1075 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			1075 lines
		
	
	
		
			36 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STREVC
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download STREVC + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/strevc.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/strevc.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/strevc.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
| *                          LDVR, MM, M, WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          HOWMNY, SIDE
 | |
| *       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       LOGICAL            SELECT( * )
 | |
| *       REAL               T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
| *      $                   WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STREVC computes some or all of the right and/or left eigenvectors of
 | |
| *> a real upper quasi-triangular matrix T.
 | |
| *> Matrices of this type are produced by the Schur factorization of
 | |
| *> a real general matrix:  A = Q*T*Q**T, as computed by SHSEQR.
 | |
| *>
 | |
| *> The right eigenvector x and the left eigenvector y of T corresponding
 | |
| *> to an eigenvalue w are defined by:
 | |
| *>
 | |
| *>    T*x = w*x,     (y**H)*T = w*(y**H)
 | |
| *>
 | |
| *> where y**H denotes the conjugate transpose of y.
 | |
| *> The eigenvalues are not input to this routine, but are read directly
 | |
| *> from the diagonal blocks of T.
 | |
| *>
 | |
| *> This routine returns the matrices X and/or Y of right and left
 | |
| *> eigenvectors of T, or the products Q*X and/or Q*Y, where Q is an
 | |
| *> input matrix.  If Q is the orthogonal factor that reduces a matrix
 | |
| *> A to Schur form T, then Q*X and Q*Y are the matrices of right and
 | |
| *> left eigenvectors of A.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'R':  compute right eigenvectors only;
 | |
| *>          = 'L':  compute left eigenvectors only;
 | |
| *>          = 'B':  compute both right and left eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] HOWMNY
 | |
| *> \verbatim
 | |
| *>          HOWMNY is CHARACTER*1
 | |
| *>          = 'A':  compute all right and/or left eigenvectors;
 | |
| *>          = 'B':  compute all right and/or left eigenvectors,
 | |
| *>                  backtransformed by the matrices in VR and/or VL;
 | |
| *>          = 'S':  compute selected right and/or left eigenvectors,
 | |
| *>                  as indicated by the logical array SELECT.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] SELECT
 | |
| *> \verbatim
 | |
| *>          SELECT is LOGICAL array, dimension (N)
 | |
| *>          If HOWMNY = 'S', SELECT specifies the eigenvectors to be
 | |
| *>          computed.
 | |
| *>          If w(j) is a real eigenvalue, the corresponding real
 | |
| *>          eigenvector is computed if SELECT(j) is .TRUE..
 | |
| *>          If w(j) and w(j+1) are the real and imaginary parts of a
 | |
| *>          complex eigenvalue, the corresponding complex eigenvector is
 | |
| *>          computed if either SELECT(j) or SELECT(j+1) is .TRUE., and
 | |
| *>          on exit SELECT(j) is set to .TRUE. and SELECT(j+1) is set to
 | |
| *>          .FALSE..
 | |
| *>          Not referenced if HOWMNY = 'A' or 'B'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix T. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] T
 | |
| *> \verbatim
 | |
| *>          T is REAL array, dimension (LDT,N)
 | |
| *>          The upper quasi-triangular matrix T in Schur canonical form.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDT
 | |
| *> \verbatim
 | |
| *>          LDT is INTEGER
 | |
| *>          The leading dimension of the array T. LDT >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL array, dimension (LDVL,MM)
 | |
| *>          On entry, if SIDE = 'L' or 'B' and HOWMNY = 'B', VL must
 | |
| *>          contain an N-by-N matrix Q (usually the orthogonal matrix Q
 | |
| *>          of Schur vectors returned by SHSEQR).
 | |
| *>          On exit, if SIDE = 'L' or 'B', VL contains:
 | |
| *>          if HOWMNY = 'A', the matrix Y of left eigenvectors of T;
 | |
| *>          if HOWMNY = 'B', the matrix Q*Y;
 | |
| *>          if HOWMNY = 'S', the left eigenvectors of T specified by
 | |
| *>                           SELECT, stored consecutively in the columns
 | |
| *>                           of VL, in the same order as their
 | |
| *>                           eigenvalues.
 | |
| *>          A complex eigenvector corresponding to a complex eigenvalue
 | |
| *>          is stored in two consecutive columns, the first holding the
 | |
| *>          real part, and the second the imaginary part.
 | |
| *>          Not referenced if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVL
 | |
| *> \verbatim
 | |
| *>          LDVL is INTEGER
 | |
| *>          The leading dimension of the array VL.  LDVL >= 1, and if
 | |
| *>          SIDE = 'L' or 'B', LDVL >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] VR
 | |
| *> \verbatim
 | |
| *>          VR is REAL array, dimension (LDVR,MM)
 | |
| *>          On entry, if SIDE = 'R' or 'B' and HOWMNY = 'B', VR must
 | |
| *>          contain an N-by-N matrix Q (usually the orthogonal matrix Q
 | |
| *>          of Schur vectors returned by SHSEQR).
 | |
| *>          On exit, if SIDE = 'R' or 'B', VR contains:
 | |
| *>          if HOWMNY = 'A', the matrix X of right eigenvectors of T;
 | |
| *>          if HOWMNY = 'B', the matrix Q*X;
 | |
| *>          if HOWMNY = 'S', the right eigenvectors of T specified by
 | |
| *>                           SELECT, stored consecutively in the columns
 | |
| *>                           of VR, in the same order as their
 | |
| *>                           eigenvalues.
 | |
| *>          A complex eigenvector corresponding to a complex eigenvalue
 | |
| *>          is stored in two consecutive columns, the first holding the
 | |
| *>          real part and the second the imaginary part.
 | |
| *>          Not referenced if SIDE = 'L'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDVR
 | |
| *> \verbatim
 | |
| *>          LDVR is INTEGER
 | |
| *>          The leading dimension of the array VR.  LDVR >= 1, and if
 | |
| *>          SIDE = 'R' or 'B', LDVR >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] MM
 | |
| *> \verbatim
 | |
| *>          MM is INTEGER
 | |
| *>          The number of columns in the arrays VL and/or VR. MM >= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of columns in the arrays VL and/or VR actually
 | |
| *>          used to store the eigenvectors.
 | |
| *>          If HOWMNY = 'A' or 'B', M is set to N.
 | |
| *>          Each selected real eigenvector occupies one column and each
 | |
| *>          selected complex eigenvector occupies two columns.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The algorithm used in this program is basically backward (forward)
 | |
| *>  substitution, with scaling to make the the code robust against
 | |
| *>  possible overflow.
 | |
| *>
 | |
| *>  Each eigenvector is normalized so that the element of largest
 | |
| *>  magnitude has magnitude 1; here the magnitude of a complex number
 | |
| *>  (x,y) is taken to be |x| + |y|.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STREVC( SIDE, HOWMNY, SELECT, N, T, LDT, VL, LDVL, VR,
 | |
|      $                   LDVR, MM, M, WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          HOWMNY, SIDE
 | |
|       INTEGER            INFO, LDT, LDVL, LDVR, M, MM, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       LOGICAL            SELECT( * )
 | |
|       REAL               T( LDT, * ), VL( LDVL, * ), VR( LDVR, * ),
 | |
|      $                   WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLV, BOTHV, LEFTV, OVER, PAIR, RIGHTV, SOMEV
 | |
|       INTEGER            I, IERR, II, IP, IS, J, J1, J2, JNXT, K, KI, N2
 | |
|       REAL               BETA, BIGNUM, EMAX, OVFL, REC, REMAX, SCALE,
 | |
|      $                   SMIN, SMLNUM, ULP, UNFL, VCRIT, VMAX, WI, WR,
 | |
|      $                   XNORM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       INTEGER            ISAMAX
 | |
|       REAL               SDOT, SLAMCH
 | |
|       EXTERNAL           LSAME, ISAMAX, SDOT, SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SCOPY, SGEMV, SLABAD, SLALN2, SSCAL,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               X( 2, 2 )
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Decode and test the input parameters
 | |
| *
 | |
|       BOTHV = LSAME( SIDE, 'B' )
 | |
|       RIGHTV = LSAME( SIDE, 'R' ) .OR. BOTHV
 | |
|       LEFTV = LSAME( SIDE, 'L' ) .OR. BOTHV
 | |
| *
 | |
|       ALLV = LSAME( HOWMNY, 'A' )
 | |
|       OVER = LSAME( HOWMNY, 'B' )
 | |
|       SOMEV = LSAME( HOWMNY, 'S' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.RIGHTV .AND. .NOT.LEFTV ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.ALLV .AND. .NOT.OVER .AND. .NOT.SOMEV ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDT.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDVL.LT.1 .OR. ( LEFTV .AND. LDVL.LT.N ) ) THEN
 | |
|          INFO = -8
 | |
|       ELSE IF( LDVR.LT.1 .OR. ( RIGHTV .AND. LDVR.LT.N ) ) THEN
 | |
|          INFO = -10
 | |
|       ELSE
 | |
| *
 | |
| *        Set M to the number of columns required to store the selected
 | |
| *        eigenvectors, standardize the array SELECT if necessary, and
 | |
| *        test MM.
 | |
| *
 | |
|          IF( SOMEV ) THEN
 | |
|             M = 0
 | |
|             PAIR = .FALSE.
 | |
|             DO 10 J = 1, N
 | |
|                IF( PAIR ) THEN
 | |
|                   PAIR = .FALSE.
 | |
|                   SELECT( J ) = .FALSE.
 | |
|                ELSE
 | |
|                   IF( J.LT.N ) THEN
 | |
|                      IF( T( J+1, J ).EQ.ZERO ) THEN
 | |
|                         IF( SELECT( J ) )
 | |
|      $                     M = M + 1
 | |
|                      ELSE
 | |
|                         PAIR = .TRUE.
 | |
|                         IF( SELECT( J ) .OR. SELECT( J+1 ) ) THEN
 | |
|                            SELECT( J ) = .TRUE.
 | |
|                            M = M + 2
 | |
|                         END IF
 | |
|                      END IF
 | |
|                   ELSE
 | |
|                      IF( SELECT( N ) )
 | |
|      $                  M = M + 1
 | |
|                   END IF
 | |
|                END IF
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             M = N
 | |
|          END IF
 | |
| *
 | |
|          IF( MM.LT.M ) THEN
 | |
|             INFO = -11
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'STREVC', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible.
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Set the constants to control overflow.
 | |
| *
 | |
|       UNFL = SLAMCH( 'Safe minimum' )
 | |
|       OVFL = ONE / UNFL
 | |
|       CALL SLABAD( UNFL, OVFL )
 | |
|       ULP = SLAMCH( 'Precision' )
 | |
|       SMLNUM = UNFL*( N / ULP )
 | |
|       BIGNUM = ( ONE-ULP ) / SMLNUM
 | |
| *
 | |
| *     Compute 1-norm of each column of strictly upper triangular
 | |
| *     part of T to control overflow in triangular solver.
 | |
| *
 | |
|       WORK( 1 ) = ZERO
 | |
|       DO 30 J = 2, N
 | |
|          WORK( J ) = ZERO
 | |
|          DO 20 I = 1, J - 1
 | |
|             WORK( J ) = WORK( J ) + ABS( T( I, J ) )
 | |
|    20    CONTINUE
 | |
|    30 CONTINUE
 | |
| *
 | |
| *     Index IP is used to specify the real or complex eigenvalue:
 | |
| *       IP = 0, real eigenvalue,
 | |
| *            1, first of conjugate complex pair: (wr,wi)
 | |
| *           -1, second of conjugate complex pair: (wr,wi)
 | |
| *
 | |
|       N2 = 2*N
 | |
| *
 | |
|       IF( RIGHTV ) THEN
 | |
| *
 | |
| *        Compute right eigenvectors.
 | |
| *
 | |
|          IP = 0
 | |
|          IS = M
 | |
|          DO 140 KI = N, 1, -1
 | |
| *
 | |
|             IF( IP.EQ.1 )
 | |
|      $         GO TO 130
 | |
|             IF( KI.EQ.1 )
 | |
|      $         GO TO 40
 | |
|             IF( T( KI, KI-1 ).EQ.ZERO )
 | |
|      $         GO TO 40
 | |
|             IP = -1
 | |
| *
 | |
|    40       CONTINUE
 | |
|             IF( SOMEV ) THEN
 | |
|                IF( IP.EQ.0 ) THEN
 | |
|                   IF( .NOT.SELECT( KI ) )
 | |
|      $               GO TO 130
 | |
|                ELSE
 | |
|                   IF( .NOT.SELECT( KI-1 ) )
 | |
|      $               GO TO 130
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
| *           Compute the KI-th eigenvalue (WR,WI).
 | |
| *
 | |
|             WR = T( KI, KI )
 | |
|             WI = ZERO
 | |
|             IF( IP.NE.0 )
 | |
|      $         WI = SQRT( ABS( T( KI, KI-1 ) ) )*
 | |
|      $              SQRT( ABS( T( KI-1, KI ) ) )
 | |
|             SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
 | |
| *
 | |
|             IF( IP.EQ.0 ) THEN
 | |
| *
 | |
| *              Real right eigenvector
 | |
| *
 | |
|                WORK( KI+N ) = ONE
 | |
| *
 | |
| *              Form right-hand side
 | |
| *
 | |
|                DO 50 K = 1, KI - 1
 | |
|                   WORK( K+N ) = -T( K, KI )
 | |
|    50          CONTINUE
 | |
| *
 | |
| *              Solve the upper quasi-triangular system:
 | |
| *                 (T(1:KI-1,1:KI-1) - WR)*X = SCALE*WORK.
 | |
| *
 | |
|                JNXT = KI - 1
 | |
|                DO 60 J = KI - 1, 1, -1
 | |
|                   IF( J.GT.JNXT )
 | |
|      $               GO TO 60
 | |
|                   J1 = J
 | |
|                   J2 = J
 | |
|                   JNXT = J - 1
 | |
|                   IF( J.GT.1 ) THEN
 | |
|                      IF( T( J, J-1 ).NE.ZERO ) THEN
 | |
|                         J1 = J - 1
 | |
|                         JNXT = J - 2
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   IF( J1.EQ.J2 ) THEN
 | |
| *
 | |
| *                    1-by-1 diagonal block
 | |
| *
 | |
|                      CALL SLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
 | |
|      $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | |
|      $                            ZERO, X, 2, SCALE, XNORM, IERR )
 | |
| *
 | |
| *                    Scale X(1,1) to avoid overflow when updating
 | |
| *                    the right-hand side.
 | |
| *
 | |
|                      IF( XNORM.GT.ONE ) THEN
 | |
|                         IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
 | |
|                            X( 1, 1 ) = X( 1, 1 ) / XNORM
 | |
|                            SCALE = SCALE / XNORM
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE )
 | |
|      $                  CALL SSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | |
|                      WORK( J+N ) = X( 1, 1 )
 | |
| *
 | |
| *                    Update right-hand side
 | |
| *
 | |
|                      CALL SAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
 | |
|      $                           WORK( 1+N ), 1 )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    2-by-2 diagonal block
 | |
| *
 | |
|                      CALL SLALN2( .FALSE., 2, 1, SMIN, ONE,
 | |
|      $                            T( J-1, J-1 ), LDT, ONE, ONE,
 | |
|      $                            WORK( J-1+N ), N, WR, ZERO, X, 2,
 | |
|      $                            SCALE, XNORM, IERR )
 | |
| *
 | |
| *                    Scale X(1,1) and X(2,1) to avoid overflow when
 | |
| *                    updating the right-hand side.
 | |
| *
 | |
|                      IF( XNORM.GT.ONE ) THEN
 | |
|                         BETA = MAX( WORK( J-1 ), WORK( J ) )
 | |
|                         IF( BETA.GT.BIGNUM / XNORM ) THEN
 | |
|                            X( 1, 1 ) = X( 1, 1 ) / XNORM
 | |
|                            X( 2, 1 ) = X( 2, 1 ) / XNORM
 | |
|                            SCALE = SCALE / XNORM
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE )
 | |
|      $                  CALL SSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | |
|                      WORK( J-1+N ) = X( 1, 1 )
 | |
|                      WORK( J+N ) = X( 2, 1 )
 | |
| *
 | |
| *                    Update right-hand side
 | |
| *
 | |
|                      CALL SAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
 | |
|      $                           WORK( 1+N ), 1 )
 | |
|                      CALL SAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
 | |
|      $                           WORK( 1+N ), 1 )
 | |
|                   END IF
 | |
|    60          CONTINUE
 | |
| *
 | |
| *              Copy the vector x or Q*x to VR and normalize.
 | |
| *
 | |
|                IF( .NOT.OVER ) THEN
 | |
|                   CALL SCOPY( KI, WORK( 1+N ), 1, VR( 1, IS ), 1 )
 | |
| *
 | |
|                   II = ISAMAX( KI, VR( 1, IS ), 1 )
 | |
|                   REMAX = ONE / ABS( VR( II, IS ) )
 | |
|                   CALL SSCAL( KI, REMAX, VR( 1, IS ), 1 )
 | |
| *
 | |
|                   DO 70 K = KI + 1, N
 | |
|                      VR( K, IS ) = ZERO
 | |
|    70             CONTINUE
 | |
|                ELSE
 | |
|                   IF( KI.GT.1 )
 | |
|      $               CALL SGEMV( 'N', N, KI-1, ONE, VR, LDVR,
 | |
|      $                           WORK( 1+N ), 1, WORK( KI+N ),
 | |
|      $                           VR( 1, KI ), 1 )
 | |
| *
 | |
|                   II = ISAMAX( N, VR( 1, KI ), 1 )
 | |
|                   REMAX = ONE / ABS( VR( II, KI ) )
 | |
|                   CALL SSCAL( N, REMAX, VR( 1, KI ), 1 )
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              Complex right eigenvector.
 | |
| *
 | |
| *              Initial solve
 | |
| *                [ (T(KI-1,KI-1) T(KI-1,KI) ) - (WR + I* WI)]*X = 0.
 | |
| *                [ (T(KI,KI-1)   T(KI,KI)   )               ]
 | |
| *
 | |
|                IF( ABS( T( KI-1, KI ) ).GE.ABS( T( KI, KI-1 ) ) ) THEN
 | |
|                   WORK( KI-1+N ) = ONE
 | |
|                   WORK( KI+N2 ) = WI / T( KI-1, KI )
 | |
|                ELSE
 | |
|                   WORK( KI-1+N ) = -WI / T( KI, KI-1 )
 | |
|                   WORK( KI+N2 ) = ONE
 | |
|                END IF
 | |
|                WORK( KI+N ) = ZERO
 | |
|                WORK( KI-1+N2 ) = ZERO
 | |
| *
 | |
| *              Form right-hand side
 | |
| *
 | |
|                DO 80 K = 1, KI - 2
 | |
|                   WORK( K+N ) = -WORK( KI-1+N )*T( K, KI-1 )
 | |
|                   WORK( K+N2 ) = -WORK( KI+N2 )*T( K, KI )
 | |
|    80          CONTINUE
 | |
| *
 | |
| *              Solve upper quasi-triangular system:
 | |
| *              (T(1:KI-2,1:KI-2) - (WR+i*WI))*X = SCALE*(WORK+i*WORK2)
 | |
| *
 | |
|                JNXT = KI - 2
 | |
|                DO 90 J = KI - 2, 1, -1
 | |
|                   IF( J.GT.JNXT )
 | |
|      $               GO TO 90
 | |
|                   J1 = J
 | |
|                   J2 = J
 | |
|                   JNXT = J - 1
 | |
|                   IF( J.GT.1 ) THEN
 | |
|                      IF( T( J, J-1 ).NE.ZERO ) THEN
 | |
|                         J1 = J - 1
 | |
|                         JNXT = J - 2
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   IF( J1.EQ.J2 ) THEN
 | |
| *
 | |
| *                    1-by-1 diagonal block
 | |
| *
 | |
|                      CALL SLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
 | |
|      $                            LDT, ONE, ONE, WORK( J+N ), N, WR, WI,
 | |
|      $                            X, 2, SCALE, XNORM, IERR )
 | |
| *
 | |
| *                    Scale X(1,1) and X(1,2) to avoid overflow when
 | |
| *                    updating the right-hand side.
 | |
| *
 | |
|                      IF( XNORM.GT.ONE ) THEN
 | |
|                         IF( WORK( J ).GT.BIGNUM / XNORM ) THEN
 | |
|                            X( 1, 1 ) = X( 1, 1 ) / XNORM
 | |
|                            X( 1, 2 ) = X( 1, 2 ) / XNORM
 | |
|                            SCALE = SCALE / XNORM
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE ) THEN
 | |
|                         CALL SSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | |
|                         CALL SSCAL( KI, SCALE, WORK( 1+N2 ), 1 )
 | |
|                      END IF
 | |
|                      WORK( J+N ) = X( 1, 1 )
 | |
|                      WORK( J+N2 ) = X( 1, 2 )
 | |
| *
 | |
| *                    Update the right-hand side
 | |
| *
 | |
|                      CALL SAXPY( J-1, -X( 1, 1 ), T( 1, J ), 1,
 | |
|      $                           WORK( 1+N ), 1 )
 | |
|                      CALL SAXPY( J-1, -X( 1, 2 ), T( 1, J ), 1,
 | |
|      $                           WORK( 1+N2 ), 1 )
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    2-by-2 diagonal block
 | |
| *
 | |
|                      CALL SLALN2( .FALSE., 2, 2, SMIN, ONE,
 | |
|      $                            T( J-1, J-1 ), LDT, ONE, ONE,
 | |
|      $                            WORK( J-1+N ), N, WR, WI, X, 2, SCALE,
 | |
|      $                            XNORM, IERR )
 | |
| *
 | |
| *                    Scale X to avoid overflow when updating
 | |
| *                    the right-hand side.
 | |
| *
 | |
|                      IF( XNORM.GT.ONE ) THEN
 | |
|                         BETA = MAX( WORK( J-1 ), WORK( J ) )
 | |
|                         IF( BETA.GT.BIGNUM / XNORM ) THEN
 | |
|                            REC = ONE / XNORM
 | |
|                            X( 1, 1 ) = X( 1, 1 )*REC
 | |
|                            X( 1, 2 ) = X( 1, 2 )*REC
 | |
|                            X( 2, 1 ) = X( 2, 1 )*REC
 | |
|                            X( 2, 2 ) = X( 2, 2 )*REC
 | |
|                            SCALE = SCALE*REC
 | |
|                         END IF
 | |
|                      END IF
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE ) THEN
 | |
|                         CALL SSCAL( KI, SCALE, WORK( 1+N ), 1 )
 | |
|                         CALL SSCAL( KI, SCALE, WORK( 1+N2 ), 1 )
 | |
|                      END IF
 | |
|                      WORK( J-1+N ) = X( 1, 1 )
 | |
|                      WORK( J+N ) = X( 2, 1 )
 | |
|                      WORK( J-1+N2 ) = X( 1, 2 )
 | |
|                      WORK( J+N2 ) = X( 2, 2 )
 | |
| *
 | |
| *                    Update the right-hand side
 | |
| *
 | |
|                      CALL SAXPY( J-2, -X( 1, 1 ), T( 1, J-1 ), 1,
 | |
|      $                           WORK( 1+N ), 1 )
 | |
|                      CALL SAXPY( J-2, -X( 2, 1 ), T( 1, J ), 1,
 | |
|      $                           WORK( 1+N ), 1 )
 | |
|                      CALL SAXPY( J-2, -X( 1, 2 ), T( 1, J-1 ), 1,
 | |
|      $                           WORK( 1+N2 ), 1 )
 | |
|                      CALL SAXPY( J-2, -X( 2, 2 ), T( 1, J ), 1,
 | |
|      $                           WORK( 1+N2 ), 1 )
 | |
|                   END IF
 | |
|    90          CONTINUE
 | |
| *
 | |
| *              Copy the vector x or Q*x to VR and normalize.
 | |
| *
 | |
|                IF( .NOT.OVER ) THEN
 | |
|                   CALL SCOPY( KI, WORK( 1+N ), 1, VR( 1, IS-1 ), 1 )
 | |
|                   CALL SCOPY( KI, WORK( 1+N2 ), 1, VR( 1, IS ), 1 )
 | |
| *
 | |
|                   EMAX = ZERO
 | |
|                   DO 100 K = 1, KI
 | |
|                      EMAX = MAX( EMAX, ABS( VR( K, IS-1 ) )+
 | |
|      $                      ABS( VR( K, IS ) ) )
 | |
|   100             CONTINUE
 | |
| *
 | |
|                   REMAX = ONE / EMAX
 | |
|                   CALL SSCAL( KI, REMAX, VR( 1, IS-1 ), 1 )
 | |
|                   CALL SSCAL( KI, REMAX, VR( 1, IS ), 1 )
 | |
| *
 | |
|                   DO 110 K = KI + 1, N
 | |
|                      VR( K, IS-1 ) = ZERO
 | |
|                      VR( K, IS ) = ZERO
 | |
|   110             CONTINUE
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
|                   IF( KI.GT.2 ) THEN
 | |
|                      CALL SGEMV( 'N', N, KI-2, ONE, VR, LDVR,
 | |
|      $                           WORK( 1+N ), 1, WORK( KI-1+N ),
 | |
|      $                           VR( 1, KI-1 ), 1 )
 | |
|                      CALL SGEMV( 'N', N, KI-2, ONE, VR, LDVR,
 | |
|      $                           WORK( 1+N2 ), 1, WORK( KI+N2 ),
 | |
|      $                           VR( 1, KI ), 1 )
 | |
|                   ELSE
 | |
|                      CALL SSCAL( N, WORK( KI-1+N ), VR( 1, KI-1 ), 1 )
 | |
|                      CALL SSCAL( N, WORK( KI+N2 ), VR( 1, KI ), 1 )
 | |
|                   END IF
 | |
| *
 | |
|                   EMAX = ZERO
 | |
|                   DO 120 K = 1, N
 | |
|                      EMAX = MAX( EMAX, ABS( VR( K, KI-1 ) )+
 | |
|      $                      ABS( VR( K, KI ) ) )
 | |
|   120             CONTINUE
 | |
|                   REMAX = ONE / EMAX
 | |
|                   CALL SSCAL( N, REMAX, VR( 1, KI-1 ), 1 )
 | |
|                   CALL SSCAL( N, REMAX, VR( 1, KI ), 1 )
 | |
|                END IF
 | |
|             END IF
 | |
| *
 | |
|             IS = IS - 1
 | |
|             IF( IP.NE.0 )
 | |
|      $         IS = IS - 1
 | |
|   130       CONTINUE
 | |
|             IF( IP.EQ.1 )
 | |
|      $         IP = 0
 | |
|             IF( IP.EQ.-1 )
 | |
|      $         IP = 1
 | |
|   140    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       IF( LEFTV ) THEN
 | |
| *
 | |
| *        Compute left eigenvectors.
 | |
| *
 | |
|          IP = 0
 | |
|          IS = 1
 | |
|          DO 260 KI = 1, N
 | |
| *
 | |
|             IF( IP.EQ.-1 )
 | |
|      $         GO TO 250
 | |
|             IF( KI.EQ.N )
 | |
|      $         GO TO 150
 | |
|             IF( T( KI+1, KI ).EQ.ZERO )
 | |
|      $         GO TO 150
 | |
|             IP = 1
 | |
| *
 | |
|   150       CONTINUE
 | |
|             IF( SOMEV ) THEN
 | |
|                IF( .NOT.SELECT( KI ) )
 | |
|      $            GO TO 250
 | |
|             END IF
 | |
| *
 | |
| *           Compute the KI-th eigenvalue (WR,WI).
 | |
| *
 | |
|             WR = T( KI, KI )
 | |
|             WI = ZERO
 | |
|             IF( IP.NE.0 )
 | |
|      $         WI = SQRT( ABS( T( KI, KI+1 ) ) )*
 | |
|      $              SQRT( ABS( T( KI+1, KI ) ) )
 | |
|             SMIN = MAX( ULP*( ABS( WR )+ABS( WI ) ), SMLNUM )
 | |
| *
 | |
|             IF( IP.EQ.0 ) THEN
 | |
| *
 | |
| *              Real left eigenvector.
 | |
| *
 | |
|                WORK( KI+N ) = ONE
 | |
| *
 | |
| *              Form right-hand side
 | |
| *
 | |
|                DO 160 K = KI + 1, N
 | |
|                   WORK( K+N ) = -T( KI, K )
 | |
|   160          CONTINUE
 | |
| *
 | |
| *              Solve the quasi-triangular system:
 | |
| *                 (T(KI+1:N,KI+1:N) - WR)**T*X = SCALE*WORK
 | |
| *
 | |
|                VMAX = ONE
 | |
|                VCRIT = BIGNUM
 | |
| *
 | |
|                JNXT = KI + 1
 | |
|                DO 170 J = KI + 1, N
 | |
|                   IF( J.LT.JNXT )
 | |
|      $               GO TO 170
 | |
|                   J1 = J
 | |
|                   J2 = J
 | |
|                   JNXT = J + 1
 | |
|                   IF( J.LT.N ) THEN
 | |
|                      IF( T( J+1, J ).NE.ZERO ) THEN
 | |
|                         J2 = J + 1
 | |
|                         JNXT = J + 2
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   IF( J1.EQ.J2 ) THEN
 | |
| *
 | |
| *                    1-by-1 diagonal block
 | |
| *
 | |
| *                    Scale if necessary to avoid overflow when forming
 | |
| *                    the right-hand side.
 | |
| *
 | |
|                      IF( WORK( J ).GT.VCRIT ) THEN
 | |
|                         REC = ONE / VMAX
 | |
|                         CALL SSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | |
|                         VMAX = ONE
 | |
|                         VCRIT = BIGNUM
 | |
|                      END IF
 | |
| *
 | |
|                      WORK( J+N ) = WORK( J+N ) -
 | |
|      $                             SDOT( J-KI-1, T( KI+1, J ), 1,
 | |
|      $                             WORK( KI+1+N ), 1 )
 | |
| *
 | |
| *                    Solve (T(J,J)-WR)**T*X = WORK
 | |
| *
 | |
|                      CALL SLALN2( .FALSE., 1, 1, SMIN, ONE, T( J, J ),
 | |
|      $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | |
|      $                            ZERO, X, 2, SCALE, XNORM, IERR )
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE )
 | |
|      $                  CALL SSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | |
|                      WORK( J+N ) = X( 1, 1 )
 | |
|                      VMAX = MAX( ABS( WORK( J+N ) ), VMAX )
 | |
|                      VCRIT = BIGNUM / VMAX
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    2-by-2 diagonal block
 | |
| *
 | |
| *                    Scale if necessary to avoid overflow when forming
 | |
| *                    the right-hand side.
 | |
| *
 | |
|                      BETA = MAX( WORK( J ), WORK( J+1 ) )
 | |
|                      IF( BETA.GT.VCRIT ) THEN
 | |
|                         REC = ONE / VMAX
 | |
|                         CALL SSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | |
|                         VMAX = ONE
 | |
|                         VCRIT = BIGNUM
 | |
|                      END IF
 | |
| *
 | |
|                      WORK( J+N ) = WORK( J+N ) -
 | |
|      $                             SDOT( J-KI-1, T( KI+1, J ), 1,
 | |
|      $                             WORK( KI+1+N ), 1 )
 | |
| *
 | |
|                      WORK( J+1+N ) = WORK( J+1+N ) -
 | |
|      $                               SDOT( J-KI-1, T( KI+1, J+1 ), 1,
 | |
|      $                               WORK( KI+1+N ), 1 )
 | |
| *
 | |
| *                    Solve
 | |
| *                      [T(J,J)-WR   T(J,J+1)     ]**T* X = SCALE*( WORK1 )
 | |
| *                      [T(J+1,J)    T(J+1,J+1)-WR]               ( WORK2 )
 | |
| *
 | |
|                      CALL SLALN2( .TRUE., 2, 1, SMIN, ONE, T( J, J ),
 | |
|      $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | |
|      $                            ZERO, X, 2, SCALE, XNORM, IERR )
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE )
 | |
|      $                  CALL SSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | |
|                      WORK( J+N ) = X( 1, 1 )
 | |
|                      WORK( J+1+N ) = X( 2, 1 )
 | |
| *
 | |
|                      VMAX = MAX( ABS( WORK( J+N ) ),
 | |
|      $                      ABS( WORK( J+1+N ) ), VMAX )
 | |
|                      VCRIT = BIGNUM / VMAX
 | |
| *
 | |
|                   END IF
 | |
|   170          CONTINUE
 | |
| *
 | |
| *              Copy the vector x or Q*x to VL and normalize.
 | |
| *
 | |
|                IF( .NOT.OVER ) THEN
 | |
|                   CALL SCOPY( N-KI+1, WORK( KI+N ), 1, VL( KI, IS ), 1 )
 | |
| *
 | |
|                   II = ISAMAX( N-KI+1, VL( KI, IS ), 1 ) + KI - 1
 | |
|                   REMAX = ONE / ABS( VL( II, IS ) )
 | |
|                   CALL SSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
 | |
| *
 | |
|                   DO 180 K = 1, KI - 1
 | |
|                      VL( K, IS ) = ZERO
 | |
|   180             CONTINUE
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
|                   IF( KI.LT.N )
 | |
|      $               CALL SGEMV( 'N', N, N-KI, ONE, VL( 1, KI+1 ), LDVL,
 | |
|      $                           WORK( KI+1+N ), 1, WORK( KI+N ),
 | |
|      $                           VL( 1, KI ), 1 )
 | |
| *
 | |
|                   II = ISAMAX( N, VL( 1, KI ), 1 )
 | |
|                   REMAX = ONE / ABS( VL( II, KI ) )
 | |
|                   CALL SSCAL( N, REMAX, VL( 1, KI ), 1 )
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             ELSE
 | |
| *
 | |
| *              Complex left eigenvector.
 | |
| *
 | |
| *               Initial solve:
 | |
| *                 ((T(KI,KI)    T(KI,KI+1) )**T - (WR - I* WI))*X = 0.
 | |
| *                 ((T(KI+1,KI) T(KI+1,KI+1))                )
 | |
| *
 | |
|                IF( ABS( T( KI, KI+1 ) ).GE.ABS( T( KI+1, KI ) ) ) THEN
 | |
|                   WORK( KI+N ) = WI / T( KI, KI+1 )
 | |
|                   WORK( KI+1+N2 ) = ONE
 | |
|                ELSE
 | |
|                   WORK( KI+N ) = ONE
 | |
|                   WORK( KI+1+N2 ) = -WI / T( KI+1, KI )
 | |
|                END IF
 | |
|                WORK( KI+1+N ) = ZERO
 | |
|                WORK( KI+N2 ) = ZERO
 | |
| *
 | |
| *              Form right-hand side
 | |
| *
 | |
|                DO 190 K = KI + 2, N
 | |
|                   WORK( K+N ) = -WORK( KI+N )*T( KI, K )
 | |
|                   WORK( K+N2 ) = -WORK( KI+1+N2 )*T( KI+1, K )
 | |
|   190          CONTINUE
 | |
| *
 | |
| *              Solve complex quasi-triangular system:
 | |
| *              ( T(KI+2,N:KI+2,N) - (WR-i*WI) )*X = WORK1+i*WORK2
 | |
| *
 | |
|                VMAX = ONE
 | |
|                VCRIT = BIGNUM
 | |
| *
 | |
|                JNXT = KI + 2
 | |
|                DO 200 J = KI + 2, N
 | |
|                   IF( J.LT.JNXT )
 | |
|      $               GO TO 200
 | |
|                   J1 = J
 | |
|                   J2 = J
 | |
|                   JNXT = J + 1
 | |
|                   IF( J.LT.N ) THEN
 | |
|                      IF( T( J+1, J ).NE.ZERO ) THEN
 | |
|                         J2 = J + 1
 | |
|                         JNXT = J + 2
 | |
|                      END IF
 | |
|                   END IF
 | |
| *
 | |
|                   IF( J1.EQ.J2 ) THEN
 | |
| *
 | |
| *                    1-by-1 diagonal block
 | |
| *
 | |
| *                    Scale if necessary to avoid overflow when
 | |
| *                    forming the right-hand side elements.
 | |
| *
 | |
|                      IF( WORK( J ).GT.VCRIT ) THEN
 | |
|                         REC = ONE / VMAX
 | |
|                         CALL SSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | |
|                         CALL SSCAL( N-KI+1, REC, WORK( KI+N2 ), 1 )
 | |
|                         VMAX = ONE
 | |
|                         VCRIT = BIGNUM
 | |
|                      END IF
 | |
| *
 | |
|                      WORK( J+N ) = WORK( J+N ) -
 | |
|      $                             SDOT( J-KI-2, T( KI+2, J ), 1,
 | |
|      $                             WORK( KI+2+N ), 1 )
 | |
|                      WORK( J+N2 ) = WORK( J+N2 ) -
 | |
|      $                              SDOT( J-KI-2, T( KI+2, J ), 1,
 | |
|      $                              WORK( KI+2+N2 ), 1 )
 | |
| *
 | |
| *                    Solve (T(J,J)-(WR-i*WI))*(X11+i*X12)= WK+I*WK2
 | |
| *
 | |
|                      CALL SLALN2( .FALSE., 1, 2, SMIN, ONE, T( J, J ),
 | |
|      $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | |
|      $                            -WI, X, 2, SCALE, XNORM, IERR )
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE ) THEN
 | |
|                         CALL SSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | |
|                         CALL SSCAL( N-KI+1, SCALE, WORK( KI+N2 ), 1 )
 | |
|                      END IF
 | |
|                      WORK( J+N ) = X( 1, 1 )
 | |
|                      WORK( J+N2 ) = X( 1, 2 )
 | |
|                      VMAX = MAX( ABS( WORK( J+N ) ),
 | |
|      $                      ABS( WORK( J+N2 ) ), VMAX )
 | |
|                      VCRIT = BIGNUM / VMAX
 | |
| *
 | |
|                   ELSE
 | |
| *
 | |
| *                    2-by-2 diagonal block
 | |
| *
 | |
| *                    Scale if necessary to avoid overflow when forming
 | |
| *                    the right-hand side elements.
 | |
| *
 | |
|                      BETA = MAX( WORK( J ), WORK( J+1 ) )
 | |
|                      IF( BETA.GT.VCRIT ) THEN
 | |
|                         REC = ONE / VMAX
 | |
|                         CALL SSCAL( N-KI+1, REC, WORK( KI+N ), 1 )
 | |
|                         CALL SSCAL( N-KI+1, REC, WORK( KI+N2 ), 1 )
 | |
|                         VMAX = ONE
 | |
|                         VCRIT = BIGNUM
 | |
|                      END IF
 | |
| *
 | |
|                      WORK( J+N ) = WORK( J+N ) -
 | |
|      $                             SDOT( J-KI-2, T( KI+2, J ), 1,
 | |
|      $                             WORK( KI+2+N ), 1 )
 | |
| *
 | |
|                      WORK( J+N2 ) = WORK( J+N2 ) -
 | |
|      $                              SDOT( J-KI-2, T( KI+2, J ), 1,
 | |
|      $                              WORK( KI+2+N2 ), 1 )
 | |
| *
 | |
|                      WORK( J+1+N ) = WORK( J+1+N ) -
 | |
|      $                               SDOT( J-KI-2, T( KI+2, J+1 ), 1,
 | |
|      $                               WORK( KI+2+N ), 1 )
 | |
| *
 | |
|                      WORK( J+1+N2 ) = WORK( J+1+N2 ) -
 | |
|      $                                SDOT( J-KI-2, T( KI+2, J+1 ), 1,
 | |
|      $                                WORK( KI+2+N2 ), 1 )
 | |
| *
 | |
| *                    Solve 2-by-2 complex linear equation
 | |
| *                      ([T(j,j)   T(j,j+1)  ]**T-(wr-i*wi)*I)*X = SCALE*B
 | |
| *                      ([T(j+1,j) T(j+1,j+1)]               )
 | |
| *
 | |
|                      CALL SLALN2( .TRUE., 2, 2, SMIN, ONE, T( J, J ),
 | |
|      $                            LDT, ONE, ONE, WORK( J+N ), N, WR,
 | |
|      $                            -WI, X, 2, SCALE, XNORM, IERR )
 | |
| *
 | |
| *                    Scale if necessary
 | |
| *
 | |
|                      IF( SCALE.NE.ONE ) THEN
 | |
|                         CALL SSCAL( N-KI+1, SCALE, WORK( KI+N ), 1 )
 | |
|                         CALL SSCAL( N-KI+1, SCALE, WORK( KI+N2 ), 1 )
 | |
|                      END IF
 | |
|                      WORK( J+N ) = X( 1, 1 )
 | |
|                      WORK( J+N2 ) = X( 1, 2 )
 | |
|                      WORK( J+1+N ) = X( 2, 1 )
 | |
|                      WORK( J+1+N2 ) = X( 2, 2 )
 | |
|                      VMAX = MAX( ABS( X( 1, 1 ) ), ABS( X( 1, 2 ) ),
 | |
|      $                      ABS( X( 2, 1 ) ), ABS( X( 2, 2 ) ), VMAX )
 | |
|                      VCRIT = BIGNUM / VMAX
 | |
| *
 | |
|                   END IF
 | |
|   200          CONTINUE
 | |
| *
 | |
| *              Copy the vector x or Q*x to VL and normalize.
 | |
| *
 | |
|                IF( .NOT.OVER ) THEN
 | |
|                   CALL SCOPY( N-KI+1, WORK( KI+N ), 1, VL( KI, IS ), 1 )
 | |
|                   CALL SCOPY( N-KI+1, WORK( KI+N2 ), 1, VL( KI, IS+1 ),
 | |
|      $                        1 )
 | |
| *
 | |
|                   EMAX = ZERO
 | |
|                   DO 220 K = KI, N
 | |
|                      EMAX = MAX( EMAX, ABS( VL( K, IS ) )+
 | |
|      $                      ABS( VL( K, IS+1 ) ) )
 | |
|   220             CONTINUE
 | |
|                   REMAX = ONE / EMAX
 | |
|                   CALL SSCAL( N-KI+1, REMAX, VL( KI, IS ), 1 )
 | |
|                   CALL SSCAL( N-KI+1, REMAX, VL( KI, IS+1 ), 1 )
 | |
| *
 | |
|                   DO 230 K = 1, KI - 1
 | |
|                      VL( K, IS ) = ZERO
 | |
|                      VL( K, IS+1 ) = ZERO
 | |
|   230             CONTINUE
 | |
|                ELSE
 | |
|                   IF( KI.LT.N-1 ) THEN
 | |
|                      CALL SGEMV( 'N', N, N-KI-1, ONE, VL( 1, KI+2 ),
 | |
|      $                           LDVL, WORK( KI+2+N ), 1, WORK( KI+N ),
 | |
|      $                           VL( 1, KI ), 1 )
 | |
|                      CALL SGEMV( 'N', N, N-KI-1, ONE, VL( 1, KI+2 ),
 | |
|      $                           LDVL, WORK( KI+2+N2 ), 1,
 | |
|      $                           WORK( KI+1+N2 ), VL( 1, KI+1 ), 1 )
 | |
|                   ELSE
 | |
|                      CALL SSCAL( N, WORK( KI+N ), VL( 1, KI ), 1 )
 | |
|                      CALL SSCAL( N, WORK( KI+1+N2 ), VL( 1, KI+1 ), 1 )
 | |
|                   END IF
 | |
| *
 | |
|                   EMAX = ZERO
 | |
|                   DO 240 K = 1, N
 | |
|                      EMAX = MAX( EMAX, ABS( VL( K, KI ) )+
 | |
|      $                      ABS( VL( K, KI+1 ) ) )
 | |
|   240             CONTINUE
 | |
|                   REMAX = ONE / EMAX
 | |
|                   CALL SSCAL( N, REMAX, VL( 1, KI ), 1 )
 | |
|                   CALL SSCAL( N, REMAX, VL( 1, KI+1 ), 1 )
 | |
| *
 | |
|                END IF
 | |
| *
 | |
|             END IF
 | |
| *
 | |
|             IS = IS + 1
 | |
|             IF( IP.NE.0 )
 | |
|      $         IS = IS + 1
 | |
|   250       CONTINUE
 | |
|             IF( IP.EQ.-1 )
 | |
|      $         IP = 0
 | |
|             IF( IP.EQ.1 )
 | |
|      $         IP = -1
 | |
| *
 | |
|   260    CONTINUE
 | |
| *
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STREVC
 | |
| *
 | |
|       END
 |