f) {
 | |
| 				if (select[j]) {
 | |
| 				    ++(*m);
 | |
| 				}
 | |
| 			    } else {
 | |
| 				pair = TRUE_;
 | |
| 				if (select[j] || select[j + 1]) {
 | |
| 				    select[j] = TRUE_;
 | |
| 				    *m += 2;
 | |
| 				}
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    if (select[*n]) {
 | |
| 				++(*m);
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| /* L10: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		*m = *n;
 | |
| 	    }
 | |
| 
 | |
| 	    if (*mm < *m) {
 | |
| 		*info = -11;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__2 = -(*info);
 | |
| 	xerbla_("STREVC3", &i__2, (ftnlen)7);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Use blocked version of back-transformation if sufficient workspace. */
 | |
| /*     Zero-out the workspace to avoid potential NaN propagation. */
 | |
| 
 | |
|     if (over && *lwork >= *n + (*n << 4)) {
 | |
| 	nb = (*lwork - *n) / (*n << 1);
 | |
| 	nb = f2cmin(nb,128);
 | |
| 	i__2 = (nb << 1) + 1;
 | |
| 	slaset_("F", n, &i__2, &c_b17, &c_b17, &work[1], n);
 | |
|     } else {
 | |
| 	nb = 1;
 | |
|     }
 | |
| 
 | |
| /*     Set the constants to control overflow. */
 | |
| 
 | |
|     unfl = slamch_("Safe minimum");
 | |
|     ovfl = 1.f / unfl;
 | |
|     slabad_(&unfl, &ovfl);
 | |
|     ulp = slamch_("Precision");
 | |
|     smlnum = unfl * (*n / ulp);
 | |
|     bignum = (1.f - ulp) / smlnum;
 | |
| 
 | |
| /*     Compute 1-norm of each column of strictly upper triangular */
 | |
| /*     part of T to control overflow in triangular solver. */
 | |
| 
 | |
|     work[1] = 0.f;
 | |
|     i__2 = *n;
 | |
|     for (j = 2; j <= i__2; ++j) {
 | |
| 	work[j] = 0.f;
 | |
| 	i__3 = j - 1;
 | |
| 	for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 	    work[j] += (r__1 = t[i__ + j * t_dim1], abs(r__1));
 | |
| /* L20: */
 | |
| 	}
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
| /*     Index IP is used to specify the real or complex eigenvalue: */
 | |
| /*       IP = 0, real eigenvalue, */
 | |
| /*            1, first  of conjugate complex pair: (wr,wi) */
 | |
| /*           -1, second of conjugate complex pair: (wr,wi) */
 | |
| /*       ISCOMPLEX array stores IP for each column in current block. */
 | |
| 
 | |
|     if (rightv) {
 | |
| 
 | |
| /*        ============================================================ */
 | |
| /*        Compute right eigenvectors. */
 | |
| 
 | |
| /*        IV is index of column in current block. */
 | |
| /*        For complex right vector, uses IV-1 for real part and IV for complex part. */
 | |
| /*        Non-blocked version always uses IV=2; */
 | |
| /*        blocked     version starts with IV=NB, goes down to 1 or 2. */
 | |
| /*        (Note the "0-th" column is used for 1-norms computed above.) */
 | |
| 	iv = 2;
 | |
| 	if (nb > 2) {
 | |
| 	    iv = nb;
 | |
| 	}
 | |
| 	ip = 0;
 | |
| 	is = *m;
 | |
| 	for (ki = *n; ki >= 1; --ki) {
 | |
| 	    if (ip == -1) {
 | |
| /*              previous iteration (ki+1) was second of conjugate pair, */
 | |
| /*              so this ki is first of conjugate pair; skip to end of loop */
 | |
| 		ip = 1;
 | |
| 		goto L140;
 | |
| 	    } else if (ki == 1) {
 | |
| /*              last column, so this ki must be real eigenvalue */
 | |
| 		ip = 0;
 | |
| 	    } else if (t[ki + (ki - 1) * t_dim1] == 0.f) {
 | |
| /*              zero on sub-diagonal, so this ki is real eigenvalue */
 | |
| 		ip = 0;
 | |
| 	    } else {
 | |
| /*              non-zero on sub-diagonal, so this ki is second of conjugate pair */
 | |
| 		ip = -1;
 | |
| 	    }
 | |
| 	    if (somev) {
 | |
| 		if (ip == 0) {
 | |
| 		    if (! select[ki]) {
 | |
| 			goto L140;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    if (! select[ki - 1]) {
 | |
| 			goto L140;
 | |
| 		    }
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Compute the KI-th eigenvalue (WR,WI). */
 | |
| 
 | |
| 	    wr = t[ki + ki * t_dim1];
 | |
| 	    wi = 0.f;
 | |
| 	    if (ip != 0) {
 | |
| 		wi = sqrt((r__1 = t[ki + (ki - 1) * t_dim1], abs(r__1))) * 
 | |
| 			sqrt((r__2 = t[ki - 1 + ki * t_dim1], abs(r__2)));
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    r__1 = ulp * (abs(wr) + abs(wi));
 | |
| 	    smin = f2cmax(r__1,smlnum);
 | |
| 
 | |
| 	    if (ip == 0) {
 | |
| 
 | |
| /*              -------------------------------------------------------- */
 | |
| /*              Real right eigenvector */
 | |
| 
 | |
| 		work[ki + iv * *n] = 1.f;
 | |
| 
 | |
| /*              Form right-hand side. */
 | |
| 
 | |
| 		i__2 = ki - 1;
 | |
| 		for (k = 1; k <= i__2; ++k) {
 | |
| 		    work[k + iv * *n] = -t[k + ki * t_dim1];
 | |
| /* L50: */
 | |
| 		}
 | |
| 
 | |
| /*              Solve upper quasi-triangular system: */
 | |
| /*              [ T(1:KI-1,1:KI-1) - WR ]*X = SCALE*WORK. */
 | |
| 
 | |
| 		jnxt = ki - 1;
 | |
| 		for (j = ki - 1; j >= 1; --j) {
 | |
| 		    if (j > jnxt) {
 | |
| 			goto L60;
 | |
| 		    }
 | |
| 		    j1 = j;
 | |
| 		    j2 = j;
 | |
| 		    jnxt = j - 1;
 | |
| 		    if (j > 1) {
 | |
| 			if (t[j + (j - 1) * t_dim1] != 0.f) {
 | |
| 			    j1 = j - 1;
 | |
| 			    jnxt = j - 2;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j1 == j2) {
 | |
| 
 | |
| /*                    1-by-1 diagonal block */
 | |
| 
 | |
| 			slaln2_(&c_false, &c__1, &c__1, &smin, &c_b29, &t[j + 
 | |
| 				j * t_dim1], ldt, &c_b29, &c_b29, &work[j + 
 | |
| 				iv * *n], n, &wr, &c_b17, x, &c__2, &scale, &
 | |
| 				xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale X(1,1) to avoid overflow when updating */
 | |
| /*                    the right-hand side. */
 | |
| 
 | |
| 			if (xnorm > 1.f) {
 | |
| 			    if (work[j] > bignum / xnorm) {
 | |
| 				x[0] /= xnorm;
 | |
| 				scale /= xnorm;
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
 | |
| 			}
 | |
| 			work[j + iv * *n] = x[0];
 | |
| 
 | |
| /*                    Update right-hand side */
 | |
| 
 | |
| 			i__2 = j - 1;
 | |
| 			r__1 = -x[0];
 | |
| 			saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
 | |
| 				iv * *n + 1], &c__1);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    2-by-2 diagonal block */
 | |
| 
 | |
| 			slaln2_(&c_false, &c__2, &c__1, &smin, &c_b29, &t[j - 
 | |
| 				1 + (j - 1) * t_dim1], ldt, &c_b29, &c_b29, &
 | |
| 				work[j - 1 + iv * *n], n, &wr, &c_b17, x, &
 | |
| 				c__2, &scale, &xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale X(1,1) and X(2,1) to avoid overflow when */
 | |
| /*                    updating the right-hand side. */
 | |
| 
 | |
| 			if (xnorm > 1.f) {
 | |
| /* Computing MAX */
 | |
| 			    r__1 = work[j - 1], r__2 = work[j];
 | |
| 			    beta = f2cmax(r__1,r__2);
 | |
| 			    if (beta > bignum / xnorm) {
 | |
| 				x[0] /= xnorm;
 | |
| 				x[1] /= xnorm;
 | |
| 				scale /= xnorm;
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
 | |
| 			}
 | |
| 			work[j - 1 + iv * *n] = x[0];
 | |
| 			work[j + iv * *n] = x[1];
 | |
| 
 | |
| /*                    Update right-hand side */
 | |
| 
 | |
| 			i__2 = j - 2;
 | |
| 			r__1 = -x[0];
 | |
| 			saxpy_(&i__2, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1, 
 | |
| 				&work[iv * *n + 1], &c__1);
 | |
| 			i__2 = j - 2;
 | |
| 			r__1 = -x[1];
 | |
| 			saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
 | |
| 				iv * *n + 1], &c__1);
 | |
| 		    }
 | |
| L60:
 | |
| 		    ;
 | |
| 		}
 | |
| 
 | |
| /*              Copy the vector x or Q*x to VR and normalize. */
 | |
| 
 | |
| 		if (! over) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 no back-transform: copy x to VR and normalize. */
 | |
| 		    scopy_(&ki, &work[iv * *n + 1], &c__1, &vr[is * vr_dim1 + 
 | |
| 			    1], &c__1);
 | |
| 
 | |
| 		    ii = isamax_(&ki, &vr[is * vr_dim1 + 1], &c__1);
 | |
| 		    remax = 1.f / (r__1 = vr[ii + is * vr_dim1], abs(r__1));
 | |
| 		    sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
 | |
| 
 | |
| 		    i__2 = *n;
 | |
| 		    for (k = ki + 1; k <= i__2; ++k) {
 | |
| 			vr[k + is * vr_dim1] = 0.f;
 | |
| /* L70: */
 | |
| 		    }
 | |
| 
 | |
| 		} else if (nb == 1) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 1: back-transform each vector with GEMV, Q*x. */
 | |
| 		    if (ki > 1) {
 | |
| 			i__2 = ki - 1;
 | |
| 			sgemv_("N", n, &i__2, &c_b29, &vr[vr_offset], ldvr, &
 | |
| 				work[iv * *n + 1], &c__1, &work[ki + iv * *n],
 | |
| 				 &vr[ki * vr_dim1 + 1], &c__1);
 | |
| 		    }
 | |
| 
 | |
| 		    ii = isamax_(n, &vr[ki * vr_dim1 + 1], &c__1);
 | |
| 		    remax = 1.f / (r__1 = vr[ii + ki * vr_dim1], abs(r__1));
 | |
| 		    sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
 | |
| 
 | |
| 		} else {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 2: back-transform block of vectors with GEMM */
 | |
| /*                 zero out below vector */
 | |
| 		    i__2 = *n;
 | |
| 		    for (k = ki + 1; k <= i__2; ++k) {
 | |
| 			work[k + iv * *n] = 0.f;
 | |
| 		    }
 | |
| 		    iscomplex[iv - 1] = ip;
 | |
| /*                 back-transform and normalization is done below */
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              -------------------------------------------------------- */
 | |
| /*              Complex right eigenvector. */
 | |
| 
 | |
| /*              Initial solve */
 | |
| /*              [ ( T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I*WI) ]*X = 0. */
 | |
| /*              [ ( T(KI,  KI-1) T(KI,  KI) )               ] */
 | |
| 
 | |
| 		if ((r__1 = t[ki - 1 + ki * t_dim1], abs(r__1)) >= (r__2 = t[
 | |
| 			ki + (ki - 1) * t_dim1], abs(r__2))) {
 | |
| 		    work[ki - 1 + (iv - 1) * *n] = 1.f;
 | |
| 		    work[ki + iv * *n] = wi / t[ki - 1 + ki * t_dim1];
 | |
| 		} else {
 | |
| 		    work[ki - 1 + (iv - 1) * *n] = -wi / t[ki + (ki - 1) * 
 | |
| 			    t_dim1];
 | |
| 		    work[ki + iv * *n] = 1.f;
 | |
| 		}
 | |
| 		work[ki + (iv - 1) * *n] = 0.f;
 | |
| 		work[ki - 1 + iv * *n] = 0.f;
 | |
| 
 | |
| /*              Form right-hand side. */
 | |
| 
 | |
| 		i__2 = ki - 2;
 | |
| 		for (k = 1; k <= i__2; ++k) {
 | |
| 		    work[k + (iv - 1) * *n] = -work[ki - 1 + (iv - 1) * *n] * 
 | |
| 			    t[k + (ki - 1) * t_dim1];
 | |
| 		    work[k + iv * *n] = -work[ki + iv * *n] * t[k + ki * 
 | |
| 			    t_dim1];
 | |
| /* L80: */
 | |
| 		}
 | |
| 
 | |
| /*              Solve upper quasi-triangular system: */
 | |
| /*              [ T(1:KI-2,1:KI-2) - (WR+i*WI) ]*X = SCALE*(WORK+i*WORK2) */
 | |
| 
 | |
| 		jnxt = ki - 2;
 | |
| 		for (j = ki - 2; j >= 1; --j) {
 | |
| 		    if (j > jnxt) {
 | |
| 			goto L90;
 | |
| 		    }
 | |
| 		    j1 = j;
 | |
| 		    j2 = j;
 | |
| 		    jnxt = j - 1;
 | |
| 		    if (j > 1) {
 | |
| 			if (t[j + (j - 1) * t_dim1] != 0.f) {
 | |
| 			    j1 = j - 1;
 | |
| 			    jnxt = j - 2;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j1 == j2) {
 | |
| 
 | |
| /*                    1-by-1 diagonal block */
 | |
| 
 | |
| 			slaln2_(&c_false, &c__1, &c__2, &smin, &c_b29, &t[j + 
 | |
| 				j * t_dim1], ldt, &c_b29, &c_b29, &work[j + (
 | |
| 				iv - 1) * *n], n, &wr, &wi, x, &c__2, &scale, 
 | |
| 				&xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale X(1,1) and X(1,2) to avoid overflow when */
 | |
| /*                    updating the right-hand side. */
 | |
| 
 | |
| 			if (xnorm > 1.f) {
 | |
| 			    if (work[j] > bignum / xnorm) {
 | |
| 				x[0] /= xnorm;
 | |
| 				x[2] /= xnorm;
 | |
| 				scale /= xnorm;
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    sscal_(&ki, &scale, &work[(iv - 1) * *n + 1], &
 | |
| 				    c__1);
 | |
| 			    sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
 | |
| 			}
 | |
| 			work[j + (iv - 1) * *n] = x[0];
 | |
| 			work[j + iv * *n] = x[2];
 | |
| 
 | |
| /*                    Update the right-hand side */
 | |
| 
 | |
| 			i__2 = j - 1;
 | |
| 			r__1 = -x[0];
 | |
| 			saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
 | |
| 				(iv - 1) * *n + 1], &c__1);
 | |
| 			i__2 = j - 1;
 | |
| 			r__1 = -x[2];
 | |
| 			saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
 | |
| 				iv * *n + 1], &c__1);
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    2-by-2 diagonal block */
 | |
| 
 | |
| 			slaln2_(&c_false, &c__2, &c__2, &smin, &c_b29, &t[j - 
 | |
| 				1 + (j - 1) * t_dim1], ldt, &c_b29, &c_b29, &
 | |
| 				work[j - 1 + (iv - 1) * *n], n, &wr, &wi, x, &
 | |
| 				c__2, &scale, &xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale X to avoid overflow when updating */
 | |
| /*                    the right-hand side. */
 | |
| 
 | |
| 			if (xnorm > 1.f) {
 | |
| /* Computing MAX */
 | |
| 			    r__1 = work[j - 1], r__2 = work[j];
 | |
| 			    beta = f2cmax(r__1,r__2);
 | |
| 			    if (beta > bignum / xnorm) {
 | |
| 				rec = 1.f / xnorm;
 | |
| 				x[0] *= rec;
 | |
| 				x[2] *= rec;
 | |
| 				x[1] *= rec;
 | |
| 				x[3] *= rec;
 | |
| 				scale *= rec;
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    sscal_(&ki, &scale, &work[(iv - 1) * *n + 1], &
 | |
| 				    c__1);
 | |
| 			    sscal_(&ki, &scale, &work[iv * *n + 1], &c__1);
 | |
| 			}
 | |
| 			work[j - 1 + (iv - 1) * *n] = x[0];
 | |
| 			work[j + (iv - 1) * *n] = x[1];
 | |
| 			work[j - 1 + iv * *n] = x[2];
 | |
| 			work[j + iv * *n] = x[3];
 | |
| 
 | |
| /*                    Update the right-hand side */
 | |
| 
 | |
| 			i__2 = j - 2;
 | |
| 			r__1 = -x[0];
 | |
| 			saxpy_(&i__2, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1, 
 | |
| 				&work[(iv - 1) * *n + 1], &c__1);
 | |
| 			i__2 = j - 2;
 | |
| 			r__1 = -x[1];
 | |
| 			saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
 | |
| 				(iv - 1) * *n + 1], &c__1);
 | |
| 			i__2 = j - 2;
 | |
| 			r__1 = -x[2];
 | |
| 			saxpy_(&i__2, &r__1, &t[(j - 1) * t_dim1 + 1], &c__1, 
 | |
| 				&work[iv * *n + 1], &c__1);
 | |
| 			i__2 = j - 2;
 | |
| 			r__1 = -x[3];
 | |
| 			saxpy_(&i__2, &r__1, &t[j * t_dim1 + 1], &c__1, &work[
 | |
| 				iv * *n + 1], &c__1);
 | |
| 		    }
 | |
| L90:
 | |
| 		    ;
 | |
| 		}
 | |
| 
 | |
| /*              Copy the vector x or Q*x to VR and normalize. */
 | |
| 
 | |
| 		if (! over) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 no back-transform: copy x to VR and normalize. */
 | |
| 		    scopy_(&ki, &work[(iv - 1) * *n + 1], &c__1, &vr[(is - 1) 
 | |
| 			    * vr_dim1 + 1], &c__1);
 | |
| 		    scopy_(&ki, &work[iv * *n + 1], &c__1, &vr[is * vr_dim1 + 
 | |
| 			    1], &c__1);
 | |
| 
 | |
| 		    emax = 0.f;
 | |
| 		    i__2 = ki;
 | |
| 		    for (k = 1; k <= i__2; ++k) {
 | |
| /* Computing MAX */
 | |
| 			r__3 = emax, r__4 = (r__1 = vr[k + (is - 1) * vr_dim1]
 | |
| 				, abs(r__1)) + (r__2 = vr[k + is * vr_dim1], 
 | |
| 				abs(r__2));
 | |
| 			emax = f2cmax(r__3,r__4);
 | |
| /* L100: */
 | |
| 		    }
 | |
| 		    remax = 1.f / emax;
 | |
| 		    sscal_(&ki, &remax, &vr[(is - 1) * vr_dim1 + 1], &c__1);
 | |
| 		    sscal_(&ki, &remax, &vr[is * vr_dim1 + 1], &c__1);
 | |
| 
 | |
| 		    i__2 = *n;
 | |
| 		    for (k = ki + 1; k <= i__2; ++k) {
 | |
| 			vr[k + (is - 1) * vr_dim1] = 0.f;
 | |
| 			vr[k + is * vr_dim1] = 0.f;
 | |
| /* L110: */
 | |
| 		    }
 | |
| 
 | |
| 		} else if (nb == 1) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 1: back-transform each vector with GEMV, Q*x. */
 | |
| 		    if (ki > 2) {
 | |
| 			i__2 = ki - 2;
 | |
| 			sgemv_("N", n, &i__2, &c_b29, &vr[vr_offset], ldvr, &
 | |
| 				work[(iv - 1) * *n + 1], &c__1, &work[ki - 1 
 | |
| 				+ (iv - 1) * *n], &vr[(ki - 1) * vr_dim1 + 1],
 | |
| 				 &c__1);
 | |
| 			i__2 = ki - 2;
 | |
| 			sgemv_("N", n, &i__2, &c_b29, &vr[vr_offset], ldvr, &
 | |
| 				work[iv * *n + 1], &c__1, &work[ki + iv * *n],
 | |
| 				 &vr[ki * vr_dim1 + 1], &c__1);
 | |
| 		    } else {
 | |
| 			sscal_(n, &work[ki - 1 + (iv - 1) * *n], &vr[(ki - 1) 
 | |
| 				* vr_dim1 + 1], &c__1);
 | |
| 			sscal_(n, &work[ki + iv * *n], &vr[ki * vr_dim1 + 1], 
 | |
| 				&c__1);
 | |
| 		    }
 | |
| 
 | |
| 		    emax = 0.f;
 | |
| 		    i__2 = *n;
 | |
| 		    for (k = 1; k <= i__2; ++k) {
 | |
| /* Computing MAX */
 | |
| 			r__3 = emax, r__4 = (r__1 = vr[k + (ki - 1) * vr_dim1]
 | |
| 				, abs(r__1)) + (r__2 = vr[k + ki * vr_dim1], 
 | |
| 				abs(r__2));
 | |
| 			emax = f2cmax(r__3,r__4);
 | |
| /* L120: */
 | |
| 		    }
 | |
| 		    remax = 1.f / emax;
 | |
| 		    sscal_(n, &remax, &vr[(ki - 1) * vr_dim1 + 1], &c__1);
 | |
| 		    sscal_(n, &remax, &vr[ki * vr_dim1 + 1], &c__1);
 | |
| 
 | |
| 		} else {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 2: back-transform block of vectors with GEMM */
 | |
| /*                 zero out below vector */
 | |
| 		    i__2 = *n;
 | |
| 		    for (k = ki + 1; k <= i__2; ++k) {
 | |
| 			work[k + (iv - 1) * *n] = 0.f;
 | |
| 			work[k + iv * *n] = 0.f;
 | |
| 		    }
 | |
| 		    iscomplex[iv - 2] = -ip;
 | |
| 		    iscomplex[iv - 1] = ip;
 | |
| 		    --iv;
 | |
| /*                 back-transform and normalization is done below */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (nb > 1) {
 | |
| /*              -------------------------------------------------------- */
 | |
| /*              Blocked version of back-transform */
 | |
| /*              For complex case, KI2 includes both vectors (KI-1 and KI) */
 | |
| 		if (ip == 0) {
 | |
| 		    ki2 = ki;
 | |
| 		} else {
 | |
| 		    ki2 = ki - 1;
 | |
| 		}
 | |
| /*              Columns IV:NB of work are valid vectors. */
 | |
| /*              When the number of vectors stored reaches NB-1 or NB, */
 | |
| /*              or if this was last vector, do the GEMM */
 | |
| 		if (iv <= 2 || ki2 == 1) {
 | |
| 		    i__2 = nb - iv + 1;
 | |
| 		    i__3 = ki2 + nb - iv;
 | |
| 		    sgemm_("N", "N", n, &i__2, &i__3, &c_b29, &vr[vr_offset], 
 | |
| 			    ldvr, &work[iv * *n + 1], n, &c_b17, &work[(nb + 
 | |
| 			    iv) * *n + 1], n);
 | |
| /*                 normalize vectors */
 | |
| 		    i__2 = nb;
 | |
| 		    for (k = iv; k <= i__2; ++k) {
 | |
| 			if (iscomplex[k - 1] == 0) {
 | |
| /*                       real eigenvector */
 | |
| 			    ii = isamax_(n, &work[(nb + k) * *n + 1], &c__1);
 | |
| 			    remax = 1.f / (r__1 = work[ii + (nb + k) * *n], 
 | |
| 				    abs(r__1));
 | |
| 			} else if (iscomplex[k - 1] == 1) {
 | |
| /*                       first eigenvector of conjugate pair */
 | |
| 			    emax = 0.f;
 | |
| 			    i__3 = *n;
 | |
| 			    for (ii = 1; ii <= i__3; ++ii) {
 | |
| /* Computing MAX */
 | |
| 				r__3 = emax, r__4 = (r__1 = work[ii + (nb + k)
 | |
| 					 * *n], abs(r__1)) + (r__2 = work[ii 
 | |
| 					+ (nb + k + 1) * *n], abs(r__2));
 | |
| 				emax = f2cmax(r__3,r__4);
 | |
| 			    }
 | |
| 			    remax = 1.f / emax;
 | |
| /*                    else if ISCOMPLEX(K).EQ.-1 */
 | |
| /*                       second eigenvector of conjugate pair */
 | |
| /*                       reuse same REMAX as previous K */
 | |
| 			}
 | |
| 			sscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
 | |
| 		    }
 | |
| 		    i__2 = nb - iv + 1;
 | |
| 		    slacpy_("F", n, &i__2, &work[(nb + iv) * *n + 1], n, &vr[
 | |
| 			    ki2 * vr_dim1 + 1], ldvr);
 | |
| 		    iv = nb;
 | |
| 		} else {
 | |
| 		    --iv;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /* blocked back-transform */
 | |
| 	    --is;
 | |
| 	    if (ip != 0) {
 | |
| 		--is;
 | |
| 	    }
 | |
| L140:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
|     if (leftv) {
 | |
| 
 | |
| /*        ============================================================ */
 | |
| /*        Compute left eigenvectors. */
 | |
| 
 | |
| /*        IV is index of column in current block. */
 | |
| /*        For complex left vector, uses IV for real part and IV+1 for complex part. */
 | |
| /*        Non-blocked version always uses IV=1; */
 | |
| /*        blocked     version starts with IV=1, goes up to NB-1 or NB. */
 | |
| /*        (Note the "0-th" column is used for 1-norms computed above.) */
 | |
| 	iv = 1;
 | |
| 	ip = 0;
 | |
| 	is = 1;
 | |
| 	i__2 = *n;
 | |
| 	for (ki = 1; ki <= i__2; ++ki) {
 | |
| 	    if (ip == 1) {
 | |
| /*              previous iteration (ki-1) was first of conjugate pair, */
 | |
| /*              so this ki is second of conjugate pair; skip to end of loop */
 | |
| 		ip = -1;
 | |
| 		goto L260;
 | |
| 	    } else if (ki == *n) {
 | |
| /*              last column, so this ki must be real eigenvalue */
 | |
| 		ip = 0;
 | |
| 	    } else if (t[ki + 1 + ki * t_dim1] == 0.f) {
 | |
| /*              zero on sub-diagonal, so this ki is real eigenvalue */
 | |
| 		ip = 0;
 | |
| 	    } else {
 | |
| /*              non-zero on sub-diagonal, so this ki is first of conjugate pair */
 | |
| 		ip = 1;
 | |
| 	    }
 | |
| 
 | |
| 	    if (somev) {
 | |
| 		if (! select[ki]) {
 | |
| 		    goto L260;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /*           Compute the KI-th eigenvalue (WR,WI). */
 | |
| 
 | |
| 	    wr = t[ki + ki * t_dim1];
 | |
| 	    wi = 0.f;
 | |
| 	    if (ip != 0) {
 | |
| 		wi = sqrt((r__1 = t[ki + (ki + 1) * t_dim1], abs(r__1))) * 
 | |
| 			sqrt((r__2 = t[ki + 1 + ki * t_dim1], abs(r__2)));
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    r__1 = ulp * (abs(wr) + abs(wi));
 | |
| 	    smin = f2cmax(r__1,smlnum);
 | |
| 
 | |
| 	    if (ip == 0) {
 | |
| 
 | |
| /*              -------------------------------------------------------- */
 | |
| /*              Real left eigenvector */
 | |
| 
 | |
| 		work[ki + iv * *n] = 1.f;
 | |
| 
 | |
| /*              Form right-hand side. */
 | |
| 
 | |
| 		i__3 = *n;
 | |
| 		for (k = ki + 1; k <= i__3; ++k) {
 | |
| 		    work[k + iv * *n] = -t[ki + k * t_dim1];
 | |
| /* L160: */
 | |
| 		}
 | |
| 
 | |
| /*              Solve transposed quasi-triangular system: */
 | |
| /*              [ T(KI+1:N,KI+1:N) - WR ]**T * X = SCALE*WORK */
 | |
| 
 | |
| 		vmax = 1.f;
 | |
| 		vcrit = bignum;
 | |
| 
 | |
| 		jnxt = ki + 1;
 | |
| 		i__3 = *n;
 | |
| 		for (j = ki + 1; j <= i__3; ++j) {
 | |
| 		    if (j < jnxt) {
 | |
| 			goto L170;
 | |
| 		    }
 | |
| 		    j1 = j;
 | |
| 		    j2 = j;
 | |
| 		    jnxt = j + 1;
 | |
| 		    if (j < *n) {
 | |
| 			if (t[j + 1 + j * t_dim1] != 0.f) {
 | |
| 			    j2 = j + 1;
 | |
| 			    jnxt = j + 2;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j1 == j2) {
 | |
| 
 | |
| /*                    1-by-1 diagonal block */
 | |
| 
 | |
| /*                    Scale if necessary to avoid overflow when forming */
 | |
| /*                    the right-hand side. */
 | |
| 
 | |
| 			if (work[j] > vcrit) {
 | |
| 			    rec = 1.f / vmax;
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
 | |
| 			    vmax = 1.f;
 | |
| 			    vcrit = bignum;
 | |
| 			}
 | |
| 
 | |
| 			i__4 = j - ki - 1;
 | |
| 			work[j + iv * *n] -= sdot_(&i__4, &t[ki + 1 + j * 
 | |
| 				t_dim1], &c__1, &work[ki + 1 + iv * *n], &
 | |
| 				c__1);
 | |
| 
 | |
| /*                    Solve [ T(J,J) - WR ]**T * X = WORK */
 | |
| 
 | |
| 			slaln2_(&c_false, &c__1, &c__1, &smin, &c_b29, &t[j + 
 | |
| 				j * t_dim1], ldt, &c_b29, &c_b29, &work[j + 
 | |
| 				iv * *n], n, &wr, &c_b17, x, &c__2, &scale, &
 | |
| 				xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
 | |
| 			}
 | |
| 			work[j + iv * *n] = x[0];
 | |
| /* Computing MAX */
 | |
| 			r__2 = (r__1 = work[j + iv * *n], abs(r__1));
 | |
| 			vmax = f2cmax(r__2,vmax);
 | |
| 			vcrit = bignum / vmax;
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    2-by-2 diagonal block */
 | |
| 
 | |
| /*                    Scale if necessary to avoid overflow when forming */
 | |
| /*                    the right-hand side. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 			r__1 = work[j], r__2 = work[j + 1];
 | |
| 			beta = f2cmax(r__1,r__2);
 | |
| 			if (beta > vcrit) {
 | |
| 			    rec = 1.f / vmax;
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
 | |
| 			    vmax = 1.f;
 | |
| 			    vcrit = bignum;
 | |
| 			}
 | |
| 
 | |
| 			i__4 = j - ki - 1;
 | |
| 			work[j + iv * *n] -= sdot_(&i__4, &t[ki + 1 + j * 
 | |
| 				t_dim1], &c__1, &work[ki + 1 + iv * *n], &
 | |
| 				c__1);
 | |
| 
 | |
| 			i__4 = j - ki - 1;
 | |
| 			work[j + 1 + iv * *n] -= sdot_(&i__4, &t[ki + 1 + (j 
 | |
| 				+ 1) * t_dim1], &c__1, &work[ki + 1 + iv * *n]
 | |
| 				, &c__1);
 | |
| 
 | |
| /*                    Solve */
 | |
| /*                    [ T(J,J)-WR   T(J,J+1)      ]**T * X = SCALE*( WORK1 ) */
 | |
| /*                    [ T(J+1,J)    T(J+1,J+1)-WR ]                ( WORK2 ) */
 | |
| 
 | |
| 			slaln2_(&c_true, &c__2, &c__1, &smin, &c_b29, &t[j + 
 | |
| 				j * t_dim1], ldt, &c_b29, &c_b29, &work[j + 
 | |
| 				iv * *n], n, &wr, &c_b17, x, &c__2, &scale, &
 | |
| 				xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
 | |
| 			}
 | |
| 			work[j + iv * *n] = x[0];
 | |
| 			work[j + 1 + iv * *n] = x[1];
 | |
| 
 | |
| /* Computing MAX */
 | |
| 			r__3 = (r__1 = work[j + iv * *n], abs(r__1)), r__4 = (
 | |
| 				r__2 = work[j + 1 + iv * *n], abs(r__2)), 
 | |
| 				r__3 = f2cmax(r__3,r__4);
 | |
| 			vmax = f2cmax(r__3,vmax);
 | |
| 			vcrit = bignum / vmax;
 | |
| 
 | |
| 		    }
 | |
| L170:
 | |
| 		    ;
 | |
| 		}
 | |
| 
 | |
| /*              Copy the vector x or Q*x to VL and normalize. */
 | |
| 
 | |
| 		if (! over) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 no back-transform: copy x to VL and normalize. */
 | |
| 		    i__3 = *n - ki + 1;
 | |
| 		    scopy_(&i__3, &work[ki + iv * *n], &c__1, &vl[ki + is * 
 | |
| 			    vl_dim1], &c__1);
 | |
| 
 | |
| 		    i__3 = *n - ki + 1;
 | |
| 		    ii = isamax_(&i__3, &vl[ki + is * vl_dim1], &c__1) + ki - 
 | |
| 			    1;
 | |
| 		    remax = 1.f / (r__1 = vl[ii + is * vl_dim1], abs(r__1));
 | |
| 		    i__3 = *n - ki + 1;
 | |
| 		    sscal_(&i__3, &remax, &vl[ki + is * vl_dim1], &c__1);
 | |
| 
 | |
| 		    i__3 = ki - 1;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| 			vl[k + is * vl_dim1] = 0.f;
 | |
| /* L180: */
 | |
| 		    }
 | |
| 
 | |
| 		} else if (nb == 1) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 1: back-transform each vector with GEMV, Q*x. */
 | |
| 		    if (ki < *n) {
 | |
| 			i__3 = *n - ki;
 | |
| 			sgemv_("N", n, &i__3, &c_b29, &vl[(ki + 1) * vl_dim1 
 | |
| 				+ 1], ldvl, &work[ki + 1 + iv * *n], &c__1, &
 | |
| 				work[ki + iv * *n], &vl[ki * vl_dim1 + 1], &
 | |
| 				c__1);
 | |
| 		    }
 | |
| 
 | |
| 		    ii = isamax_(n, &vl[ki * vl_dim1 + 1], &c__1);
 | |
| 		    remax = 1.f / (r__1 = vl[ii + ki * vl_dim1], abs(r__1));
 | |
| 		    sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
 | |
| 
 | |
| 		} else {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 2: back-transform block of vectors with GEMM */
 | |
| /*                 zero out above vector */
 | |
| /*                 could go from KI-NV+1 to KI-1 */
 | |
| 		    i__3 = ki - 1;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| 			work[k + iv * *n] = 0.f;
 | |
| 		    }
 | |
| 		    iscomplex[iv - 1] = ip;
 | |
| /*                 back-transform and normalization is done below */
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              -------------------------------------------------------- */
 | |
| /*              Complex left eigenvector. */
 | |
| 
 | |
| /*              Initial solve: */
 | |
| /*              [ ( T(KI,KI)    T(KI,KI+1)  )**T - (WR - I* WI) ]*X = 0. */
 | |
| /*              [ ( T(KI+1,KI) T(KI+1,KI+1) )                   ] */
 | |
| 
 | |
| 		if ((r__1 = t[ki + (ki + 1) * t_dim1], abs(r__1)) >= (r__2 = 
 | |
| 			t[ki + 1 + ki * t_dim1], abs(r__2))) {
 | |
| 		    work[ki + iv * *n] = wi / t[ki + (ki + 1) * t_dim1];
 | |
| 		    work[ki + 1 + (iv + 1) * *n] = 1.f;
 | |
| 		} else {
 | |
| 		    work[ki + iv * *n] = 1.f;
 | |
| 		    work[ki + 1 + (iv + 1) * *n] = -wi / t[ki + 1 + ki * 
 | |
| 			    t_dim1];
 | |
| 		}
 | |
| 		work[ki + 1 + iv * *n] = 0.f;
 | |
| 		work[ki + (iv + 1) * *n] = 0.f;
 | |
| 
 | |
| /*              Form right-hand side. */
 | |
| 
 | |
| 		i__3 = *n;
 | |
| 		for (k = ki + 2; k <= i__3; ++k) {
 | |
| 		    work[k + iv * *n] = -work[ki + iv * *n] * t[ki + k * 
 | |
| 			    t_dim1];
 | |
| 		    work[k + (iv + 1) * *n] = -work[ki + 1 + (iv + 1) * *n] * 
 | |
| 			    t[ki + 1 + k * t_dim1];
 | |
| /* L190: */
 | |
| 		}
 | |
| 
 | |
| /*              Solve transposed quasi-triangular system: */
 | |
| /*              [ T(KI+2:N,KI+2:N)**T - (WR-i*WI) ]*X = WORK1+i*WORK2 */
 | |
| 
 | |
| 		vmax = 1.f;
 | |
| 		vcrit = bignum;
 | |
| 
 | |
| 		jnxt = ki + 2;
 | |
| 		i__3 = *n;
 | |
| 		for (j = ki + 2; j <= i__3; ++j) {
 | |
| 		    if (j < jnxt) {
 | |
| 			goto L200;
 | |
| 		    }
 | |
| 		    j1 = j;
 | |
| 		    j2 = j;
 | |
| 		    jnxt = j + 1;
 | |
| 		    if (j < *n) {
 | |
| 			if (t[j + 1 + j * t_dim1] != 0.f) {
 | |
| 			    j2 = j + 1;
 | |
| 			    jnxt = j + 2;
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j1 == j2) {
 | |
| 
 | |
| /*                    1-by-1 diagonal block */
 | |
| 
 | |
| /*                    Scale if necessary to avoid overflow when */
 | |
| /*                    forming the right-hand side elements. */
 | |
| 
 | |
| 			if (work[j] > vcrit) {
 | |
| 			    rec = 1.f / vmax;
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &rec, &work[ki + (iv + 1) * *n], &
 | |
| 				    c__1);
 | |
| 			    vmax = 1.f;
 | |
| 			    vcrit = bignum;
 | |
| 			}
 | |
| 
 | |
| 			i__4 = j - ki - 2;
 | |
| 			work[j + iv * *n] -= sdot_(&i__4, &t[ki + 2 + j * 
 | |
| 				t_dim1], &c__1, &work[ki + 2 + iv * *n], &
 | |
| 				c__1);
 | |
| 			i__4 = j - ki - 2;
 | |
| 			work[j + (iv + 1) * *n] -= sdot_(&i__4, &t[ki + 2 + j 
 | |
| 				* t_dim1], &c__1, &work[ki + 2 + (iv + 1) * *
 | |
| 				n], &c__1);
 | |
| 
 | |
| /*                    Solve [ T(J,J)-(WR-i*WI) ]*(X11+i*X12)= WK+I*WK2 */
 | |
| 
 | |
| 			r__1 = -wi;
 | |
| 			slaln2_(&c_false, &c__1, &c__2, &smin, &c_b29, &t[j + 
 | |
| 				j * t_dim1], ldt, &c_b29, &c_b29, &work[j + 
 | |
| 				iv * *n], n, &wr, &r__1, x, &c__2, &scale, &
 | |
| 				xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &scale, &work[ki + (iv + 1) * *n], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 			work[j + iv * *n] = x[0];
 | |
| 			work[j + (iv + 1) * *n] = x[2];
 | |
| /* Computing MAX */
 | |
| 			r__3 = (r__1 = work[j + iv * *n], abs(r__1)), r__4 = (
 | |
| 				r__2 = work[j + (iv + 1) * *n], abs(r__2)), 
 | |
| 				r__3 = f2cmax(r__3,r__4);
 | |
| 			vmax = f2cmax(r__3,vmax);
 | |
| 			vcrit = bignum / vmax;
 | |
| 
 | |
| 		    } else {
 | |
| 
 | |
| /*                    2-by-2 diagonal block */
 | |
| 
 | |
| /*                    Scale if necessary to avoid overflow when forming */
 | |
| /*                    the right-hand side elements. */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 			r__1 = work[j], r__2 = work[j + 1];
 | |
| 			beta = f2cmax(r__1,r__2);
 | |
| 			if (beta > vcrit) {
 | |
| 			    rec = 1.f / vmax;
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &rec, &work[ki + iv * *n], &c__1);
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &rec, &work[ki + (iv + 1) * *n], &
 | |
| 				    c__1);
 | |
| 			    vmax = 1.f;
 | |
| 			    vcrit = bignum;
 | |
| 			}
 | |
| 
 | |
| 			i__4 = j - ki - 2;
 | |
| 			work[j + iv * *n] -= sdot_(&i__4, &t[ki + 2 + j * 
 | |
| 				t_dim1], &c__1, &work[ki + 2 + iv * *n], &
 | |
| 				c__1);
 | |
| 
 | |
| 			i__4 = j - ki - 2;
 | |
| 			work[j + (iv + 1) * *n] -= sdot_(&i__4, &t[ki + 2 + j 
 | |
| 				* t_dim1], &c__1, &work[ki + 2 + (iv + 1) * *
 | |
| 				n], &c__1);
 | |
| 
 | |
| 			i__4 = j - ki - 2;
 | |
| 			work[j + 1 + iv * *n] -= sdot_(&i__4, &t[ki + 2 + (j 
 | |
| 				+ 1) * t_dim1], &c__1, &work[ki + 2 + iv * *n]
 | |
| 				, &c__1);
 | |
| 
 | |
| 			i__4 = j - ki - 2;
 | |
| 			work[j + 1 + (iv + 1) * *n] -= sdot_(&i__4, &t[ki + 2 
 | |
| 				+ (j + 1) * t_dim1], &c__1, &work[ki + 2 + (
 | |
| 				iv + 1) * *n], &c__1);
 | |
| 
 | |
| /*                    Solve 2-by-2 complex linear equation */
 | |
| /*                    [ (T(j,j)   T(j,j+1)  )**T - (wr-i*wi)*I ]*X = SCALE*B */
 | |
| /*                    [ (T(j+1,j) T(j+1,j+1))                  ] */
 | |
| 
 | |
| 			r__1 = -wi;
 | |
| 			slaln2_(&c_true, &c__2, &c__2, &smin, &c_b29, &t[j + 
 | |
| 				j * t_dim1], ldt, &c_b29, &c_b29, &work[j + 
 | |
| 				iv * *n], n, &wr, &r__1, x, &c__2, &scale, &
 | |
| 				xnorm, &ierr);
 | |
| 
 | |
| /*                    Scale if necessary */
 | |
| 
 | |
| 			if (scale != 1.f) {
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &scale, &work[ki + iv * *n], &c__1);
 | |
| 			    i__4 = *n - ki + 1;
 | |
| 			    sscal_(&i__4, &scale, &work[ki + (iv + 1) * *n], &
 | |
| 				    c__1);
 | |
| 			}
 | |
| 			work[j + iv * *n] = x[0];
 | |
| 			work[j + (iv + 1) * *n] = x[2];
 | |
| 			work[j + 1 + iv * *n] = x[1];
 | |
| 			work[j + 1 + (iv + 1) * *n] = x[3];
 | |
| /* Computing MAX */
 | |
| 			r__1 = abs(x[0]), r__2 = abs(x[2]), r__1 = f2cmax(r__1,
 | |
| 				r__2), r__2 = abs(x[1]), r__1 = f2cmax(r__1,r__2)
 | |
| 				, r__2 = abs(x[3]), r__1 = f2cmax(r__1,r__2);
 | |
| 			vmax = f2cmax(r__1,vmax);
 | |
| 			vcrit = bignum / vmax;
 | |
| 
 | |
| 		    }
 | |
| L200:
 | |
| 		    ;
 | |
| 		}
 | |
| 
 | |
| /*              Copy the vector x or Q*x to VL and normalize. */
 | |
| 
 | |
| 		if (! over) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 no back-transform: copy x to VL and normalize. */
 | |
| 		    i__3 = *n - ki + 1;
 | |
| 		    scopy_(&i__3, &work[ki + iv * *n], &c__1, &vl[ki + is * 
 | |
| 			    vl_dim1], &c__1);
 | |
| 		    i__3 = *n - ki + 1;
 | |
| 		    scopy_(&i__3, &work[ki + (iv + 1) * *n], &c__1, &vl[ki + (
 | |
| 			    is + 1) * vl_dim1], &c__1);
 | |
| 
 | |
| 		    emax = 0.f;
 | |
| 		    i__3 = *n;
 | |
| 		    for (k = ki; k <= i__3; ++k) {
 | |
| /* Computing MAX */
 | |
| 			r__3 = emax, r__4 = (r__1 = vl[k + is * vl_dim1], abs(
 | |
| 				r__1)) + (r__2 = vl[k + (is + 1) * vl_dim1], 
 | |
| 				abs(r__2));
 | |
| 			emax = f2cmax(r__3,r__4);
 | |
| /* L220: */
 | |
| 		    }
 | |
| 		    remax = 1.f / emax;
 | |
| 		    i__3 = *n - ki + 1;
 | |
| 		    sscal_(&i__3, &remax, &vl[ki + is * vl_dim1], &c__1);
 | |
| 		    i__3 = *n - ki + 1;
 | |
| 		    sscal_(&i__3, &remax, &vl[ki + (is + 1) * vl_dim1], &c__1)
 | |
| 			    ;
 | |
| 
 | |
| 		    i__3 = ki - 1;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| 			vl[k + is * vl_dim1] = 0.f;
 | |
| 			vl[k + (is + 1) * vl_dim1] = 0.f;
 | |
| /* L230: */
 | |
| 		    }
 | |
| 
 | |
| 		} else if (nb == 1) {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 1: back-transform each vector with GEMV, Q*x. */
 | |
| 		    if (ki < *n - 1) {
 | |
| 			i__3 = *n - ki - 1;
 | |
| 			sgemv_("N", n, &i__3, &c_b29, &vl[(ki + 2) * vl_dim1 
 | |
| 				+ 1], ldvl, &work[ki + 2 + iv * *n], &c__1, &
 | |
| 				work[ki + iv * *n], &vl[ki * vl_dim1 + 1], &
 | |
| 				c__1);
 | |
| 			i__3 = *n - ki - 1;
 | |
| 			sgemv_("N", n, &i__3, &c_b29, &vl[(ki + 2) * vl_dim1 
 | |
| 				+ 1], ldvl, &work[ki + 2 + (iv + 1) * *n], &
 | |
| 				c__1, &work[ki + 1 + (iv + 1) * *n], &vl[(ki 
 | |
| 				+ 1) * vl_dim1 + 1], &c__1);
 | |
| 		    } else {
 | |
| 			sscal_(n, &work[ki + iv * *n], &vl[ki * vl_dim1 + 1], 
 | |
| 				&c__1);
 | |
| 			sscal_(n, &work[ki + 1 + (iv + 1) * *n], &vl[(ki + 1) 
 | |
| 				* vl_dim1 + 1], &c__1);
 | |
| 		    }
 | |
| 
 | |
| 		    emax = 0.f;
 | |
| 		    i__3 = *n;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| /* Computing MAX */
 | |
| 			r__3 = emax, r__4 = (r__1 = vl[k + ki * vl_dim1], abs(
 | |
| 				r__1)) + (r__2 = vl[k + (ki + 1) * vl_dim1], 
 | |
| 				abs(r__2));
 | |
| 			emax = f2cmax(r__3,r__4);
 | |
| /* L240: */
 | |
| 		    }
 | |
| 		    remax = 1.f / emax;
 | |
| 		    sscal_(n, &remax, &vl[ki * vl_dim1 + 1], &c__1);
 | |
| 		    sscal_(n, &remax, &vl[(ki + 1) * vl_dim1 + 1], &c__1);
 | |
| 
 | |
| 		} else {
 | |
| /*                 ------------------------------ */
 | |
| /*                 version 2: back-transform block of vectors with GEMM */
 | |
| /*                 zero out above vector */
 | |
| /*                 could go from KI-NV+1 to KI-1 */
 | |
| 		    i__3 = ki - 1;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| 			work[k + iv * *n] = 0.f;
 | |
| 			work[k + (iv + 1) * *n] = 0.f;
 | |
| 		    }
 | |
| 		    iscomplex[iv - 1] = ip;
 | |
| 		    iscomplex[iv] = -ip;
 | |
| 		    ++iv;
 | |
| /*                 back-transform and normalization is done below */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (nb > 1) {
 | |
| /*              -------------------------------------------------------- */
 | |
| /*              Blocked version of back-transform */
 | |
| /*              For complex case, KI2 includes both vectors (KI and KI+1) */
 | |
| 		if (ip == 0) {
 | |
| 		    ki2 = ki;
 | |
| 		} else {
 | |
| 		    ki2 = ki + 1;
 | |
| 		}
 | |
| /*              Columns 1:IV of work are valid vectors. */
 | |
| /*              When the number of vectors stored reaches NB-1 or NB, */
 | |
| /*              or if this was last vector, do the GEMM */
 | |
| 		if (iv >= nb - 1 || ki2 == *n) {
 | |
| 		    i__3 = *n - ki2 + iv;
 | |
| 		    sgemm_("N", "N", n, &iv, &i__3, &c_b29, &vl[(ki2 - iv + 1)
 | |
| 			     * vl_dim1 + 1], ldvl, &work[ki2 - iv + 1 + *n], 
 | |
| 			    n, &c_b17, &work[(nb + 1) * *n + 1], n);
 | |
| /*                 normalize vectors */
 | |
| 		    i__3 = iv;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| 			if (iscomplex[k - 1] == 0) {
 | |
| /*                       real eigenvector */
 | |
| 			    ii = isamax_(n, &work[(nb + k) * *n + 1], &c__1);
 | |
| 			    remax = 1.f / (r__1 = work[ii + (nb + k) * *n], 
 | |
| 				    abs(r__1));
 | |
| 			} else if (iscomplex[k - 1] == 1) {
 | |
| /*                       first eigenvector of conjugate pair */
 | |
| 			    emax = 0.f;
 | |
| 			    i__4 = *n;
 | |
| 			    for (ii = 1; ii <= i__4; ++ii) {
 | |
| /* Computing MAX */
 | |
| 				r__3 = emax, r__4 = (r__1 = work[ii + (nb + k)
 | |
| 					 * *n], abs(r__1)) + (r__2 = work[ii 
 | |
| 					+ (nb + k + 1) * *n], abs(r__2));
 | |
| 				emax = f2cmax(r__3,r__4);
 | |
| 			    }
 | |
| 			    remax = 1.f / emax;
 | |
| /*                    else if ISCOMPLEX(K).EQ.-1 */
 | |
| /*                       second eigenvector of conjugate pair */
 | |
| /*                       reuse same REMAX as previous K */
 | |
| 			}
 | |
| 			sscal_(n, &remax, &work[(nb + k) * *n + 1], &c__1);
 | |
| 		    }
 | |
| 		    slacpy_("F", n, &iv, &work[(nb + 1) * *n + 1], n, &vl[(
 | |
| 			    ki2 - iv + 1) * vl_dim1 + 1], ldvl);
 | |
| 		    iv = 1;
 | |
| 		} else {
 | |
| 		    ++iv;
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| /* blocked back-transform */
 | |
| 	    ++is;
 | |
| 	    if (ip != 0) {
 | |
| 		++is;
 | |
| 	    }
 | |
| L260:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of STREVC3 */
 | |
| 
 | |
| } /* strevc3_ */
 | |
| 
 |