1268 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1268 lines
		
	
	
		
			39 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__10 = 10;
 | |
| static integer c__1 = 1;
 | |
| static integer c__2 = 2;
 | |
| static integer c__3 = 3;
 | |
| static integer c__4 = 4;
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* > \brief <b> SSYEVR computes the eigenvalues and, optionally, the left and/or right eigenvectors for SY mat
 | |
| rices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SSYEVR + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssyevr.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssyevr.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssyevr.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SSYEVR( JOBZ, RANGE, UPLO, N, A, LDA, VL, VU, IL, IU, */
 | |
| /*                          ABSTOL, M, W, Z, LDZ, ISUPPZ, WORK, LWORK, */
 | |
| /*                          IWORK, LIWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBZ, RANGE, UPLO */
 | |
| /*       INTEGER            IL, INFO, IU, LDA, LDZ, LIWORK, LWORK, M, N */
 | |
| /*       REAL               ABSTOL, VL, VU */
 | |
| /*       INTEGER            ISUPPZ( * ), IWORK( * ) */
 | |
| /*       REAL               A( LDA, * ), W( * ), WORK( * ), Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SSYEVR computes selected eigenvalues and, optionally, eigenvectors */
 | |
| /* > of a real symmetric matrix A.  Eigenvalues and eigenvectors can be */
 | |
| /* > selected by specifying either a range of values or a range of */
 | |
| /* > indices for the desired eigenvalues. */
 | |
| /* > */
 | |
| /* > SSYEVR first reduces the matrix A to tridiagonal form T with a call */
 | |
| /* > to SSYTRD.  Then, whenever possible, SSYEVR calls SSTEMR to compute */
 | |
| /* > the eigenspectrum using Relatively Robust Representations.  SSTEMR */
 | |
| /* > computes eigenvalues by the dqds algorithm, while orthogonal */
 | |
| /* > eigenvectors are computed from various "good" L D L^T representations */
 | |
| /* > (also known as Relatively Robust Representations). Gram-Schmidt */
 | |
| /* > orthogonalization is avoided as far as possible. More specifically, */
 | |
| /* > the various steps of the algorithm are as follows. */
 | |
| /* > */
 | |
| /* > For each unreduced block (submatrix) of T, */
 | |
| /* >    (a) Compute T - sigma I  = L D L^T, so that L and D */
 | |
| /* >        define all the wanted eigenvalues to high relative accuracy. */
 | |
| /* >        This means that small relative changes in the entries of D and L */
 | |
| /* >        cause only small relative changes in the eigenvalues and */
 | |
| /* >        eigenvectors. The standard (unfactored) representation of the */
 | |
| /* >        tridiagonal matrix T does not have this property in general. */
 | |
| /* >    (b) Compute the eigenvalues to suitable accuracy. */
 | |
| /* >        If the eigenvectors are desired, the algorithm attains full */
 | |
| /* >        accuracy of the computed eigenvalues only right before */
 | |
| /* >        the corresponding vectors have to be computed, see steps c) and d). */
 | |
| /* >    (c) For each cluster of close eigenvalues, select a new */
 | |
| /* >        shift close to the cluster, find a new factorization, and refine */
 | |
| /* >        the shifted eigenvalues to suitable accuracy. */
 | |
| /* >    (d) For each eigenvalue with a large enough relative separation compute */
 | |
| /* >        the corresponding eigenvector by forming a rank revealing twisted */
 | |
| /* >        factorization. Go back to (c) for any clusters that remain. */
 | |
| /* > */
 | |
| /* > The desired accuracy of the output can be specified by the input */
 | |
| /* > parameter ABSTOL. */
 | |
| /* > */
 | |
| /* > For more details, see SSTEMR's documentation and: */
 | |
| /* > - Inderjit S. Dhillon and Beresford N. Parlett: "Multiple representations */
 | |
| /* >   to compute orthogonal eigenvectors of symmetric tridiagonal matrices," */
 | |
| /* >   Linear Algebra and its Applications, 387(1), pp. 1-28, August 2004. */
 | |
| /* > - Inderjit Dhillon and Beresford Parlett: "Orthogonal Eigenvectors and */
 | |
| /* >   Relative Gaps," SIAM Journal on Matrix Analysis and Applications, Vol. 25, */
 | |
| /* >   2004.  Also LAPACK Working Note 154. */
 | |
| /* > - Inderjit Dhillon: "A new O(n^2) algorithm for the symmetric */
 | |
| /* >   tridiagonal eigenvalue/eigenvector problem", */
 | |
| /* >   Computer Science Division Technical Report No. UCB/CSD-97-971, */
 | |
| /* >   UC Berkeley, May 1997. */
 | |
| /* > */
 | |
| /* > */
 | |
| /* > Note 1 : SSYEVR calls SSTEMR when the full spectrum is requested */
 | |
| /* > on machines which conform to the ieee-754 floating point standard. */
 | |
| /* > SSYEVR calls SSTEBZ and SSTEIN on non-ieee machines and */
 | |
| /* > when partial spectrum requests are made. */
 | |
| /* > */
 | |
| /* > Normal execution of SSTEMR may create NaNs and infinities and */
 | |
| /* > hence may abort due to a floating point exception in environments */
 | |
| /* > which do not handle NaNs and infinities in the ieee standard default */
 | |
| /* > manner. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBZ */
 | |
| /* > \verbatim */
 | |
| /* >          JOBZ is CHARACTER*1 */
 | |
| /* >          = 'N':  Compute eigenvalues only; */
 | |
| /* >          = 'V':  Compute eigenvalues and eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RANGE */
 | |
| /* > \verbatim */
 | |
| /* >          RANGE is CHARACTER*1 */
 | |
| /* >          = 'A': all eigenvalues will be found. */
 | |
| /* >          = 'V': all eigenvalues in the half-open interval (VL,VU] */
 | |
| /* >                 will be found. */
 | |
| /* >          = 'I': the IL-th through IU-th eigenvalues will be found. */
 | |
| /* >          For RANGE = 'V' or 'I' and IU - IL < N - 1, SSTEBZ and */
 | |
| /* >          SSTEIN are called */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA, N) */
 | |
| /* >          On entry, the symmetric matrix A.  If UPLO = 'U', the */
 | |
| /* >          leading N-by-N upper triangular part of A contains the */
 | |
| /* >          upper triangular part of the matrix A.  If UPLO = 'L', */
 | |
| /* >          the leading N-by-N lower triangular part of A contains */
 | |
| /* >          the lower triangular part of the matrix A. */
 | |
| /* >          On exit, the lower triangle (if UPLO='L') or the upper */
 | |
| /* >          triangle (if UPLO='U') of A, including the diagonal, is */
 | |
| /* >          destroyed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is REAL */
 | |
| /* >          If RANGE='V', the lower bound of the interval to */
 | |
| /* >          be searched for eigenvalues. VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] VU */
 | |
| /* > \verbatim */
 | |
| /* >          VU is REAL */
 | |
| /* >          If RANGE='V', the upper bound of the interval to */
 | |
| /* >          be searched for eigenvalues. VL < VU. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'I'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IL */
 | |
| /* > \verbatim */
 | |
| /* >          IL is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          smallest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IU */
 | |
| /* > \verbatim */
 | |
| /* >          IU is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          largest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0. */
 | |
| /* >          Not referenced if RANGE = 'A' or 'V'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ABSTOL */
 | |
| /* > \verbatim */
 | |
| /* >          ABSTOL is REAL */
 | |
| /* >          The absolute error tolerance for the eigenvalues. */
 | |
| /* >          An approximate eigenvalue is accepted as converged */
 | |
| /* >          when it is determined to lie in an interval [a,b] */
 | |
| /* >          of width less than or equal to */
 | |
| /* > */
 | |
| /* >                  ABSTOL + EPS *   f2cmax( |a|,|b| ) , */
 | |
| /* > */
 | |
| /* >          where EPS is the machine precision.  If ABSTOL is less than */
 | |
| /* >          or equal to zero, then  EPS*|T|  will be used in its place, */
 | |
| /* >          where |T| is the 1-norm of the tridiagonal matrix obtained */
 | |
| /* >          by reducing A to tridiagonal form. */
 | |
| /* > */
 | |
| /* >          See "Computing Small Singular Values of Bidiagonal Matrices */
 | |
| /* >          with Guaranteed High Relative Accuracy," by Demmel and */
 | |
| /* >          Kahan, LAPACK Working Note #3. */
 | |
| /* > */
 | |
| /* >          If high relative accuracy is important, set ABSTOL to */
 | |
| /* >          SLAMCH( 'Safe minimum' ).  Doing so will guarantee that */
 | |
| /* >          eigenvalues are computed to high relative accuracy when */
 | |
| /* >          possible in future releases.  The current code does not */
 | |
| /* >          make any guarantees about high relative accuracy, but */
 | |
| /* >          future releases will. See J. Barlow and J. Demmel, */
 | |
| /* >          "Computing Accurate Eigensystems of Scaled Diagonally */
 | |
| /* >          Dominant Matrices", LAPACK Working Note #7, for a discussion */
 | |
| /* >          of which matrices define their eigenvalues to high relative */
 | |
| /* >          accuracy. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The total number of eigenvalues found.  0 <= M <= N. */
 | |
| /* >          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is REAL array, dimension (N) */
 | |
| /* >          The first M elements contain the selected eigenvalues in */
 | |
| /* >          ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension (LDZ, f2cmax(1,M)) */
 | |
| /* >          If JOBZ = 'V', then if INFO = 0, the first M columns of Z */
 | |
| /* >          contain the orthonormal eigenvectors of the matrix A */
 | |
| /* >          corresponding to the selected eigenvalues, with the i-th */
 | |
| /* >          column of Z holding the eigenvector associated with W(i). */
 | |
| /* >          If JOBZ = 'N', then Z is not referenced. */
 | |
| /* >          Note: the user must ensure that at least f2cmax(1,M) columns are */
 | |
| /* >          supplied in the array Z; if RANGE = 'V', the exact value of M */
 | |
| /* >          is not known in advance and an upper bound must be used. */
 | |
| /* >          Supplying N columns is always safe. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of the array Z.  LDZ >= 1, and if */
 | |
| /* >          JOBZ = 'V', LDZ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ISUPPZ */
 | |
| /* > \verbatim */
 | |
| /* >          ISUPPZ is INTEGER array, dimension ( 2*f2cmax(1,M) ) */
 | |
| /* >          The support of the eigenvectors in Z, i.e., the indices */
 | |
| /* >          indicating the nonzero elements in Z. The i-th eigenvector */
 | |
| /* >          is nonzero only in elements ISUPPZ( 2*i-1 ) through */
 | |
| /* >          ISUPPZ( 2*i ). This is an output of SSTEMR (tridiagonal */
 | |
| /* >          matrix). The support of the eigenvectors of A is typically */
 | |
| /* >          1:N because of the orthogonal transformations applied by SORMTR. */
 | |
| /* >          Implemented only for RANGE = 'A' or 'I' and IU - IL = N - 1 */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK.  LWORK >= f2cmax(1,26*N). */
 | |
| /* >          For optimal efficiency, LWORK >= (NB+6)*N, */
 | |
| /* >          where NB is the f2cmax of the blocksize for SSYTRD and SORMTR */
 | |
| /* >          returned by ILAENV. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal sizes of the WORK and IWORK */
 | |
| /* >          arrays, returns these values as the first entries of the WORK */
 | |
| /* >          and IWORK arrays, and no error message related to LWORK or */
 | |
| /* >          LIWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (MAX(1,LIWORK)) */
 | |
| /* >          On exit, if INFO = 0, IWORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LIWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LIWORK is INTEGER */
 | |
| /* >          The dimension of the array IWORK.  LIWORK >= f2cmax(1,10*N). */
 | |
| /* > */
 | |
| /* >          If LIWORK = -1, then a workspace query is assumed; the */
 | |
| /* >          routine only calculates the optimal sizes of the WORK and */
 | |
| /* >          IWORK arrays, returns these values as the first entries of */
 | |
| /* >          the WORK and IWORK arrays, and no error message related to */
 | |
| /* >          LWORK or LIWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* >          > 0:  Internal error */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup realSYeigen */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Inderjit Dhillon, IBM Almaden, USA \n */
 | |
| /* >     Osni Marques, LBNL/NERSC, USA \n */
 | |
| /* >     Ken Stanley, Computer Science Division, University of */
 | |
| /* >       California at Berkeley, USA \n */
 | |
| /* >     Jason Riedy, Computer Science Division, University of */
 | |
| /* >       California at Berkeley, USA \n */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ssyevr_(char *jobz, char *range, char *uplo, integer *n, 
 | |
| 	real *a, integer *lda, real *vl, real *vu, integer *il, integer *iu, 
 | |
| 	real *abstol, integer *m, real *w, real *z__, integer *ldz, integer *
 | |
| 	isuppz, real *work, integer *lwork, integer *iwork, integer *liwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, z_dim1, z_offset, i__1, i__2;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer indd, inde;
 | |
|     real anrm;
 | |
|     integer imax;
 | |
|     real rmin, rmax;
 | |
|     logical test;
 | |
|     integer i__, j, inddd, indee;
 | |
|     real sigma;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo;
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | |
|     char order[1];
 | |
|     integer indwk, lwmin;
 | |
|     logical lower;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *), sswap_(integer *, real *, integer *, real *, integer *
 | |
| 	    );
 | |
|     logical wantz;
 | |
|     integer nb, jj;
 | |
|     logical alleig, indeig;
 | |
|     integer iscale, ieeeok, indibl, indifl;
 | |
|     logical valeig;
 | |
|     extern real slamch_(char *);
 | |
|     real safmin;
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     real abstll, bignum;
 | |
|     integer indtau, indisp, indiwo, indwkn, liwmin;
 | |
|     logical tryrac;
 | |
|     extern /* Subroutine */ void sstein_(integer *, real *, real *, integer *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, real *, integer *
 | |
| 	    , integer *, integer *), ssterf_(integer *, real *, real *, 
 | |
| 	    integer *);
 | |
|     integer llwrkn, llwork, nsplit;
 | |
|     real smlnum;
 | |
|     extern real slansy_(char *, char *, integer *, real *, integer *, real *);
 | |
|     extern /* Subroutine */ void sstebz_(char *, char *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, real *, real *, integer *, 
 | |
| 	    integer *, real *, integer *, integer *, real *, integer *, 
 | |
| 	    integer *), sstemr_(char *, char *, integer *, 
 | |
| 	    real *, real *, real *, real *, integer *, integer *, integer *, 
 | |
| 	    real *, real *, integer *, integer *, integer *, logical *, real *
 | |
| 	    , integer *, integer *, integer *, integer *);
 | |
|     integer lwkopt;
 | |
|     logical lquery;
 | |
|     extern /* Subroutine */ void sormtr_(char *, char *, char *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *), ssytrd_(char *, 
 | |
| 	    integer *, real *, integer *, real *, real *, real *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     real eps, vll, vuu, tmp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --w;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --isuppz;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     ieeeok = ilaenv_(&c__10, "SSYEVR", "N", &c__1, &c__2, &c__3, &c__4, (
 | |
| 	    ftnlen)6, (ftnlen)1);
 | |
| 
 | |
|     lower = lsame_(uplo, "L");
 | |
|     wantz = lsame_(jobz, "V");
 | |
|     alleig = lsame_(range, "A");
 | |
|     valeig = lsame_(range, "V");
 | |
|     indeig = lsame_(range, "I");
 | |
| 
 | |
|     lquery = *lwork == -1 || *liwork == -1;
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = 1, i__2 = *n * 26;
 | |
|     lwmin = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
|     i__1 = 1, i__2 = *n * 10;
 | |
|     liwmin = f2cmax(i__1,i__2);
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! (wantz || lsame_(jobz, "N"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (alleig || valeig || indeig)) {
 | |
| 	*info = -2;
 | |
|     } else if (! (lower || lsame_(uplo, "U"))) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else {
 | |
| 	if (valeig) {
 | |
| 	    if (*n > 0 && *vu <= *vl) {
 | |
| 		*info = -8;
 | |
| 	    }
 | |
| 	} else if (indeig) {
 | |
| 	    if (*il < 1 || *il > f2cmax(1,*n)) {
 | |
| 		*info = -9;
 | |
| 	    } else if (*iu < f2cmin(*n,*il) || *iu > *n) {
 | |
| 		*info = -10;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     if (*info == 0) {
 | |
| 	if (*ldz < 1 || wantz && *ldz < *n) {
 | |
| 	    *info = -15;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	nb = ilaenv_(&c__1, "SSYTRD", uplo, n, &c_n1, &c_n1, &c_n1, (ftnlen)6,
 | |
| 		 (ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 	i__1 = nb, i__2 = ilaenv_(&c__1, "SORMTR", uplo, n, &c_n1, &c_n1, &
 | |
| 		c_n1, (ftnlen)6, (ftnlen)1);
 | |
| 	nb = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	i__1 = (nb + 1) * *n;
 | |
| 	lwkopt = f2cmax(i__1,lwmin);
 | |
| 	work[1] = (real) lwkopt;
 | |
| 	iwork[1] = liwmin;
 | |
| 
 | |
| 	if (*lwork < lwmin && ! lquery) {
 | |
| 	    *info = -18;
 | |
| 	} else if (*liwork < liwmin && ! lquery) {
 | |
| 	    *info = -20;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SSYEVR", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     *m = 0;
 | |
|     if (*n == 0) {
 | |
| 	work[1] = 1.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (*n == 1) {
 | |
| 	work[1] = 26.f;
 | |
| 	if (alleig || indeig) {
 | |
| 	    *m = 1;
 | |
| 	    w[1] = a[a_dim1 + 1];
 | |
| 	} else {
 | |
| 	    if (*vl < a[a_dim1 + 1] && *vu >= a[a_dim1 + 1]) {
 | |
| 		*m = 1;
 | |
| 		w[1] = a[a_dim1 + 1];
 | |
| 	    }
 | |
| 	}
 | |
| 	if (wantz) {
 | |
| 	    z__[z_dim1 + 1] = 1.f;
 | |
| 	    isuppz[1] = 1;
 | |
| 	    isuppz[2] = 1;
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants. */
 | |
| 
 | |
|     safmin = slamch_("Safe minimum");
 | |
|     eps = slamch_("Precision");
 | |
|     smlnum = safmin / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
|     rmin = sqrt(smlnum);
 | |
| /* Computing MIN */
 | |
|     r__1 = sqrt(bignum), r__2 = 1.f / sqrt(sqrt(safmin));
 | |
|     rmax = f2cmin(r__1,r__2);
 | |
| 
 | |
| /*     Scale matrix to allowable range, if necessary. */
 | |
| 
 | |
|     iscale = 0;
 | |
|     abstll = *abstol;
 | |
|     if (valeig) {
 | |
| 	vll = *vl;
 | |
| 	vuu = *vu;
 | |
|     }
 | |
|     anrm = slansy_("M", uplo, n, &a[a_offset], lda, &work[1]);
 | |
|     if (anrm > 0.f && anrm < rmin) {
 | |
| 	iscale = 1;
 | |
| 	sigma = rmin / anrm;
 | |
|     } else if (anrm > rmax) {
 | |
| 	iscale = 1;
 | |
| 	sigma = rmax / anrm;
 | |
|     }
 | |
|     if (iscale == 1) {
 | |
| 	if (lower) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		i__2 = *n - j + 1;
 | |
| 		sscal_(&i__2, &sigma, &a[j + j * a_dim1], &c__1);
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| 		sscal_(&j, &sigma, &a[j * a_dim1 + 1], &c__1);
 | |
| /* L20: */
 | |
| 	    }
 | |
| 	}
 | |
| 	if (*abstol > 0.f) {
 | |
| 	    abstll = *abstol * sigma;
 | |
| 	}
 | |
| 	if (valeig) {
 | |
| 	    vll = *vl * sigma;
 | |
| 	    vuu = *vu * sigma;
 | |
| 	}
 | |
|     }
 | |
| /*     Initialize indices into workspaces.  Note: The IWORK indices are */
 | |
| /*     used only if SSTERF or SSTEMR fail. */
 | |
| /*     WORK(INDTAU:INDTAU+N-1) stores the scalar factors of the */
 | |
| /*     elementary reflectors used in SSYTRD. */
 | |
|     indtau = 1;
 | |
| /*     WORK(INDD:INDD+N-1) stores the tridiagonal's diagonal entries. */
 | |
|     indd = indtau + *n;
 | |
| /*     WORK(INDE:INDE+N-1) stores the off-diagonal entries of the */
 | |
| /*     tridiagonal matrix from SSYTRD. */
 | |
|     inde = indd + *n;
 | |
| /*     WORK(INDDD:INDDD+N-1) is a copy of the diagonal entries over */
 | |
| /*     -written by SSTEMR (the SSTERF path copies the diagonal to W). */
 | |
|     inddd = inde + *n;
 | |
| /*     WORK(INDEE:INDEE+N-1) is a copy of the off-diagonal entries over */
 | |
| /*     -written while computing the eigenvalues in SSTERF and SSTEMR. */
 | |
|     indee = inddd + *n;
 | |
| /*     INDWK is the starting offset of the left-over workspace, and */
 | |
| /*     LLWORK is the remaining workspace size. */
 | |
|     indwk = indee + *n;
 | |
|     llwork = *lwork - indwk + 1;
 | |
| /*     IWORK(INDIBL:INDIBL+M-1) corresponds to IBLOCK in SSTEBZ and */
 | |
| /*     stores the block indices of each of the M<=N eigenvalues. */
 | |
|     indibl = 1;
 | |
| /*     IWORK(INDISP:INDISP+NSPLIT-1) corresponds to ISPLIT in SSTEBZ and */
 | |
| /*     stores the starting and finishing indices of each block. */
 | |
|     indisp = indibl + *n;
 | |
| /*     IWORK(INDIFL:INDIFL+N-1) stores the indices of eigenvectors */
 | |
| /*     that corresponding to eigenvectors that fail to converge in */
 | |
| /*     SSTEIN.  This information is discarded; if any fail, the driver */
 | |
| /*     returns INFO > 0. */
 | |
|     indifl = indisp + *n;
 | |
| /*     INDIWO is the offset of the remaining integer workspace. */
 | |
|     indiwo = indifl + *n;
 | |
| 
 | |
| /*     Call SSYTRD to reduce symmetric matrix to tridiagonal form. */
 | |
| 
 | |
|     ssytrd_(uplo, n, &a[a_offset], lda, &work[indd], &work[inde], &work[
 | |
| 	    indtau], &work[indwk], &llwork, &iinfo);
 | |
| 
 | |
| /*     If all eigenvalues are desired */
 | |
| /*     then call SSTERF or SSTEMR and SORMTR. */
 | |
| 
 | |
|     test = FALSE_;
 | |
|     if (indeig) {
 | |
| 	if (*il == 1 && *iu == *n) {
 | |
| 	    test = TRUE_;
 | |
| 	}
 | |
|     }
 | |
|     if ((alleig || test) && ieeeok == 1) {
 | |
| 	if (! wantz) {
 | |
| 	    scopy_(n, &work[indd], &c__1, &w[1], &c__1);
 | |
| 	    i__1 = *n - 1;
 | |
| 	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
 | |
| 	    ssterf_(n, &w[1], &work[indee], info);
 | |
| 	} else {
 | |
| 	    i__1 = *n - 1;
 | |
| 	    scopy_(&i__1, &work[inde], &c__1, &work[indee], &c__1);
 | |
| 	    scopy_(n, &work[indd], &c__1, &work[inddd], &c__1);
 | |
| 
 | |
| 	    if (*abstol <= *n * 2.f * eps) {
 | |
| 		tryrac = TRUE_;
 | |
| 	    } else {
 | |
| 		tryrac = FALSE_;
 | |
| 	    }
 | |
| 	    sstemr_(jobz, "A", n, &work[inddd], &work[indee], vl, vu, il, iu, 
 | |
| 		    m, &w[1], &z__[z_offset], ldz, n, &isuppz[1], &tryrac, &
 | |
| 		    work[indwk], lwork, &iwork[1], liwork, info);
 | |
| 
 | |
| 
 | |
| 
 | |
| /*        Apply orthogonal matrix used in reduction to tridiagonal */
 | |
| /*        form to eigenvectors returned by SSTEMR. */
 | |
| 
 | |
| 	    if (wantz && *info == 0) {
 | |
| 		indwkn = inde;
 | |
| 		llwrkn = *lwork - indwkn + 1;
 | |
| 		sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau]
 | |
| 			, &z__[z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 
 | |
| 	if (*info == 0) {
 | |
| /*           Everything worked.  Skip SSTEBZ/SSTEIN.  IWORK(:) are */
 | |
| /*           undefined. */
 | |
| 	    *m = *n;
 | |
| 	    goto L30;
 | |
| 	}
 | |
| 	*info = 0;
 | |
|     }
 | |
| 
 | |
| /*     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN. */
 | |
| /*     Also call SSTEBZ and SSTEIN if SSTEMR fails. */
 | |
| 
 | |
|     if (wantz) {
 | |
| 	*(unsigned char *)order = 'B';
 | |
|     } else {
 | |
| 	*(unsigned char *)order = 'E';
 | |
|     }
 | |
|     sstebz_(range, order, n, &vll, &vuu, il, iu, &abstll, &work[indd], &work[
 | |
| 	    inde], m, &nsplit, &w[1], &iwork[indibl], &iwork[indisp], &work[
 | |
| 	    indwk], &iwork[indiwo], info);
 | |
| 
 | |
|     if (wantz) {
 | |
| 	sstein_(n, &work[indd], &work[inde], m, &w[1], &iwork[indibl], &iwork[
 | |
| 		indisp], &z__[z_offset], ldz, &work[indwk], &iwork[indiwo], &
 | |
| 		iwork[indifl], info);
 | |
| 
 | |
| /*        Apply orthogonal matrix used in reduction to tridiagonal */
 | |
| /*        form to eigenvectors returned by SSTEIN. */
 | |
| 
 | |
| 	indwkn = inde;
 | |
| 	llwrkn = *lwork - indwkn + 1;
 | |
| 	sormtr_("L", uplo, "N", n, m, &a[a_offset], lda, &work[indtau], &z__[
 | |
| 		z_offset], ldz, &work[indwkn], &llwrkn, &iinfo);
 | |
|     }
 | |
| 
 | |
| /*     If matrix was scaled, then rescale eigenvalues appropriately. */
 | |
| 
 | |
| /*  Jump here if SSTEMR/SSTEIN succeeded. */
 | |
| L30:
 | |
|     if (iscale == 1) {
 | |
| 	if (*info == 0) {
 | |
| 	    imax = *m;
 | |
| 	} else {
 | |
| 	    imax = *info - 1;
 | |
| 	}
 | |
| 	r__1 = 1.f / sigma;
 | |
| 	sscal_(&imax, &r__1, &w[1], &c__1);
 | |
|     }
 | |
| 
 | |
| /*     If eigenvalues are not in order, then sort them, along with */
 | |
| /*     eigenvectors.  Note: We do not sort the IFAIL portion of IWORK. */
 | |
| /*     It may not be initialized (if SSTEMR/SSTEIN succeeded), and we do */
 | |
| /*     not return this detailed information to the user. */
 | |
| 
 | |
|     if (wantz) {
 | |
| 	i__1 = *m - 1;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__ = 0;
 | |
| 	    tmp1 = w[j];
 | |
| 	    i__2 = *m;
 | |
| 	    for (jj = j + 1; jj <= i__2; ++jj) {
 | |
| 		if (w[jj] < tmp1) {
 | |
| 		    i__ = jj;
 | |
| 		    tmp1 = w[jj];
 | |
| 		}
 | |
| /* L40: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (i__ != 0) {
 | |
| 		w[i__] = w[j];
 | |
| 		w[j] = tmp1;
 | |
| 		sswap_(n, &z__[i__ * z_dim1 + 1], &c__1, &z__[j * z_dim1 + 1],
 | |
| 			 &c__1);
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Set WORK(1) to optimal workspace size. */
 | |
| 
 | |
|     work[1] = (real) lwkopt;
 | |
|     iwork[1] = liwmin;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SSYEVR */
 | |
| 
 | |
| } /* ssyevr_ */
 | |
| 
 |