356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			356 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSPGVD
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSPGVD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgvd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgvd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgvd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 | |
| *                          LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               AP( * ), BP( * ), W( * ), WORK( * ),
 | |
| *      $                   Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSPGVD computes all the eigenvalues, and optionally, the eigenvectors
 | |
| *> of a real generalized symmetric-definite eigenproblem, of the form
 | |
| *> A*x=(lambda)*B*x,  A*Bx=(lambda)*x,  or B*A*x=(lambda)*x.  Here A and
 | |
| *> B are assumed to be symmetric, stored in packed format, and B is also
 | |
| *> positive definite.
 | |
| *> If eigenvectors are desired, it uses a divide and conquer algorithm.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          Specifies the problem type to be solved:
 | |
| *>          = 1:  A*x = (lambda)*B*x
 | |
| *>          = 2:  A*B*x = (lambda)*x
 | |
| *>          = 3:  B*A*x = (lambda)*x
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangles of A and B are stored;
 | |
| *>          = 'L':  Lower triangles of A and B are stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the symmetric matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the contents of AP are destroyed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] BP
 | |
| *> \verbatim
 | |
| *>          BP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the symmetric matrix
 | |
| *>          B, packed columnwise in a linear array.  The j-th column of B
 | |
| *>          is stored in the array BP as follows:
 | |
| *>          if UPLO = 'U', BP(i + (j-1)*j/2) = B(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', BP(i + (j-1)*(2*n-j)/2) = B(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, the triangular factor U or L from the Cholesky
 | |
| *>          factorization B = U**T*U or B = L*L**T, in the same storage
 | |
| *>          format as B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, Z contains the matrix Z of
 | |
| *>          eigenvectors.  The eigenvectors are normalized as follows:
 | |
| *>          if ITYPE = 1 or 2, Z**T*B*Z = I;
 | |
| *>          if ITYPE = 3, Z**T*inv(B)*Z = I.
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (MAX(1,LWORK))
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the required LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          If N <= 1,               LWORK >= 1.
 | |
| *>          If JOBZ = 'N' and N > 1, LWORK >= 2*N.
 | |
| *>          If JOBZ = 'V' and N > 1, LWORK >= 1 + 6*N + 2*N**2.
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the required sizes of the WORK and IWORK
 | |
| *>          arrays, returns these values as the first entries of the WORK
 | |
| *>          and IWORK arrays, and no error message related to LWORK or
 | |
| *>          LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the required LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If JOBZ  = 'N' or N <= 1, LIWORK >= 1.
 | |
| *>          If JOBZ  = 'V' and N > 1, LIWORK >= 3 + 5*N.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the required sizes of the WORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK and IWORK arrays, and no error message related to
 | |
| *>          LWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  SPPTRF or SSPEVD returned an error code:
 | |
| *>             <= N:  if INFO = i, SSPEVD failed to converge;
 | |
| *>                    i off-diagonal elements of an intermediate
 | |
| *>                    tridiagonal form did not converge to zero;
 | |
| *>             > N:   if INFO = N + i, for 1 <= i <= N, then the leading
 | |
| *>                    principal minor of order i of B is not positive.
 | |
| *>                    The factorization of B could not be completed and
 | |
| *>                    no eigenvalues or eigenvectors were computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHEReigen
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>     Mark Fahey, Department of Mathematics, Univ. of Kentucky, USA
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSPGVD( ITYPE, JOBZ, UPLO, N, AP, BP, W, Z, LDZ, WORK,
 | |
|      $                   LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, ITYPE, LDZ, LIWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               AP( * ), BP( * ), W( * ), WORK( * ),
 | |
|      $                   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LQUERY, UPPER, WANTZ
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            J, LIWMIN, LWMIN, NEIG
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SPPTRF, SSPEVD, SSPGST, STPMV, STPSV, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( UPPER .OR. LSAME( UPLO, 'L' ) ) ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( N.LE.1 ) THEN
 | |
|             LIWMIN = 1
 | |
|             LWMIN = 1
 | |
|          ELSE
 | |
|             IF( WANTZ ) THEN
 | |
|                LIWMIN = 3 + 5*N
 | |
|                LWMIN = 1 + 6*N + 2*N**2
 | |
|             ELSE
 | |
|                LIWMIN = 1
 | |
|                LWMIN = 2*N
 | |
|             END IF
 | |
|          END IF
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -11
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -13
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSPGVD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
| *     Form a Cholesky factorization of BP.
 | |
| *
 | |
|       CALL SPPTRF( UPLO, N, BP, INFO )
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          INFO = N + INFO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Transform problem to standard eigenvalue problem and solve.
 | |
| *
 | |
|       CALL SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | |
|       CALL SSPEVD( JOBZ, UPLO, N, AP, W, Z, LDZ, WORK, LWORK, IWORK,
 | |
|      $             LIWORK, INFO )
 | |
|       LWMIN = INT( MAX( REAL( LWMIN ), REAL( WORK( 1 ) ) ) )
 | |
|       LIWMIN = INT( MAX( REAL( LIWMIN ), REAL( IWORK( 1 ) ) ) )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
| *
 | |
| *        Backtransform eigenvectors to the original problem.
 | |
| *
 | |
|          NEIG = N
 | |
|          IF( INFO.GT.0 )
 | |
|      $      NEIG = INFO - 1
 | |
|          IF( ITYPE.EQ.1 .OR. ITYPE.EQ.2 ) THEN
 | |
| *
 | |
| *           For A*x=(lambda)*B*x and A*B*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = inv(L)**T *y or inv(U)*y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'N'
 | |
|             ELSE
 | |
|                TRANS = 'T'
 | |
|             END IF
 | |
| *
 | |
|             DO 10 J = 1, NEIG
 | |
|                CALL STPSV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | |
|      $                     1 )
 | |
|    10       CONTINUE
 | |
| *
 | |
|          ELSE IF( ITYPE.EQ.3 ) THEN
 | |
| *
 | |
| *           For B*A*x=(lambda)*x;
 | |
| *           backtransform eigenvectors: x = L*y or U**T *y
 | |
| *
 | |
|             IF( UPPER ) THEN
 | |
|                TRANS = 'T'
 | |
|             ELSE
 | |
|                TRANS = 'N'
 | |
|             END IF
 | |
| *
 | |
|             DO 20 J = 1, NEIG
 | |
|                CALL STPMV( UPLO, TRANS, 'Non-unit', N, BP, Z( 1, J ),
 | |
|      $                     1 )
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSPGVD
 | |
| *
 | |
|       END
 |