1302 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1302 lines
		
	
	
		
			37 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__2 = 2;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__5 = 5;
 | |
| static real c_b14 = 0.f;
 | |
| static integer c__1 = 1;
 | |
| static real c_b51 = -1.f;
 | |
| static real c_b52 = 1.f;
 | |
| 
 | |
| /* > \brief \b STGSYL */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download STGSYL + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgsyl.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgsyl.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgsyl.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE STGSYL( TRANS, IJOB, M, N, A, LDA, B, LDB, C, LDC, D, */
 | |
| /*                          LDD, E, LDE, F, LDF, SCALE, DIF, WORK, LWORK, */
 | |
| /*                          IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          TRANS */
 | |
| /*       INTEGER            IJOB, INFO, LDA, LDB, LDC, LDD, LDE, LDF, */
 | |
| /*      $                   LWORK, M, N */
 | |
| /*       REAL               DIF, SCALE */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       REAL               A( LDA, * ), B( LDB, * ), C( LDC, * ), */
 | |
| /*      $                   D( LDD, * ), E( LDE, * ), F( LDF, * ), */
 | |
| /*      $                   WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > STGSYL solves the generalized Sylvester equation: */
 | |
| /* > */
 | |
| /* >             A * R - L * B = scale * C                 (1) */
 | |
| /* >             D * R - L * E = scale * F */
 | |
| /* > */
 | |
| /* > where R and L are unknown m-by-n matrices, (A, D), (B, E) and */
 | |
| /* > (C, F) are given matrix pairs of size m-by-m, n-by-n and m-by-n, */
 | |
| /* > respectively, with real entries. (A, D) and (B, E) must be in */
 | |
| /* > generalized (real) Schur canonical form, i.e. A, B are upper quasi */
 | |
| /* > triangular and D, E are upper triangular. */
 | |
| /* > */
 | |
| /* > The solution (R, L) overwrites (C, F). 0 <= SCALE <= 1 is an output */
 | |
| /* > scaling factor chosen to avoid overflow. */
 | |
| /* > */
 | |
| /* > In matrix notation (1) is equivalent to solve  Zx = scale b, where */
 | |
| /* > Z is defined as */
 | |
| /* > */
 | |
| /* >            Z = [ kron(In, A)  -kron(B**T, Im) ]         (2) */
 | |
| /* >                [ kron(In, D)  -kron(E**T, Im) ]. */
 | |
| /* > */
 | |
| /* > Here Ik is the identity matrix of size k and X**T is the transpose of */
 | |
| /* > X. kron(X, Y) is the Kronecker product between the matrices X and Y. */
 | |
| /* > */
 | |
| /* > If TRANS = 'T', STGSYL solves the transposed system Z**T*y = scale*b, */
 | |
| /* > which is equivalent to solve for R and L in */
 | |
| /* > */
 | |
| /* >             A**T * R + D**T * L = scale * C           (3) */
 | |
| /* >             R * B**T + L * E**T = scale * -F */
 | |
| /* > */
 | |
| /* > This case (TRANS = 'T') is used to compute an one-norm-based estimate */
 | |
| /* > of Dif[(A,D), (B,E)], the separation between the matrix pairs (A,D) */
 | |
| /* > and (B,E), using SLACON. */
 | |
| /* > */
 | |
| /* > If IJOB >= 1, STGSYL computes a Frobenius norm-based estimate */
 | |
| /* > of Dif[(A,D),(B,E)]. That is, the reciprocal of a lower bound on the */
 | |
| /* > reciprocal of the smallest singular value of Z. See [1-2] for more */
 | |
| /* > information. */
 | |
| /* > */
 | |
| /* > This is a level 3 BLAS algorithm. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >          = 'N': solve the generalized Sylvester equation (1). */
 | |
| /* >          = 'T': solve the 'transposed' system (3). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IJOB */
 | |
| /* > \verbatim */
 | |
| /* >          IJOB is INTEGER */
 | |
| /* >          Specifies what kind of functionality to be performed. */
 | |
| /* >          = 0: solve (1) only. */
 | |
| /* >          = 1: The functionality of 0 and 3. */
 | |
| /* >          = 2: The functionality of 0 and 4. */
 | |
| /* >          = 3: Only an estimate of Dif[(A,D), (B,E)] is computed. */
 | |
| /* >               (look ahead strategy IJOB  = 1 is used). */
 | |
| /* >          = 4: Only an estimate of Dif[(A,D), (B,E)] is computed. */
 | |
| /* >               ( SGECON on sub-systems is used ). */
 | |
| /* >          Not referenced if TRANS = 'T'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The order of the matrices A and D, and the row dimension of */
 | |
| /* >          the matrices C, F, R and L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices B and E, and the column dimension */
 | |
| /* >          of the matrices C, F, R and L. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA, M) */
 | |
| /* >          The upper quasi triangular matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. LDA >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB, N) */
 | |
| /* >          The upper quasi triangular matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1, N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension (LDC, N) */
 | |
| /* >          On entry, C contains the right-hand-side of the first matrix */
 | |
| /* >          equation in (1) or (3). */
 | |
| /* >          On exit, if IJOB = 0, 1 or 2, C has been overwritten by */
 | |
| /* >          the solution R. If IJOB = 3 or 4 and TRANS = 'N', C holds R, */
 | |
| /* >          the solution achieved during the computation of the */
 | |
| /* >          Dif-estimate. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the array C. LDC >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (LDD, M) */
 | |
| /* >          The upper triangular matrix D. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDD */
 | |
| /* > \verbatim */
 | |
| /* >          LDD is INTEGER */
 | |
| /* >          The leading dimension of the array D. LDD >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is REAL array, dimension (LDE, N) */
 | |
| /* >          The upper triangular matrix E. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDE */
 | |
| /* > \verbatim */
 | |
| /* >          LDE is INTEGER */
 | |
| /* >          The leading dimension of the array E. LDE >= f2cmax(1, N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] F */
 | |
| /* > \verbatim */
 | |
| /* >          F is REAL array, dimension (LDF, N) */
 | |
| /* >          On entry, F contains the right-hand-side of the second matrix */
 | |
| /* >          equation in (1) or (3). */
 | |
| /* >          On exit, if IJOB = 0, 1 or 2, F has been overwritten by */
 | |
| /* >          the solution L. If IJOB = 3 or 4 and TRANS = 'N', F holds L, */
 | |
| /* >          the solution achieved during the computation of the */
 | |
| /* >          Dif-estimate. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDF */
 | |
| /* > \verbatim */
 | |
| /* >          LDF is INTEGER */
 | |
| /* >          The leading dimension of the array F. LDF >= f2cmax(1, M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DIF */
 | |
| /* > \verbatim */
 | |
| /* >          DIF is REAL */
 | |
| /* >          On exit DIF is the reciprocal of a lower bound of the */
 | |
| /* >          reciprocal of the Dif-function, i.e. DIF is an upper bound of */
 | |
| /* >          Dif[(A,D), (B,E)] = sigma_min(Z), where Z as in (2). */
 | |
| /* >          IF IJOB = 0 or TRANS = 'T', DIF is not touched. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is REAL */
 | |
| /* >          On exit SCALE is the scaling factor in (1) or (3). */
 | |
| /* >          If 0 < SCALE < 1, C and F hold the solutions R and L, resp., */
 | |
| /* >          to a slightly perturbed system but the input matrices A, B, D */
 | |
| /* >          and E have not been changed. If SCALE = 0, C and F hold the */
 | |
| /* >          solutions R and L, respectively, to the homogeneous system */
 | |
| /* >          with C = F = 0. Normally, SCALE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK > = 1. */
 | |
| /* >          If IJOB = 1 or 2 and TRANS = 'N', LWORK >= f2cmax(1,2*M*N). */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (M+N+6) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >            =0: successful exit */
 | |
| /* >            <0: If INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >            >0: (A, D) and (B, E) have common or close eigenvalues. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realSYcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Bo Kagstrom and Peter Poromaa, Department of Computing Science, */
 | |
| /* >     Umea University, S-901 87 Umea, Sweden. */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  [1] B. Kagstrom and P. Poromaa, LAPACK-Style Algorithms and Software */
 | |
| /* >      for Solving the Generalized Sylvester Equation and Estimating the */
 | |
| /* >      Separation between Regular Matrix Pairs, Report UMINF - 93.23, */
 | |
| /* >      Department of Computing Science, Umea University, S-901 87 Umea, */
 | |
| /* >      Sweden, December 1993, Revised April 1994, Also as LAPACK Working */
 | |
| /* >      Note 75.  To appear in ACM Trans. on Math. Software, Vol 22, */
 | |
| /* >      No 1, 1996. */
 | |
| /* > */
 | |
| /* >  [2] B. Kagstrom, A Perturbation Analysis of the Generalized Sylvester */
 | |
| /* >      Equation (AR - LB, DR - LE ) = (C, F), SIAM J. Matrix Anal. */
 | |
| /* >      Appl., 15(4):1045-1060, 1994 */
 | |
| /* > */
 | |
| /* >  [3] B. Kagstrom and L. Westin, Generalized Schur Methods with */
 | |
| /* >      Condition Estimators for Solving the Generalized Sylvester */
 | |
| /* >      Equation, IEEE Transactions on Automatic Control, Vol. 34, No. 7, */
 | |
| /* >      July 1989, pp 745-751. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void stgsyl_(char *trans, integer *ijob, integer *m, integer *
 | |
| 	n, real *a, integer *lda, real *b, integer *ldb, real *c__, integer *
 | |
| 	ldc, real *d__, integer *ldd, real *e, integer *lde, real *f, integer 
 | |
| 	*ldf, real *scale, real *dif, real *work, integer *lwork, integer *
 | |
| 	iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, c_dim1, c_offset, d_dim1, 
 | |
| 	    d_offset, e_dim1, e_offset, f_dim1, f_offset, i__1, i__2, i__3, 
 | |
| 	    i__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real dsum;
 | |
|     integer ppqq, i__, j, k, p, q;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer ifunc;
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | |
|     integer linfo;
 | |
|     extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    real *, integer *);
 | |
|     integer lwmin;
 | |
|     real scale2;
 | |
|     integer ie, je, mb, nb;
 | |
|     real dscale;
 | |
|     integer is, js;
 | |
|     extern /* Subroutine */ void stgsy2_(char *, integer *, integer *, integer 
 | |
| 	    *, real *, integer *, real *, integer *, real *, integer *, real *
 | |
| 	    , integer *, real *, integer *, real *, integer *, real *, real *,
 | |
| 	     real *, integer *, integer *, integer *);
 | |
|     integer pq;
 | |
|     real scaloc;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, integer *), slaset_(char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *);
 | |
|     integer iround;
 | |
|     logical notran;
 | |
|     integer isolve;
 | |
|     logical lquery;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /*  Replaced various illegal calls to SCOPY by calls to SLASET. */
 | |
| /*  Sven Hammarling, 1/5/02. */
 | |
| 
 | |
| 
 | |
| /*     Decode and test input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     d_dim1 = *ldd;
 | |
|     d_offset = 1 + d_dim1 * 1;
 | |
|     d__ -= d_offset;
 | |
|     e_dim1 = *lde;
 | |
|     e_offset = 1 + e_dim1 * 1;
 | |
|     e -= e_offset;
 | |
|     f_dim1 = *ldf;
 | |
|     f_offset = 1 + f_dim1 * 1;
 | |
|     f -= f_offset;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     notran = lsame_(trans, "N");
 | |
|     lquery = *lwork == -1;
 | |
| 
 | |
|     if (! notran && ! lsame_(trans, "T")) {
 | |
| 	*info = -1;
 | |
|     } else if (notran) {
 | |
| 	if (*ijob < 0 || *ijob > 4) {
 | |
| 	    *info = -2;
 | |
| 	}
 | |
|     }
 | |
|     if (*info == 0) {
 | |
| 	if (*m <= 0) {
 | |
| 	    *info = -3;
 | |
| 	} else if (*n <= 0) {
 | |
| 	    *info = -4;
 | |
| 	} else if (*lda < f2cmax(1,*m)) {
 | |
| 	    *info = -6;
 | |
| 	} else if (*ldb < f2cmax(1,*n)) {
 | |
| 	    *info = -8;
 | |
| 	} else if (*ldc < f2cmax(1,*m)) {
 | |
| 	    *info = -10;
 | |
| 	} else if (*ldd < f2cmax(1,*m)) {
 | |
| 	    *info = -12;
 | |
| 	} else if (*lde < f2cmax(1,*n)) {
 | |
| 	    *info = -14;
 | |
| 	} else if (*ldf < f2cmax(1,*m)) {
 | |
| 	    *info = -16;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	if (notran) {
 | |
| 	    if (*ijob == 1 || *ijob == 2) {
 | |
| /* Computing MAX */
 | |
| 		i__1 = 1, i__2 = (*m << 1) * *n;
 | |
| 		lwmin = f2cmax(i__1,i__2);
 | |
| 	    } else {
 | |
| 		lwmin = 1;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    lwmin = 1;
 | |
| 	}
 | |
| 	work[1] = (real) lwmin;
 | |
| 
 | |
| 	if (*lwork < lwmin && ! lquery) {
 | |
| 	    *info = -20;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("STGSYL", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	*scale = 1.f;
 | |
| 	if (notran) {
 | |
| 	    if (*ijob != 0) {
 | |
| 		*dif = 0.f;
 | |
| 	    }
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine optimal block sizes MB and NB */
 | |
| 
 | |
|     mb = ilaenv_(&c__2, "STGSYL", trans, m, n, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 	    ftnlen)1);
 | |
|     nb = ilaenv_(&c__5, "STGSYL", trans, m, n, &c_n1, &c_n1, (ftnlen)6, (
 | |
| 	    ftnlen)1);
 | |
| 
 | |
|     isolve = 1;
 | |
|     ifunc = 0;
 | |
|     if (notran) {
 | |
| 	if (*ijob >= 3) {
 | |
| 	    ifunc = *ijob - 2;
 | |
| 	    slaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc)
 | |
| 		    ;
 | |
| 	    slaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
 | |
| 	} else if (*ijob >= 1 && notran) {
 | |
| 	    isolve = 2;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (mb <= 1 && nb <= 1 || mb >= *m && nb >= *n) {
 | |
| 
 | |
| 	i__1 = isolve;
 | |
| 	for (iround = 1; iround <= i__1; ++iround) {
 | |
| 
 | |
| /*           Use unblocked Level 2 solver */
 | |
| 
 | |
| 	    dscale = 0.f;
 | |
| 	    dsum = 1.f;
 | |
| 	    pq = 0;
 | |
| 	    stgsy2_(trans, &ifunc, m, n, &a[a_offset], lda, &b[b_offset], ldb,
 | |
| 		     &c__[c_offset], ldc, &d__[d_offset], ldd, &e[e_offset], 
 | |
| 		    lde, &f[f_offset], ldf, scale, &dsum, &dscale, &iwork[1], 
 | |
| 		    &pq, info);
 | |
| 	    if (dscale != 0.f) {
 | |
| 		if (*ijob == 1 || *ijob == 3) {
 | |
| 		    *dif = sqrt((real) ((*m << 1) * *n)) / (dscale * sqrt(
 | |
| 			    dsum));
 | |
| 		} else {
 | |
| 		    *dif = sqrt((real) pq) / (dscale * sqrt(dsum));
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    if (isolve == 2 && iround == 1) {
 | |
| 		if (notran) {
 | |
| 		    ifunc = *ijob;
 | |
| 		}
 | |
| 		scale2 = *scale;
 | |
| 		slacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
 | |
| 		slacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
 | |
| 		slaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
 | |
| 		slaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
 | |
| 	    } else if (isolve == 2 && iround == 2) {
 | |
| 		slacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
 | |
| 		slacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
 | |
| 		*scale = scale2;
 | |
| 	    }
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine block structure of A */
 | |
| 
 | |
|     p = 0;
 | |
|     i__ = 1;
 | |
| L40:
 | |
|     if (i__ > *m) {
 | |
| 	goto L50;
 | |
|     }
 | |
|     ++p;
 | |
|     iwork[p] = i__;
 | |
|     i__ += mb;
 | |
|     if (i__ >= *m) {
 | |
| 	goto L50;
 | |
|     }
 | |
|     if (a[i__ + (i__ - 1) * a_dim1] != 0.f) {
 | |
| 	++i__;
 | |
|     }
 | |
|     goto L40;
 | |
| L50:
 | |
| 
 | |
|     iwork[p + 1] = *m + 1;
 | |
|     if (iwork[p] == iwork[p + 1]) {
 | |
| 	--p;
 | |
|     }
 | |
| 
 | |
| /*     Determine block structure of B */
 | |
| 
 | |
|     q = p + 1;
 | |
|     j = 1;
 | |
| L60:
 | |
|     if (j > *n) {
 | |
| 	goto L70;
 | |
|     }
 | |
|     ++q;
 | |
|     iwork[q] = j;
 | |
|     j += nb;
 | |
|     if (j >= *n) {
 | |
| 	goto L70;
 | |
|     }
 | |
|     if (b[j + (j - 1) * b_dim1] != 0.f) {
 | |
| 	++j;
 | |
|     }
 | |
|     goto L60;
 | |
| L70:
 | |
| 
 | |
|     iwork[q + 1] = *n + 1;
 | |
|     if (iwork[q] == iwork[q + 1]) {
 | |
| 	--q;
 | |
|     }
 | |
| 
 | |
|     if (notran) {
 | |
| 
 | |
| 	i__1 = isolve;
 | |
| 	for (iround = 1; iround <= i__1; ++iround) {
 | |
| 
 | |
| /*           Solve (I, J)-subsystem */
 | |
| /*               A(I, I) * R(I, J) - L(I, J) * B(J, J) = C(I, J) */
 | |
| /*               D(I, I) * R(I, J) - L(I, J) * E(J, J) = F(I, J) */
 | |
| /*           for I = P, P - 1,..., 1; J = 1, 2,..., Q */
 | |
| 
 | |
| 	    dscale = 0.f;
 | |
| 	    dsum = 1.f;
 | |
| 	    pq = 0;
 | |
| 	    *scale = 1.f;
 | |
| 	    i__2 = q;
 | |
| 	    for (j = p + 2; j <= i__2; ++j) {
 | |
| 		js = iwork[j];
 | |
| 		je = iwork[j + 1] - 1;
 | |
| 		nb = je - js + 1;
 | |
| 		for (i__ = p; i__ >= 1; --i__) {
 | |
| 		    is = iwork[i__];
 | |
| 		    ie = iwork[i__ + 1] - 1;
 | |
| 		    mb = ie - is + 1;
 | |
| 		    ppqq = 0;
 | |
| 		    stgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], 
 | |
| 			    lda, &b[js + js * b_dim1], ldb, &c__[is + js * 
 | |
| 			    c_dim1], ldc, &d__[is + is * d_dim1], ldd, &e[js 
 | |
| 			    + js * e_dim1], lde, &f[is + js * f_dim1], ldf, &
 | |
| 			    scaloc, &dsum, &dscale, &iwork[q + 2], &ppqq, &
 | |
| 			    linfo);
 | |
| 		    if (linfo > 0) {
 | |
| 			*info = linfo;
 | |
| 		    }
 | |
| 
 | |
| 		    pq += ppqq;
 | |
| 		    if (scaloc != 1.f) {
 | |
| 			i__3 = js - 1;
 | |
| 			for (k = 1; k <= i__3; ++k) {
 | |
| 			    sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 | |
| 			    sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L80: */
 | |
| 			}
 | |
| 			i__3 = je;
 | |
| 			for (k = js; k <= i__3; ++k) {
 | |
| 			    i__4 = is - 1;
 | |
| 			    sscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &
 | |
| 				    c__1);
 | |
| 			    i__4 = is - 1;
 | |
| 			    sscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L90: */
 | |
| 			}
 | |
| 			i__3 = je;
 | |
| 			for (k = js; k <= i__3; ++k) {
 | |
| 			    i__4 = *m - ie;
 | |
| 			    sscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], 
 | |
| 				    &c__1);
 | |
| 			    i__4 = *m - ie;
 | |
| 			    sscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &
 | |
| 				    c__1);
 | |
| /* L100: */
 | |
| 			}
 | |
| 			i__3 = *n;
 | |
| 			for (k = je + 1; k <= i__3; ++k) {
 | |
| 			    sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 | |
| 			    sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L110: */
 | |
| 			}
 | |
| 			*scale *= scaloc;
 | |
| 		    }
 | |
| 
 | |
| /*                 Substitute R(I, J) and L(I, J) into remaining */
 | |
| /*                 equation. */
 | |
| 
 | |
| 		    if (i__ > 1) {
 | |
| 			i__3 = is - 1;
 | |
| 			sgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &a[is * 
 | |
| 				a_dim1 + 1], lda, &c__[is + js * c_dim1], ldc,
 | |
| 				 &c_b52, &c__[js * c_dim1 + 1], ldc);
 | |
| 			i__3 = is - 1;
 | |
| 			sgemm_("N", "N", &i__3, &nb, &mb, &c_b51, &d__[is * 
 | |
| 				d_dim1 + 1], ldd, &c__[is + js * c_dim1], ldc,
 | |
| 				 &c_b52, &f[js * f_dim1 + 1], ldf);
 | |
| 		    }
 | |
| 		    if (j < q) {
 | |
| 			i__3 = *n - je;
 | |
| 			sgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
 | |
| 				 f_dim1], ldf, &b[js + (je + 1) * b_dim1], 
 | |
| 				ldb, &c_b52, &c__[is + (je + 1) * c_dim1], 
 | |
| 				ldc);
 | |
| 			i__3 = *n - je;
 | |
| 			sgemm_("N", "N", &mb, &i__3, &nb, &c_b52, &f[is + js *
 | |
| 				 f_dim1], ldf, &e[js + (je + 1) * e_dim1], 
 | |
| 				lde, &c_b52, &f[is + (je + 1) * f_dim1], ldf);
 | |
| 		    }
 | |
| /* L120: */
 | |
| 		}
 | |
| /* L130: */
 | |
| 	    }
 | |
| 	    if (dscale != 0.f) {
 | |
| 		if (*ijob == 1 || *ijob == 3) {
 | |
| 		    *dif = sqrt((real) ((*m << 1) * *n)) / (dscale * sqrt(
 | |
| 			    dsum));
 | |
| 		} else {
 | |
| 		    *dif = sqrt((real) pq) / (dscale * sqrt(dsum));
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (isolve == 2 && iround == 1) {
 | |
| 		if (notran) {
 | |
| 		    ifunc = *ijob;
 | |
| 		}
 | |
| 		scale2 = *scale;
 | |
| 		slacpy_("F", m, n, &c__[c_offset], ldc, &work[1], m);
 | |
| 		slacpy_("F", m, n, &f[f_offset], ldf, &work[*m * *n + 1], m);
 | |
| 		slaset_("F", m, n, &c_b14, &c_b14, &c__[c_offset], ldc);
 | |
| 		slaset_("F", m, n, &c_b14, &c_b14, &f[f_offset], ldf);
 | |
| 	    } else if (isolve == 2 && iround == 2) {
 | |
| 		slacpy_("F", m, n, &work[1], m, &c__[c_offset], ldc);
 | |
| 		slacpy_("F", m, n, &work[*m * *n + 1], m, &f[f_offset], ldf);
 | |
| 		*scale = scale2;
 | |
| 	    }
 | |
| /* L150: */
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Solve transposed (I, J)-subsystem */
 | |
| /*             A(I, I)**T * R(I, J)  + D(I, I)**T * L(I, J)  =  C(I, J) */
 | |
| /*             R(I, J)  * B(J, J)**T + L(I, J)  * E(J, J)**T = -F(I, J) */
 | |
| /*        for I = 1,2,..., P; J = Q, Q-1,..., 1 */
 | |
| 
 | |
| 	*scale = 1.f;
 | |
| 	i__1 = p;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    is = iwork[i__];
 | |
| 	    ie = iwork[i__ + 1] - 1;
 | |
| 	    mb = ie - is + 1;
 | |
| 	    i__2 = p + 2;
 | |
| 	    for (j = q; j >= i__2; --j) {
 | |
| 		js = iwork[j];
 | |
| 		je = iwork[j + 1] - 1;
 | |
| 		nb = je - js + 1;
 | |
| 		stgsy2_(trans, &ifunc, &mb, &nb, &a[is + is * a_dim1], lda, &
 | |
| 			b[js + js * b_dim1], ldb, &c__[is + js * c_dim1], ldc,
 | |
| 			 &d__[is + is * d_dim1], ldd, &e[js + js * e_dim1], 
 | |
| 			lde, &f[is + js * f_dim1], ldf, &scaloc, &dsum, &
 | |
| 			dscale, &iwork[q + 2], &ppqq, &linfo);
 | |
| 		if (linfo > 0) {
 | |
| 		    *info = linfo;
 | |
| 		}
 | |
| 		if (scaloc != 1.f) {
 | |
| 		    i__3 = js - 1;
 | |
| 		    for (k = 1; k <= i__3; ++k) {
 | |
| 			sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 | |
| 			sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L160: */
 | |
| 		    }
 | |
| 		    i__3 = je;
 | |
| 		    for (k = js; k <= i__3; ++k) {
 | |
| 			i__4 = is - 1;
 | |
| 			sscal_(&i__4, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 | |
| 			i__4 = is - 1;
 | |
| 			sscal_(&i__4, &scaloc, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L170: */
 | |
| 		    }
 | |
| 		    i__3 = je;
 | |
| 		    for (k = js; k <= i__3; ++k) {
 | |
| 			i__4 = *m - ie;
 | |
| 			sscal_(&i__4, &scaloc, &c__[ie + 1 + k * c_dim1], &
 | |
| 				c__1);
 | |
| 			i__4 = *m - ie;
 | |
| 			sscal_(&i__4, &scaloc, &f[ie + 1 + k * f_dim1], &c__1)
 | |
| 				;
 | |
| /* L180: */
 | |
| 		    }
 | |
| 		    i__3 = *n;
 | |
| 		    for (k = je + 1; k <= i__3; ++k) {
 | |
| 			sscal_(m, &scaloc, &c__[k * c_dim1 + 1], &c__1);
 | |
| 			sscal_(m, &scaloc, &f[k * f_dim1 + 1], &c__1);
 | |
| /* L190: */
 | |
| 		    }
 | |
| 		    *scale *= scaloc;
 | |
| 		}
 | |
| 
 | |
| /*              Substitute R(I, J) and L(I, J) into remaining equation. */
 | |
| 
 | |
| 		if (j > p + 2) {
 | |
| 		    i__3 = js - 1;
 | |
| 		    sgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &c__[is + js * 
 | |
| 			    c_dim1], ldc, &b[js * b_dim1 + 1], ldb, &c_b52, &
 | |
| 			    f[is + f_dim1], ldf);
 | |
| 		    i__3 = js - 1;
 | |
| 		    sgemm_("N", "T", &mb, &i__3, &nb, &c_b52, &f[is + js * 
 | |
| 			    f_dim1], ldf, &e[js * e_dim1 + 1], lde, &c_b52, &
 | |
| 			    f[is + f_dim1], ldf);
 | |
| 		}
 | |
| 		if (i__ < p) {
 | |
| 		    i__3 = *m - ie;
 | |
| 		    sgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &a[is + (ie + 1)
 | |
| 			     * a_dim1], lda, &c__[is + js * c_dim1], ldc, &
 | |
| 			    c_b52, &c__[ie + 1 + js * c_dim1], ldc);
 | |
| 		    i__3 = *m - ie;
 | |
| 		    sgemm_("T", "N", &i__3, &nb, &mb, &c_b51, &d__[is + (ie + 
 | |
| 			    1) * d_dim1], ldd, &f[is + js * f_dim1], ldf, &
 | |
| 			    c_b52, &c__[ie + 1 + js * c_dim1], ldc);
 | |
| 		}
 | |
| /* L200: */
 | |
| 	    }
 | |
| /* L210: */
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     work[1] = (real) lwmin;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of STGSYL */
 | |
| 
 | |
| } /* stgsyl_ */
 | |
| 
 |