1044 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1044 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* > \brief \b SSYTRF_RK computes the factorization of a real symmetric indefinite matrix using the bounded Bu
 | |
| nch-Kaufman (rook) diagonal pivoting method (BLAS3 blocked algorithm). */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SSYTRF_RK + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssytrf_
 | |
| rk.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssytrf_
 | |
| rk.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssytrf_
 | |
| rk.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SSYTRF_RK( UPLO, N, A, LDA, E, IPIV, WORK, LWORK, */
 | |
| /*                             INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO */
 | |
| /*       INTEGER            INFO, LDA, LWORK, N */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       REAL               A( LDA, * ), E ( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > SSYTRF_RK computes the factorization of a real symmetric matrix A */
 | |
| /* > using the bounded Bunch-Kaufman (rook) diagonal pivoting method: */
 | |
| /* > */
 | |
| /* >    A = P*U*D*(U**T)*(P**T) or A = P*L*D*(L**T)*(P**T), */
 | |
| /* > */
 | |
| /* > where U (or L) is unit upper (or lower) triangular matrix, */
 | |
| /* > U**T (or L**T) is the transpose of U (or L), P is a permutation */
 | |
| /* > matrix, P**T is the transpose of P, and D is symmetric and block */
 | |
| /* > diagonal with 1-by-1 and 2-by-2 diagonal blocks. */
 | |
| /* > */
 | |
| /* > This is the blocked version of the algorithm, calling Level 3 BLAS. */
 | |
| /* > For more information see Further Details section. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          Specifies whether the upper or lower triangular part of the */
 | |
| /* >          symmetric matrix A is stored: */
 | |
| /* >          = 'U':  Upper triangular */
 | |
| /* >          = 'L':  Lower triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,N) */
 | |
| /* >          On entry, the symmetric matrix A. */
 | |
| /* >            If UPLO = 'U': the leading N-by-N upper triangular part */
 | |
| /* >            of A contains the upper triangular part of the matrix A, */
 | |
| /* >            and the strictly lower triangular part of A is not */
 | |
| /* >            referenced. */
 | |
| /* > */
 | |
| /* >            If UPLO = 'L': the leading N-by-N lower triangular part */
 | |
| /* >            of A contains the lower triangular part of the matrix A, */
 | |
| /* >            and the strictly upper triangular part of A is not */
 | |
| /* >            referenced. */
 | |
| /* > */
 | |
| /* >          On exit, contains: */
 | |
| /* >            a) ONLY diagonal elements of the symmetric block diagonal */
 | |
| /* >               matrix D on the diagonal of A, i.e. D(k,k) = A(k,k); */
 | |
| /* >               (superdiagonal (or subdiagonal) elements of D */
 | |
| /* >                are stored on exit in array E), and */
 | |
| /* >            b) If UPLO = 'U': factor U in the superdiagonal part of A. */
 | |
| /* >               If UPLO = 'L': factor L in the subdiagonal part of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is REAL array, dimension (N) */
 | |
| /* >          On exit, contains the superdiagonal (or subdiagonal) */
 | |
| /* >          elements of the symmetric block diagonal matrix D */
 | |
| /* >          with 1-by-1 or 2-by-2 diagonal blocks, where */
 | |
| /* >          If UPLO = 'U': E(i) = D(i-1,i), i=2:N, E(1) is set to 0; */
 | |
| /* >          If UPLO = 'L': E(i) = D(i+1,i), i=1:N-1, E(N) is set to 0. */
 | |
| /* > */
 | |
| /* >          NOTE: For 1-by-1 diagonal block D(k), where */
 | |
| /* >          1 <= k <= N, the element E(k) is set to 0 in both */
 | |
| /* >          UPLO = 'U' or UPLO = 'L' cases. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          IPIV describes the permutation matrix P in the factorization */
 | |
| /* >          of matrix A as follows. The absolute value of IPIV(k) */
 | |
| /* >          represents the index of row and column that were */
 | |
| /* >          interchanged with the k-th row and column. The value of UPLO */
 | |
| /* >          describes the order in which the interchanges were applied. */
 | |
| /* >          Also, the sign of IPIV represents the block structure of */
 | |
| /* >          the symmetric block diagonal matrix D with 1-by-1 or 2-by-2 */
 | |
| /* >          diagonal blocks which correspond to 1 or 2 interchanges */
 | |
| /* >          at each factorization step. For more info see Further */
 | |
| /* >          Details section. */
 | |
| /* > */
 | |
| /* >          If UPLO = 'U', */
 | |
| /* >          ( in factorization order, k decreases from N to 1 ): */
 | |
| /* >            a) A single positive entry IPIV(k) > 0 means: */
 | |
| /* >               D(k,k) is a 1-by-1 diagonal block. */
 | |
| /* >               If IPIV(k) != k, rows and columns k and IPIV(k) were */
 | |
| /* >               interchanged in the matrix A(1:N,1:N); */
 | |
| /* >               If IPIV(k) = k, no interchange occurred. */
 | |
| /* > */
 | |
| /* >            b) A pair of consecutive negative entries */
 | |
| /* >               IPIV(k) < 0 and IPIV(k-1) < 0 means: */
 | |
| /* >               D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
 | |
| /* >               (NOTE: negative entries in IPIV appear ONLY in pairs). */
 | |
| /* >               1) If -IPIV(k) != k, rows and columns */
 | |
| /* >                  k and -IPIV(k) were interchanged */
 | |
| /* >                  in the matrix A(1:N,1:N). */
 | |
| /* >                  If -IPIV(k) = k, no interchange occurred. */
 | |
| /* >               2) If -IPIV(k-1) != k-1, rows and columns */
 | |
| /* >                  k-1 and -IPIV(k-1) were interchanged */
 | |
| /* >                  in the matrix A(1:N,1:N). */
 | |
| /* >                  If -IPIV(k-1) = k-1, no interchange occurred. */
 | |
| /* > */
 | |
| /* >            c) In both cases a) and b), always ABS( IPIV(k) ) <= k. */
 | |
| /* > */
 | |
| /* >            d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
 | |
| /* > */
 | |
| /* >          If UPLO = 'L', */
 | |
| /* >          ( in factorization order, k increases from 1 to N ): */
 | |
| /* >            a) A single positive entry IPIV(k) > 0 means: */
 | |
| /* >               D(k,k) is a 1-by-1 diagonal block. */
 | |
| /* >               If IPIV(k) != k, rows and columns k and IPIV(k) were */
 | |
| /* >               interchanged in the matrix A(1:N,1:N). */
 | |
| /* >               If IPIV(k) = k, no interchange occurred. */
 | |
| /* > */
 | |
| /* >            b) A pair of consecutive negative entries */
 | |
| /* >               IPIV(k) < 0 and IPIV(k+1) < 0 means: */
 | |
| /* >               D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 | |
| /* >               (NOTE: negative entries in IPIV appear ONLY in pairs). */
 | |
| /* >               1) If -IPIV(k) != k, rows and columns */
 | |
| /* >                  k and -IPIV(k) were interchanged */
 | |
| /* >                  in the matrix A(1:N,1:N). */
 | |
| /* >                  If -IPIV(k) = k, no interchange occurred. */
 | |
| /* >               2) If -IPIV(k+1) != k+1, rows and columns */
 | |
| /* >                  k-1 and -IPIV(k-1) were interchanged */
 | |
| /* >                  in the matrix A(1:N,1:N). */
 | |
| /* >                  If -IPIV(k+1) = k+1, no interchange occurred. */
 | |
| /* > */
 | |
| /* >            c) In both cases a) and b), always ABS( IPIV(k) ) >= k. */
 | |
| /* > */
 | |
| /* >            d) NOTE: Any entry IPIV(k) is always NONZERO on output. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension ( MAX(1,LWORK) ). */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The length of WORK.  LWORK >=1.  For best performance */
 | |
| /* >          LWORK >= N*NB, where NB is the block size returned */
 | |
| /* >          by ILAENV. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; */
 | |
| /* >          the routine only calculates the optimal size of the WORK */
 | |
| /* >          array, returns this value as the first entry of the WORK */
 | |
| /* >          array, and no error message related to LWORK is issued */
 | |
| /* >          by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* > */
 | |
| /* >          < 0: If INFO = -k, the k-th argument had an illegal value */
 | |
| /* > */
 | |
| /* >          > 0: If INFO = k, the matrix A is singular, because: */
 | |
| /* >                 If UPLO = 'U': column k in the upper */
 | |
| /* >                 triangular part of A contains all zeros. */
 | |
| /* >                 If UPLO = 'L': column k in the lower */
 | |
| /* >                 triangular part of A contains all zeros. */
 | |
| /* > */
 | |
| /* >               Therefore D(k,k) is exactly zero, and superdiagonal */
 | |
| /* >               elements of column k of U (or subdiagonal elements of */
 | |
| /* >               column k of L ) are all zeros. The factorization has */
 | |
| /* >               been completed, but the block diagonal matrix D is */
 | |
| /* >               exactly singular, and division by zero will occur if */
 | |
| /* >               it is used to solve a system of equations. */
 | |
| /* > */
 | |
| /* >               NOTE: INFO only stores the first occurrence of */
 | |
| /* >               a singularity, any subsequent occurrence of singularity */
 | |
| /* >               is not stored in INFO even though the factorization */
 | |
| /* >               always completes. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup singleSYcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > TODO: put correct description */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  December 2016,  Igor Kozachenko, */
 | |
| /* >                  Computer Science Division, */
 | |
| /* >                  University of California, Berkeley */
 | |
| /* > */
 | |
| /* >  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
 | |
| /* >                  School of Mathematics, */
 | |
| /* >                  University of Manchester */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ssytrf_rk_(char *uplo, integer *n, real *a, integer *
 | |
| 	lda, real *e, integer *ipiv, real *work, integer *lwork, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, i__1, i__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer i__, k;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer nbmin, iinfo;
 | |
|     extern /* Subroutine */ void ssytf2_rk_(char *, integer *, real *, 
 | |
| 	    integer *, real *, integer *, integer *);
 | |
|     logical upper;
 | |
|     extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *, 
 | |
| 	    integer *), slasyf_rk_(char *, integer *, integer *, integer *, 
 | |
| 	    real *, integer *, real *, integer *, real *, integer *, integer *
 | |
| 	    );
 | |
|     integer kb, nb, ip;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     integer ldwork, lwkopt;
 | |
|     logical lquery;
 | |
|     integer iws;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --e;
 | |
|     --ipiv;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     lquery = *lwork == -1;
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -4;
 | |
|     } else if (*lwork < 1 && ! lquery) {
 | |
| 	*info = -8;
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 
 | |
| /*        Determine the block size */
 | |
| 
 | |
| 	nb = ilaenv_(&c__1, "SSYTRF_RK", uplo, n, &c_n1, &c_n1, &c_n1, (
 | |
| 		ftnlen)9, (ftnlen)1);
 | |
| 	lwkopt = *n * nb;
 | |
| 	work[1] = (real) lwkopt;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SSYTRF_RK", &i__1, (ftnlen)9);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     nbmin = 2;
 | |
|     ldwork = *n;
 | |
|     if (nb > 1 && nb < *n) {
 | |
| 	iws = ldwork * nb;
 | |
| 	if (*lwork < iws) {
 | |
| /* Computing MAX */
 | |
| 	    i__1 = *lwork / ldwork;
 | |
| 	    nb = f2cmax(i__1,1);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = 2, i__2 = ilaenv_(&c__2, "SSYTRF_RK", uplo, n, &c_n1, &
 | |
| 		    c_n1, &c_n1, (ftnlen)9, (ftnlen)1);
 | |
| 	    nbmin = f2cmax(i__1,i__2);
 | |
| 	}
 | |
|     } else {
 | |
| 	iws = 1;
 | |
|     }
 | |
|     if (nb < nbmin) {
 | |
| 	nb = *n;
 | |
|     }
 | |
| 
 | |
|     if (upper) {
 | |
| 
 | |
| /*        Factorize A as U*D*U**T using the upper triangle of A */
 | |
| 
 | |
| /*        K is the main loop index, decreasing from N to 1 in steps of */
 | |
| /*        KB, where KB is the number of columns factorized by SLASYF_RK; */
 | |
| /*        KB is either NB or NB-1, or K for the last block */
 | |
| 
 | |
| 	k = *n;
 | |
| L10:
 | |
| 
 | |
| /*        If K < 1, exit from loop */
 | |
| 
 | |
| 	if (k < 1) {
 | |
| 	    goto L15;
 | |
| 	}
 | |
| 
 | |
| 	if (k > nb) {
 | |
| 
 | |
| /*           Factorize columns k-kb+1:k of A and use blocked code to */
 | |
| /*           update columns 1:k-kb */
 | |
| 
 | |
| 	    slasyf_rk_(uplo, &k, &nb, &kb, &a[a_offset], lda, &e[1], &ipiv[1]
 | |
| 		    , &work[1], &ldwork, &iinfo);
 | |
| 	} else {
 | |
| 
 | |
| /*           Use unblocked code to factorize columns 1:k of A */
 | |
| 
 | |
| 	    ssytf2_rk_(uplo, &k, &a[a_offset], lda, &e[1], &ipiv[1], &iinfo);
 | |
| 	    kb = k;
 | |
| 	}
 | |
| 
 | |
| /*        Set INFO on the first occurrence of a zero pivot */
 | |
| 
 | |
| 	if (*info == 0 && iinfo > 0) {
 | |
| 	    *info = iinfo;
 | |
| 	}
 | |
| 
 | |
| /*        No need to adjust IPIV */
 | |
| 
 | |
| 
 | |
| /*        Apply permutations to the leading panel 1:k-1 */
 | |
| 
 | |
| /*        Read IPIV from the last block factored, i.e. */
 | |
| /*        indices  k-kb+1:k and apply row permutations to the */
 | |
| /*        last k+1 colunms k+1:N after that block */
 | |
| /*        (We can do the simple loop over IPIV with decrement -1, */
 | |
| /*        since the ABS value of IPIV( I ) represents the row index */
 | |
| /*        of the interchange with row i in both 1x1 and 2x2 pivot cases) */
 | |
| 
 | |
| 	if (k < *n) {
 | |
| 	    i__1 = k - kb + 1;
 | |
| 	    for (i__ = k; i__ >= i__1; --i__) {
 | |
| 		ip = (i__2 = ipiv[i__], abs(i__2));
 | |
| 		if (ip != i__) {
 | |
| 		    i__2 = *n - k;
 | |
| 		    sswap_(&i__2, &a[i__ + (k + 1) * a_dim1], lda, &a[ip + (k 
 | |
| 			    + 1) * a_dim1], lda);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Decrease K and return to the start of the main loop */
 | |
| 
 | |
| 	k -= kb;
 | |
| 	goto L10;
 | |
| 
 | |
| /*        This label is the exit from main loop over K decreasing */
 | |
| /*        from N to 1 in steps of KB */
 | |
| 
 | |
| L15:
 | |
| 
 | |
| 	;
 | |
|     } else {
 | |
| 
 | |
| /*        Factorize A as L*D*L**T using the lower triangle of A */
 | |
| 
 | |
| /*        K is the main loop index, increasing from 1 to N in steps of */
 | |
| /*        KB, where KB is the number of columns factorized by SLASYF_RK; */
 | |
| /*        KB is either NB or NB-1, or N-K+1 for the last block */
 | |
| 
 | |
| 	k = 1;
 | |
| L20:
 | |
| 
 | |
| /*        If K > N, exit from loop */
 | |
| 
 | |
| 	if (k > *n) {
 | |
| 	    goto L35;
 | |
| 	}
 | |
| 
 | |
| 	if (k <= *n - nb) {
 | |
| 
 | |
| /*           Factorize columns k:k+kb-1 of A and use blocked code to */
 | |
| /*           update columns k+kb:n */
 | |
| 
 | |
| 	    i__1 = *n - k + 1;
 | |
| 	    slasyf_rk_(uplo, &i__1, &nb, &kb, &a[k + k * a_dim1], lda, &e[k],
 | |
| 		     &ipiv[k], &work[1], &ldwork, &iinfo);
 | |
| 	} else {
 | |
| 
 | |
| /*           Use unblocked code to factorize columns k:n of A */
 | |
| 
 | |
| 	    i__1 = *n - k + 1;
 | |
| 	    ssytf2_rk_(uplo, &i__1, &a[k + k * a_dim1], lda, &e[k], &ipiv[k],
 | |
| 		     &iinfo);
 | |
| 	    kb = *n - k + 1;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /*        Set INFO on the first occurrence of a zero pivot */
 | |
| 
 | |
| 	if (*info == 0 && iinfo > 0) {
 | |
| 	    *info = iinfo + k - 1;
 | |
| 	}
 | |
| 
 | |
| /*        Adjust IPIV */
 | |
| 
 | |
| 	i__1 = k + kb - 1;
 | |
| 	for (i__ = k; i__ <= i__1; ++i__) {
 | |
| 	    if (ipiv[i__] > 0) {
 | |
| 		ipiv[i__] = ipiv[i__] + k - 1;
 | |
| 	    } else {
 | |
| 		ipiv[i__] = ipiv[i__] - k + 1;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Apply permutations to the leading panel 1:k-1 */
 | |
| 
 | |
| /*        Read IPIV from the last block factored, i.e. */
 | |
| /*        indices  k:k+kb-1 and apply row permutations to the */
 | |
| /*        first k-1 colunms 1:k-1 before that block */
 | |
| /*        (We can do the simple loop over IPIV with increment 1, */
 | |
| /*        since the ABS value of IPIV( I ) represents the row index */
 | |
| /*        of the interchange with row i in both 1x1 and 2x2 pivot cases) */
 | |
| 
 | |
| 	if (k > 1) {
 | |
| 	    i__1 = k + kb - 1;
 | |
| 	    for (i__ = k; i__ <= i__1; ++i__) {
 | |
| 		ip = (i__2 = ipiv[i__], abs(i__2));
 | |
| 		if (ip != i__) {
 | |
| 		    i__2 = k - 1;
 | |
| 		    sswap_(&i__2, &a[i__ + a_dim1], lda, &a[ip + a_dim1], lda)
 | |
| 			    ;
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Increase K and return to the start of the main loop */
 | |
| 
 | |
| 	k += kb;
 | |
| 	goto L20;
 | |
| 
 | |
| /*        This label is the exit from main loop over K increasing */
 | |
| /*        from 1 to N in steps of KB */
 | |
| 
 | |
| L35:
 | |
| 
 | |
| /*     End Lower */
 | |
| 
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     work[1] = (real) lwkopt;
 | |
|     return;
 | |
| 
 | |
| /*     End of SSYTRF_RK */
 | |
| 
 | |
| } /* ssytrf_rk__ */
 | |
| 
 |