713 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			713 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b STGEX2 swaps adjacent diagonal blocks in an upper (quasi) triangular matrix pair by an orthogonal equivalence transformation.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download STGEX2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/stgex2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/stgex2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/stgex2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | |
| *                          LDZ, J1, N1, N2, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       LOGICAL            WANTQ, WANTZ
 | |
| *       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
| *      $                   WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> STGEX2 swaps adjacent diagonal blocks (A11, B11) and (A22, B22)
 | |
| *> of size 1-by-1 or 2-by-2 in an upper (quasi) triangular matrix pair
 | |
| *> (A, B) by an orthogonal equivalence transformation.
 | |
| *>
 | |
| *> (A, B) must be in generalized real Schur canonical form (as returned
 | |
| *> by SGGES), i.e. A is block upper triangular with 1-by-1 and 2-by-2
 | |
| *> diagonal blocks. B is upper triangular.
 | |
| *>
 | |
| *> Optionally, the matrices Q and Z of generalized Schur vectors are
 | |
| *> updated.
 | |
| *>
 | |
| *>        Q(in) * A(in) * Z(in)**T = Q(out) * A(out) * Z(out)**T
 | |
| *>        Q(in) * B(in) * Z(in)**T = Q(out) * B(out) * Z(out)**T
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] WANTQ
 | |
| *> \verbatim
 | |
| *>          WANTQ is LOGICAL
 | |
| *>          .TRUE. : update the left transformation matrix Q;
 | |
| *>          .FALSE.: do not update Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] WANTZ
 | |
| *> \verbatim
 | |
| *>          WANTZ is LOGICAL
 | |
| *>          .TRUE. : update the right transformation matrix Z;
 | |
| *>          .FALSE.: do not update Z.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension (LDA,N)
 | |
| *>          On entry, the matrix A in the pair (A, B).
 | |
| *>          On exit, the updated matrix A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,N)
 | |
| *>          On entry, the matrix B in the pair (A, B).
 | |
| *>          On exit, the updated matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B. LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Q
 | |
| *> \verbatim
 | |
| *>          Q is REAL array, dimension (LDQ,N)
 | |
| *>          On entry, if WANTQ = .TRUE., the orthogonal matrix Q.
 | |
| *>          On exit, the updated matrix Q.
 | |
| *>          Not referenced if WANTQ = .FALSE..
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ
 | |
| *> \verbatim
 | |
| *>          LDQ is INTEGER
 | |
| *>          The leading dimension of the array Q. LDQ >= 1.
 | |
| *>          If WANTQ = .TRUE., LDQ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ,N)
 | |
| *>          On entry, if WANTZ =.TRUE., the orthogonal matrix Z.
 | |
| *>          On exit, the updated matrix Z.
 | |
| *>          Not referenced if WANTZ = .FALSE..
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z. LDZ >= 1.
 | |
| *>          If WANTZ = .TRUE., LDZ >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] J1
 | |
| *> \verbatim
 | |
| *>          J1 is INTEGER
 | |
| *>          The index to the first block (A11, B11). 1 <= J1 <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N1
 | |
| *> \verbatim
 | |
| *>          N1 is INTEGER
 | |
| *>          The order of the first block (A11, B11). N1 = 0, 1 or 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N2
 | |
| *> \verbatim
 | |
| *>          N2 is INTEGER
 | |
| *>          The order of the second block (A22, B22). N2 = 0, 1 or 2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK)).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          LWORK >=  MAX( N*(N2+N1), (N2+N1)*(N2+N1)*2 )
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>            =0: Successful exit
 | |
| *>            >0: If INFO = 1, the transformed matrix (A, B) would be
 | |
| *>                too far from generalized Schur form; the blocks are
 | |
| *>                not swapped and (A, B) and (Q, Z) are unchanged.
 | |
| *>                The problem of swapping is too ill-conditioned.
 | |
| *>            <0: If INFO = -16: LWORK is too small. Appropriate value
 | |
| *>                for LWORK is returned in WORK(1).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realGEauxiliary
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *>  In the current code both weak and strong stability tests are
 | |
| *>  performed. The user can omit the strong stability test by changing
 | |
| *>  the internal logical parameter WANDS to .FALSE.. See ref. [2] for
 | |
| *>  details.
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Bo Kagstrom and Peter Poromaa, Department of Computing Science,
 | |
| *>     Umea University, S-901 87 Umea, Sweden.
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  [1] B. Kagstrom; A Direct Method for Reordering Eigenvalues in the
 | |
| *>      Generalized Real Schur Form of a Regular Matrix Pair (A, B), in
 | |
| *>      M.S. Moonen et al (eds), Linear Algebra for Large Scale and
 | |
| *>      Real-Time Applications, Kluwer Academic Publ. 1993, pp 195-218.
 | |
| *>
 | |
| *>  [2] B. Kagstrom and P. Poromaa; Computing Eigenspaces with Specified
 | |
| *>      Eigenvalues of a Regular Matrix Pair (A, B) and Condition
 | |
| *>      Estimation: Theory, Algorithms and Software,
 | |
| *>      Report UMINF - 94.04, Department of Computing Science, Umea
 | |
| *>      University, S-901 87 Umea, Sweden, 1994. Also as LAPACK Working
 | |
| *>      Note 87. To appear in Numerical Algorithms, 1996.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE STGEX2( WANTQ, WANTZ, N, A, LDA, B, LDB, Q, LDQ, Z,
 | |
|      $                   LDZ, J1, N1, N2, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       LOGICAL            WANTQ, WANTZ
 | |
|       INTEGER            INFO, J1, LDA, LDB, LDQ, LDZ, LWORK, N, N1, N2
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), B( LDB, * ), Q( LDQ, * ),
 | |
|      $                   WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *  Replaced various illegal calls to SCOPY by calls to SLASET, or by DO
 | |
| *  loops. Sven Hammarling, 1/5/02.
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               TWENTY
 | |
|       PARAMETER          ( TWENTY = 2.0E+01 )
 | |
|       INTEGER            LDST
 | |
|       PARAMETER          ( LDST = 4 )
 | |
|       LOGICAL            WANDS
 | |
|       PARAMETER          ( WANDS = .TRUE. )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            STRONG, WEAK
 | |
|       INTEGER            I, IDUM, LINFO, M
 | |
|       REAL               BQRA21, BRQA21, DDUM, DNORMA, DNORMB,
 | |
|      $                   DSCALE,
 | |
|      $                   DSUM, EPS, F, G, SA, SB, SCALE, SMLNUM,
 | |
|      $                   THRESHA, THRESHB
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            IWORK( LDST )
 | |
|       REAL               AI( 2 ), AR( 2 ), BE( 2 ), IR( LDST, LDST ),
 | |
|      $                   IRCOP( LDST, LDST ), LI( LDST, LDST ),
 | |
|      $                   LICOP( LDST, LDST ), S( LDST, LDST ),
 | |
|      $                   SCPY( LDST, LDST ), T( LDST, LDST ),
 | |
|      $                   TAUL( LDST ), TAUR( LDST ), TCPY( LDST, LDST )
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMM, SGEQR2, SGERQ2, SLACPY, SLAGV2, SLARTG,
 | |
|      $                   SLASET, SLASSQ, SORG2R, SORGR2, SORM2R, SORMR2,
 | |
|      $                   SROT, SSCAL, STGSY2
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
|       INFO = 0
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.LE.1 .OR. N1.LE.0 .OR. N2.LE.0 )
 | |
|      $   RETURN
 | |
|       IF( N1.GT.N .OR. ( J1+N1 ).GT.N )
 | |
|      $   RETURN
 | |
|       M = N1 + N2
 | |
|       IF( LWORK.LT.MAX( N*M, M*M*2 ) ) THEN
 | |
|          INFO = -16
 | |
|          WORK( 1 ) = MAX( N*M, M*M*2 )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       WEAK = .FALSE.
 | |
|       STRONG = .FALSE.
 | |
| *
 | |
| *     Make a local copy of selected block
 | |
| *
 | |
|       CALL SLASET( 'Full', LDST, LDST, ZERO, ZERO, LI, LDST )
 | |
|       CALL SLASET( 'Full', LDST, LDST, ZERO, ZERO, IR, LDST )
 | |
|       CALL SLACPY( 'Full', M, M, A( J1, J1 ), LDA, S, LDST )
 | |
|       CALL SLACPY( 'Full', M, M, B( J1, J1 ), LDB, T, LDST )
 | |
| *
 | |
| *     Compute threshold for testing acceptance of swapping.
 | |
| *
 | |
|       EPS = SLAMCH( 'P' )
 | |
|       SMLNUM = SLAMCH( 'S' ) / EPS
 | |
|       DSCALE = ZERO
 | |
|       DSUM = ONE
 | |
|       CALL SLACPY( 'Full', M, M, S, LDST, WORK, M )
 | |
|       CALL SLASSQ( M*M, WORK, 1, DSCALE, DSUM )
 | |
|       DNORMA = DSCALE*SQRT( DSUM )
 | |
|       DSCALE = ZERO
 | |
|       DSUM = ONE
 | |
|       CALL SLACPY( 'Full', M, M, T, LDST, WORK, M )
 | |
|       CALL SLASSQ( M*M, WORK, 1, DSCALE, DSUM )
 | |
|       DNORMB = DSCALE*SQRT( DSUM )
 | |
| *
 | |
| *     THRES has been changed from
 | |
| *        THRESH = MAX( TEN*EPS*SA, SMLNUM )
 | |
| *     to
 | |
| *        THRESH = MAX( TWENTY*EPS*SA, SMLNUM )
 | |
| *     on 04/01/10.
 | |
| *     "Bug" reported by Ondra Kamenik, confirmed by Julie Langou, fixed by
 | |
| *     Jim Demmel and Guillaume Revy. See forum post 1783.
 | |
| *
 | |
|       THRESHA = MAX( TWENTY*EPS*DNORMA, SMLNUM )
 | |
|       THRESHB = MAX( TWENTY*EPS*DNORMB, SMLNUM )
 | |
| *
 | |
|       IF( M.EQ.2 ) THEN
 | |
| *
 | |
| *        CASE 1: Swap 1-by-1 and 1-by-1 blocks.
 | |
| *
 | |
| *        Compute orthogonal QL and RQ that swap 1-by-1 and 1-by-1 blocks
 | |
| *        using Givens rotations and perform the swap tentatively.
 | |
| *
 | |
|          F = S( 2, 2 )*T( 1, 1 ) - T( 2, 2 )*S( 1, 1 )
 | |
|          G = S( 2, 2 )*T( 1, 2 ) - T( 2, 2 )*S( 1, 2 )
 | |
|          SA = ABS( S( 2, 2 ) ) * ABS( T( 1, 1 ) )
 | |
|          SB = ABS( S( 1, 1 ) ) * ABS( T( 2, 2 ) )
 | |
|          CALL SLARTG( F, G, IR( 1, 2 ), IR( 1, 1 ), DDUM )
 | |
|          IR( 2, 1 ) = -IR( 1, 2 )
 | |
|          IR( 2, 2 ) = IR( 1, 1 )
 | |
|          CALL SROT( 2, S( 1, 1 ), 1, S( 1, 2 ), 1, IR( 1, 1 ),
 | |
|      $              IR( 2, 1 ) )
 | |
|          CALL SROT( 2, T( 1, 1 ), 1, T( 1, 2 ), 1, IR( 1, 1 ),
 | |
|      $              IR( 2, 1 ) )
 | |
|          IF( SA.GE.SB ) THEN
 | |
|             CALL SLARTG( S( 1, 1 ), S( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
 | |
|      $                   DDUM )
 | |
|          ELSE
 | |
|             CALL SLARTG( T( 1, 1 ), T( 2, 1 ), LI( 1, 1 ), LI( 2, 1 ),
 | |
|      $                   DDUM )
 | |
|          END IF
 | |
|          CALL SROT( 2, S( 1, 1 ), LDST, S( 2, 1 ), LDST, LI( 1, 1 ),
 | |
|      $              LI( 2, 1 ) )
 | |
|          CALL SROT( 2, T( 1, 1 ), LDST, T( 2, 1 ), LDST, LI( 1, 1 ),
 | |
|      $              LI( 2, 1 ) )
 | |
|          LI( 2, 2 ) = LI( 1, 1 )
 | |
|          LI( 1, 2 ) = -LI( 2, 1 )
 | |
| *
 | |
| *        Weak stability test: |S21| <= O(EPS F-norm((A)))
 | |
| *                           and  |T21| <= O(EPS F-norm((B)))
 | |
| *
 | |
|          WEAK = ABS( S( 2, 1 ) ) .LE. THRESHA .AND.
 | |
|      $      ABS( T( 2, 1 ) ) .LE. THRESHB
 | |
|          IF( .NOT.WEAK )
 | |
|      $      GO TO 70
 | |
| *
 | |
|          IF( WANDS ) THEN
 | |
| *
 | |
| *           Strong stability test:
 | |
| *               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
 | |
| *               and
 | |
| *               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
 | |
| *
 | |
|             CALL SLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
 | |
|      $                   M )
 | |
|             CALL SGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
 | |
|      $                  WORK, M )
 | |
|             CALL SGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | |
|      $                  WORK( M*M+1 ), M )
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             CALL SLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | |
|             SA = DSCALE*SQRT( DSUM )
 | |
| *
 | |
|             CALL SLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
 | |
|      $                   M )
 | |
|             CALL SGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
 | |
|      $                  WORK, M )
 | |
|             CALL SGEMM( 'N', 'T', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | |
|      $                  WORK( M*M+1 ), M )
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             CALL SLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | |
|             SB = DSCALE*SQRT( DSUM )
 | |
|             STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
 | |
|             IF( .NOT.STRONG )
 | |
|      $         GO TO 70
 | |
|          END IF
 | |
| *
 | |
| *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
 | |
| *               (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
 | |
| *
 | |
|          CALL SROT( J1+1, A( 1, J1 ), 1, A( 1, J1+1 ), 1, IR( 1, 1 ),
 | |
|      $              IR( 2, 1 ) )
 | |
|          CALL SROT( J1+1, B( 1, J1 ), 1, B( 1, J1+1 ), 1, IR( 1, 1 ),
 | |
|      $              IR( 2, 1 ) )
 | |
|          CALL SROT( N-J1+1, A( J1, J1 ), LDA, A( J1+1, J1 ), LDA,
 | |
|      $              LI( 1, 1 ), LI( 2, 1 ) )
 | |
|          CALL SROT( N-J1+1, B( J1, J1 ), LDB, B( J1+1, J1 ), LDB,
 | |
|      $              LI( 1, 1 ), LI( 2, 1 ) )
 | |
| *
 | |
| *        Set  N1-by-N2 (2,1) - blocks to ZERO.
 | |
| *
 | |
|          A( J1+1, J1 ) = ZERO
 | |
|          B( J1+1, J1 ) = ZERO
 | |
| *
 | |
| *        Accumulate transformations into Q and Z if requested.
 | |
| *
 | |
|          IF( WANTZ )
 | |
|      $      CALL SROT( N, Z( 1, J1 ), 1, Z( 1, J1+1 ), 1, IR( 1, 1 ),
 | |
|      $                 IR( 2, 1 ) )
 | |
|          IF( WANTQ )
 | |
|      $      CALL SROT( N, Q( 1, J1 ), 1, Q( 1, J1+1 ), 1, LI( 1, 1 ),
 | |
|      $                 LI( 2, 1 ) )
 | |
| *
 | |
| *        Exit with INFO = 0 if swap was successfully performed.
 | |
| *
 | |
|          RETURN
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        CASE 2: Swap 1-by-1 and 2-by-2 blocks, or 2-by-2
 | |
| *                and 2-by-2 blocks.
 | |
| *
 | |
| *        Solve the generalized Sylvester equation
 | |
| *                 S11 * R - L * S22 = SCALE * S12
 | |
| *                 T11 * R - L * T22 = SCALE * T12
 | |
| *        for R and L. Solutions in LI and IR.
 | |
| *
 | |
|          CALL SLACPY( 'Full', N1, N2, T( 1, N1+1 ), LDST, LI, LDST )
 | |
|          CALL SLACPY( 'Full', N1, N2, S( 1, N1+1 ), LDST,
 | |
|      $                IR( N2+1, N1+1 ), LDST )
 | |
|          CALL STGSY2( 'N', 0, N1, N2, S, LDST, S( N1+1, N1+1 ), LDST,
 | |
|      $                IR( N2+1, N1+1 ), LDST, T, LDST, T( N1+1, N1+1 ),
 | |
|      $                LDST, LI, LDST, SCALE, DSUM, DSCALE, IWORK, IDUM,
 | |
|      $                LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Compute orthogonal matrix QL:
 | |
| *
 | |
| *                    QL**T * LI = [ TL ]
 | |
| *                                 [ 0  ]
 | |
| *        where
 | |
| *                    LI =  [      -L              ]
 | |
| *                          [ SCALE * identity(N2) ]
 | |
| *
 | |
|          DO 10 I = 1, N2
 | |
|             CALL SSCAL( N1, -ONE, LI( 1, I ), 1 )
 | |
|             LI( N1+I, I ) = SCALE
 | |
|    10    CONTINUE
 | |
|          CALL SGEQR2( M, N2, LI, LDST, TAUL, WORK, LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
|          CALL SORG2R( M, M, N2, LI, LDST, TAUL, WORK, LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Compute orthogonal matrix RQ:
 | |
| *
 | |
| *                    IR * RQ**T =   [ 0  TR],
 | |
| *
 | |
| *         where IR = [ SCALE * identity(N1), R ]
 | |
| *
 | |
|          DO 20 I = 1, N1
 | |
|             IR( N2+I, I ) = SCALE
 | |
|    20    CONTINUE
 | |
|          CALL SGERQ2( N1, M, IR( N2+1, 1 ), LDST, TAUR, WORK, LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
|          CALL SORGR2( M, M, N1, IR, LDST, TAUR, WORK, LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Perform the swapping tentatively:
 | |
| *
 | |
|          CALL SGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
 | |
|      $               WORK, M )
 | |
|          CALL SGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, S,
 | |
|      $               LDST )
 | |
|          CALL SGEMM( 'T', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
 | |
|      $               WORK, M )
 | |
|          CALL SGEMM( 'N', 'T', M, M, M, ONE, WORK, M, IR, LDST, ZERO, T,
 | |
|      $               LDST )
 | |
|          CALL SLACPY( 'F', M, M, S, LDST, SCPY, LDST )
 | |
|          CALL SLACPY( 'F', M, M, T, LDST, TCPY, LDST )
 | |
|          CALL SLACPY( 'F', M, M, IR, LDST, IRCOP, LDST )
 | |
|          CALL SLACPY( 'F', M, M, LI, LDST, LICOP, LDST )
 | |
| *
 | |
| *        Triangularize the B-part by an RQ factorization.
 | |
| *        Apply transformation (from left) to A-part, giving S.
 | |
| *
 | |
|          CALL SGERQ2( M, M, T, LDST, TAUR, WORK, LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
|          CALL SORMR2( 'R', 'T', M, M, M, T, LDST, TAUR, S, LDST, WORK,
 | |
|      $                LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
|          CALL SORMR2( 'L', 'N', M, M, M, T, LDST, TAUR, IR, LDST, WORK,
 | |
|      $                LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Compute F-norm(S21) in BRQA21. (T21 is 0.)
 | |
| *
 | |
|          DSCALE = ZERO
 | |
|          DSUM = ONE
 | |
|          DO 30 I = 1, N2
 | |
|             CALL SLASSQ( N1, S( N2+1, I ), 1, DSCALE, DSUM )
 | |
|    30    CONTINUE
 | |
|          BRQA21 = DSCALE*SQRT( DSUM )
 | |
| *
 | |
| *        Triangularize the B-part by a QR factorization.
 | |
| *        Apply transformation (from right) to A-part, giving S.
 | |
| *
 | |
|          CALL SGEQR2( M, M, TCPY, LDST, TAUL, WORK, LINFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
|          CALL SORM2R( 'L', 'T', M, M, M, TCPY, LDST, TAUL, SCPY, LDST,
 | |
|      $                WORK, INFO )
 | |
|          CALL SORM2R( 'R', 'N', M, M, M, TCPY, LDST, TAUL, LICOP, LDST,
 | |
|      $                WORK, INFO )
 | |
|          IF( LINFO.NE.0 )
 | |
|      $      GO TO 70
 | |
| *
 | |
| *        Compute F-norm(S21) in BQRA21. (T21 is 0.)
 | |
| *
 | |
|          DSCALE = ZERO
 | |
|          DSUM = ONE
 | |
|          DO 40 I = 1, N2
 | |
|             CALL SLASSQ( N1, SCPY( N2+1, I ), 1, DSCALE, DSUM )
 | |
|    40    CONTINUE
 | |
|          BQRA21 = DSCALE*SQRT( DSUM )
 | |
| *
 | |
| *        Decide which method to use.
 | |
| *          Weak stability test:
 | |
| *             F-norm(S21) <= O(EPS * F-norm((S)))
 | |
| *
 | |
|          IF( BQRA21.LE.BRQA21 .AND. BQRA21.LE.THRESHA ) THEN
 | |
|             CALL SLACPY( 'F', M, M, SCPY, LDST, S, LDST )
 | |
|             CALL SLACPY( 'F', M, M, TCPY, LDST, T, LDST )
 | |
|             CALL SLACPY( 'F', M, M, IRCOP, LDST, IR, LDST )
 | |
|             CALL SLACPY( 'F', M, M, LICOP, LDST, LI, LDST )
 | |
|          ELSE IF( BRQA21.GE.THRESHA ) THEN
 | |
|             GO TO 70
 | |
|          END IF
 | |
| *
 | |
| *        Set lower triangle of B-part to zero
 | |
| *
 | |
|          CALL SLASET( 'Lower', M-1, M-1, ZERO, ZERO, T(2,1), LDST )
 | |
| *
 | |
|          IF( WANDS ) THEN
 | |
| *
 | |
| *           Strong stability test:
 | |
| *               F-norm((A-QL**H*S*QR)) <= O(EPS*F-norm((A)))
 | |
| *               and
 | |
| *               F-norm((B-QL**H*T*QR)) <= O(EPS*F-norm((B)))
 | |
| *
 | |
|             CALL SLACPY( 'Full', M, M, A( J1, J1 ), LDA, WORK( M*M+1 ),
 | |
|      $                   M )
 | |
|             CALL SGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, S, LDST, ZERO,
 | |
|      $                  WORK, M )
 | |
|             CALL SGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | |
|      $                  WORK( M*M+1 ), M )
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             CALL SLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | |
|             SA = DSCALE*SQRT( DSUM )
 | |
| *
 | |
|             CALL SLACPY( 'Full', M, M, B( J1, J1 ), LDB, WORK( M*M+1 ),
 | |
|      $                   M )
 | |
|             CALL SGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, T, LDST, ZERO,
 | |
|      $                  WORK, M )
 | |
|             CALL SGEMM( 'N', 'N', M, M, M, -ONE, WORK, M, IR, LDST, ONE,
 | |
|      $                  WORK( M*M+1 ), M )
 | |
|             DSCALE = ZERO
 | |
|             DSUM = ONE
 | |
|             CALL SLASSQ( M*M, WORK( M*M+1 ), 1, DSCALE, DSUM )
 | |
|             SB = DSCALE*SQRT( DSUM )
 | |
|             STRONG = SA.LE.THRESHA .AND. SB.LE.THRESHB
 | |
|             IF( .NOT.STRONG )
 | |
|      $         GO TO 70
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        If the swap is accepted ("weakly" and "strongly"), apply the
 | |
| *        transformations and set N1-by-N2 (2,1)-block to zero.
 | |
| *
 | |
|          CALL SLASET( 'Full', N1, N2, ZERO, ZERO, S(N2+1,1), LDST )
 | |
| *
 | |
| *        copy back M-by-M diagonal block starting at index J1 of (A, B)
 | |
| *
 | |
|          CALL SLACPY( 'F', M, M, S, LDST, A( J1, J1 ), LDA )
 | |
|          CALL SLACPY( 'F', M, M, T, LDST, B( J1, J1 ), LDB )
 | |
|          CALL SLASET( 'Full', LDST, LDST, ZERO, ZERO, T, LDST )
 | |
| *
 | |
| *        Standardize existing 2-by-2 blocks.
 | |
| *
 | |
|          CALL SLASET( 'Full', M, M, ZERO, ZERO, WORK, M )
 | |
|          WORK( 1 ) = ONE
 | |
|          T( 1, 1 ) = ONE
 | |
|          IDUM = LWORK - M*M - 2
 | |
|          IF( N2.GT.1 ) THEN
 | |
|             CALL SLAGV2( A( J1, J1 ), LDA, B( J1, J1 ), LDB, AR, AI, BE,
 | |
|      $                   WORK( 1 ), WORK( 2 ), T( 1, 1 ), T( 2, 1 ) )
 | |
|             WORK( M+1 ) = -WORK( 2 )
 | |
|             WORK( M+2 ) = WORK( 1 )
 | |
|             T( N2, N2 ) = T( 1, 1 )
 | |
|             T( 1, 2 ) = -T( 2, 1 )
 | |
|          END IF
 | |
|          WORK( M*M ) = ONE
 | |
|          T( M, M ) = ONE
 | |
| *
 | |
|          IF( N1.GT.1 ) THEN
 | |
|             CALL SLAGV2( A( J1+N2, J1+N2 ), LDA, B( J1+N2, J1+N2 ), LDB,
 | |
|      $                   TAUR, TAUL, WORK( M*M+1 ), WORK( N2*M+N2+1 ),
 | |
|      $                   WORK( N2*M+N2+2 ), T( N2+1, N2+1 ),
 | |
|      $                   T( M, M-1 ) )
 | |
|             WORK( M*M ) = WORK( N2*M+N2+1 )
 | |
|             WORK( M*M-1 ) = -WORK( N2*M+N2+2 )
 | |
|             T( M, M ) = T( N2+1, N2+1 )
 | |
|             T( M-1, M ) = -T( M, M-1 )
 | |
|          END IF
 | |
|          CALL SGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, A( J1, J1+N2 ),
 | |
|      $               LDA, ZERO, WORK( M*M+1 ), N2 )
 | |
|          CALL SLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, A( J1, J1+N2 ),
 | |
|      $                LDA )
 | |
|          CALL SGEMM( 'T', 'N', N2, N1, N2, ONE, WORK, M, B( J1, J1+N2 ),
 | |
|      $               LDB, ZERO, WORK( M*M+1 ), N2 )
 | |
|          CALL SLACPY( 'Full', N2, N1, WORK( M*M+1 ), N2, B( J1, J1+N2 ),
 | |
|      $                LDB )
 | |
|          CALL SGEMM( 'N', 'N', M, M, M, ONE, LI, LDST, WORK, M, ZERO,
 | |
|      $               WORK( M*M+1 ), M )
 | |
|          CALL SLACPY( 'Full', M, M, WORK( M*M+1 ), M, LI, LDST )
 | |
|          CALL SGEMM( 'N', 'N', N2, N1, N1, ONE, A( J1, J1+N2 ), LDA,
 | |
|      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
 | |
|          CALL SLACPY( 'Full', N2, N1, WORK, N2, A( J1, J1+N2 ), LDA )
 | |
|          CALL SGEMM( 'N', 'N', N2, N1, N1, ONE, B( J1, J1+N2 ), LDB,
 | |
|      $               T( N2+1, N2+1 ), LDST, ZERO, WORK, N2 )
 | |
|          CALL SLACPY( 'Full', N2, N1, WORK, N2, B( J1, J1+N2 ), LDB )
 | |
|          CALL SGEMM( 'T', 'N', M, M, M, ONE, IR, LDST, T, LDST, ZERO,
 | |
|      $               WORK, M )
 | |
|          CALL SLACPY( 'Full', M, M, WORK, M, IR, LDST )
 | |
| *
 | |
| *        Accumulate transformations into Q and Z if requested.
 | |
| *
 | |
|          IF( WANTQ ) THEN
 | |
|             CALL SGEMM( 'N', 'N', N, M, M, ONE, Q( 1, J1 ), LDQ, LI,
 | |
|      $                  LDST, ZERO, WORK, N )
 | |
|             CALL SLACPY( 'Full', N, M, WORK, N, Q( 1, J1 ), LDQ )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
|          IF( WANTZ ) THEN
 | |
|             CALL SGEMM( 'N', 'N', N, M, M, ONE, Z( 1, J1 ), LDZ, IR,
 | |
|      $                  LDST, ZERO, WORK, N )
 | |
|             CALL SLACPY( 'Full', N, M, WORK, N, Z( 1, J1 ), LDZ )
 | |
| *
 | |
|          END IF
 | |
| *
 | |
| *        Update (A(J1:J1+M-1, M+J1:N), B(J1:J1+M-1, M+J1:N)) and
 | |
| *                (A(1:J1-1, J1:J1+M), B(1:J1-1, J1:J1+M)).
 | |
| *
 | |
|          I = J1 + M
 | |
|          IF( I.LE.N ) THEN
 | |
|             CALL SGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
 | |
|      $                  A( J1, I ), LDA, ZERO, WORK, M )
 | |
|             CALL SLACPY( 'Full', M, N-I+1, WORK, M, A( J1, I ), LDA )
 | |
|             CALL SGEMM( 'T', 'N', M, N-I+1, M, ONE, LI, LDST,
 | |
|      $                  B( J1, I ), LDB, ZERO, WORK, M )
 | |
|             CALL SLACPY( 'Full', M, N-I+1, WORK, M, B( J1, I ), LDB )
 | |
|          END IF
 | |
|          I = J1 - 1
 | |
|          IF( I.GT.0 ) THEN
 | |
|             CALL SGEMM( 'N', 'N', I, M, M, ONE, A( 1, J1 ), LDA, IR,
 | |
|      $                  LDST, ZERO, WORK, I )
 | |
|             CALL SLACPY( 'Full', I, M, WORK, I, A( 1, J1 ), LDA )
 | |
|             CALL SGEMM( 'N', 'N', I, M, M, ONE, B( 1, J1 ), LDB, IR,
 | |
|      $                  LDST, ZERO, WORK, I )
 | |
|             CALL SLACPY( 'Full', I, M, WORK, I, B( 1, J1 ), LDB )
 | |
|          END IF
 | |
| *
 | |
| *        Exit with INFO = 0 if swap was successfully performed.
 | |
| *
 | |
|          RETURN
 | |
| *
 | |
|       END IF
 | |
| *
 | |
| *     Exit with INFO = 1 if swap was rejected.
 | |
| *
 | |
|    70 CONTINUE
 | |
| *
 | |
|       INFO = 1
 | |
|       RETURN
 | |
| *
 | |
| *     End of STGEX2
 | |
| *
 | |
|       END
 |