239 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			239 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STPTRI
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download STPTRI + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stptri.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stptri.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stptri.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STPTRI( UPLO, DIAG, N, AP, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          DIAG, UPLO
 | |
| *       INTEGER            INFO, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AP( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STPTRI computes the inverse of a real upper or lower triangular
 | |
| *> matrix A stored in packed format.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  A is upper triangular;
 | |
| *>          = 'L':  A is lower triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DIAG
 | |
| *> \verbatim
 | |
| *>          DIAG is CHARACTER*1
 | |
| *>          = 'N':  A is non-unit triangular;
 | |
| *>          = 'U':  A is unit triangular.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangular matrix A, stored
 | |
| *>          columnwise in a linear array.  The j-th column of A is stored
 | |
| *>          in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*((2*n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>          See below for further details.
 | |
| *>          On exit, the (triangular) inverse of the original matrix, in
 | |
| *>          the same packed storage format.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, A(i,i) is exactly zero.  The triangular
 | |
| *>                matrix is singular and its inverse can not be computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  A triangular matrix A can be transferred to packed storage using one
 | |
| *>  of the following program segments:
 | |
| *>
 | |
| *>  UPLO = 'U':                      UPLO = 'L':
 | |
| *>
 | |
| *>        JC = 1                           JC = 1
 | |
| *>        DO 2 J = 1, N                    DO 2 J = 1, N
 | |
| *>           DO 1 I = 1, J                    DO 1 I = J, N
 | |
| *>              AP(JC+I-1) = A(I,J)              AP(JC+I-J) = A(I,J)
 | |
| *>      1    CONTINUE                    1    CONTINUE
 | |
| *>           JC = JC + J                      JC = JC + N - J + 1
 | |
| *>      2 CONTINUE                       2 CONTINUE
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STPTRI( UPLO, DIAG, N, AP, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          DIAG, UPLO
 | |
|       INTEGER            INFO, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AP( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, ZERO
 | |
|       PARAMETER          ( ONE = 1.0E+0, ZERO = 0.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOUNIT, UPPER
 | |
|       INTEGER            J, JC, JCLAST, JJ
 | |
|       REAL               AJJ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SSCAL, STPMV, XERBLA
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       NOUNIT = LSAME( DIAG, 'N' )
 | |
|       IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.NOUNIT .AND. .NOT.LSAME( DIAG, 'U' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'STPTRI', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Check for singularity if non-unit.
 | |
| *
 | |
|       IF( NOUNIT ) THEN
 | |
|          IF( UPPER ) THEN
 | |
|             JJ = 0
 | |
|             DO 10 INFO = 1, N
 | |
|                JJ = JJ + INFO
 | |
|                IF( AP( JJ ).EQ.ZERO )
 | |
|      $            RETURN
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
|             JJ = 1
 | |
|             DO 20 INFO = 1, N
 | |
|                IF( AP( JJ ).EQ.ZERO )
 | |
|      $            RETURN
 | |
|                JJ = JJ + N - INFO + 1
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
|       IF( UPPER ) THEN
 | |
| *
 | |
| *        Compute inverse of upper triangular matrix.
 | |
| *
 | |
|          JC = 1
 | |
|          DO 30 J = 1, N
 | |
|             IF( NOUNIT ) THEN
 | |
|                AP( JC+J-1 ) = ONE / AP( JC+J-1 )
 | |
|                AJJ = -AP( JC+J-1 )
 | |
|             ELSE
 | |
|                AJJ = -ONE
 | |
|             END IF
 | |
| *
 | |
| *           Compute elements 1:j-1 of j-th column.
 | |
| *
 | |
|             CALL STPMV( 'Upper', 'No transpose', DIAG, J-1, AP,
 | |
|      $                  AP( JC ), 1 )
 | |
|             CALL SSCAL( J-1, AJJ, AP( JC ), 1 )
 | |
|             JC = JC + J
 | |
|    30    CONTINUE
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        Compute inverse of lower triangular matrix.
 | |
| *
 | |
|          JC = N*( N+1 ) / 2
 | |
|          DO 40 J = N, 1, -1
 | |
|             IF( NOUNIT ) THEN
 | |
|                AP( JC ) = ONE / AP( JC )
 | |
|                AJJ = -AP( JC )
 | |
|             ELSE
 | |
|                AJJ = -ONE
 | |
|             END IF
 | |
|             IF( J.LT.N ) THEN
 | |
| *
 | |
| *              Compute elements j+1:n of j-th column.
 | |
| *
 | |
|                CALL STPMV( 'Lower', 'No transpose', DIAG, N-J,
 | |
|      $                     AP( JCLAST ), AP( JC+1 ), 1 )
 | |
|                CALL SSCAL( N-J, AJJ, AP( JC+1 ), 1 )
 | |
|             END IF
 | |
|             JCLAST = JC
 | |
|             JC = JC - N + J - 2
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of STPTRI
 | |
| *
 | |
|       END
 |