272 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			272 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SSPGST
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSPGST + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspgst.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspgst.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspgst.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          UPLO
 | |
| *       INTEGER            INFO, ITYPE, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               AP( * ), BP( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSPGST reduces a real symmetric-definite generalized eigenproblem
 | |
| *> to standard form, using packed storage.
 | |
| *>
 | |
| *> If ITYPE = 1, the problem is A*x = lambda*B*x,
 | |
| *> and A is overwritten by inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T)
 | |
| *>
 | |
| *> If ITYPE = 2 or 3, the problem is A*B*x = lambda*x or
 | |
| *> B*A*x = lambda*x, and A is overwritten by U*A*U**T or L**T*A*L.
 | |
| *>
 | |
| *> B must have been previously factorized as U**T*U or L*L**T by SPPTRF.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] ITYPE
 | |
| *> \verbatim
 | |
| *>          ITYPE is INTEGER
 | |
| *>          = 1: compute inv(U**T)*A*inv(U) or inv(L)*A*inv(L**T);
 | |
| *>          = 2 or 3: compute U*A*U**T or L**T*A*L.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored and B is factored as
 | |
| *>                  U**T*U;
 | |
| *>          = 'L':  Lower triangle of A is stored and B is factored as
 | |
| *>                  L*L**T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrices A and B.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the symmetric matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, if INFO = 0, the transformed matrix, stored in the
 | |
| *>          same format as A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] BP
 | |
| *> \verbatim
 | |
| *>          BP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          The triangular factor from the Cholesky factorization of B,
 | |
| *>          stored in the same format as A, as returned by SPPTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSPGST( ITYPE, UPLO, N, AP, BP, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          UPLO
 | |
|       INTEGER            INFO, ITYPE, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               AP( * ), BP( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE, HALF
 | |
|       PARAMETER          ( ONE = 1.0, HALF = 0.5 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            UPPER
 | |
|       INTEGER            J, J1, J1J1, JJ, K, K1, K1K1, KK
 | |
|       REAL               AJJ, AKK, BJJ, BKK, CT
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SSCAL, SSPMV, SSPR2, STPMV, STPSV,
 | |
|      $                   XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SDOT
 | |
|       EXTERNAL           LSAME, SDOT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       UPPER = LSAME( UPLO, 'U' )
 | |
|       IF( ITYPE.LT.1 .OR. ITYPE.GT.3 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.UPPER .AND. .NOT.LSAME( UPLO, 'L' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSPGST', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( ITYPE.EQ.1 ) THEN
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           Compute inv(U**T)*A*inv(U)
 | |
| *
 | |
| *           J1 and JJ are the indices of A(1,j) and A(j,j)
 | |
| *
 | |
|             JJ = 0
 | |
|             DO 10 J = 1, N
 | |
|                J1 = JJ + 1
 | |
|                JJ = JJ + J
 | |
| *
 | |
| *              Compute the j-th column of the upper triangle of A
 | |
| *
 | |
|                BJJ = BP( JJ )
 | |
|                CALL STPSV( UPLO, 'Transpose', 'Nonunit', J, BP,
 | |
|      $                     AP( J1 ), 1 )
 | |
|                CALL SSPMV( UPLO, J-1, -ONE, AP, BP( J1 ), 1, ONE,
 | |
|      $                     AP( J1 ), 1 )
 | |
|                CALL SSCAL( J-1, ONE / BJJ, AP( J1 ), 1 )
 | |
|                AP( JJ ) = ( AP( JJ )-SDOT( J-1, AP( J1 ), 1, BP( J1 ),
 | |
|      $                    1 ) ) / BJJ
 | |
|    10       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Compute inv(L)*A*inv(L**T)
 | |
| *
 | |
| *           KK and K1K1 are the indices of A(k,k) and A(k+1,k+1)
 | |
| *
 | |
|             KK = 1
 | |
|             DO 20 K = 1, N
 | |
|                K1K1 = KK + N - K + 1
 | |
| *
 | |
| *              Update the lower triangle of A(k:n,k:n)
 | |
| *
 | |
|                AKK = AP( KK )
 | |
|                BKK = BP( KK )
 | |
|                AKK = AKK / BKK**2
 | |
|                AP( KK ) = AKK
 | |
|                IF( K.LT.N ) THEN
 | |
|                   CALL SSCAL( N-K, ONE / BKK, AP( KK+1 ), 1 )
 | |
|                   CT = -HALF*AKK
 | |
|                   CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
 | |
|                   CALL SSPR2( UPLO, N-K, -ONE, AP( KK+1 ), 1,
 | |
|      $                        BP( KK+1 ), 1, AP( K1K1 ) )
 | |
|                   CALL SAXPY( N-K, CT, BP( KK+1 ), 1, AP( KK+1 ), 1 )
 | |
|                   CALL STPSV( UPLO, 'No transpose', 'Non-unit', N-K,
 | |
|      $                        BP( K1K1 ), AP( KK+1 ), 1 )
 | |
|                END IF
 | |
|                KK = K1K1
 | |
|    20       CONTINUE
 | |
|          END IF
 | |
|       ELSE
 | |
|          IF( UPPER ) THEN
 | |
| *
 | |
| *           Compute U*A*U**T
 | |
| *
 | |
| *           K1 and KK are the indices of A(1,k) and A(k,k)
 | |
| *
 | |
|             KK = 0
 | |
|             DO 30 K = 1, N
 | |
|                K1 = KK + 1
 | |
|                KK = KK + K
 | |
| *
 | |
| *              Update the upper triangle of A(1:k,1:k)
 | |
| *
 | |
|                AKK = AP( KK )
 | |
|                BKK = BP( KK )
 | |
|                CALL STPMV( UPLO, 'No transpose', 'Non-unit', K-1, BP,
 | |
|      $                     AP( K1 ), 1 )
 | |
|                CT = HALF*AKK
 | |
|                CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
 | |
|                CALL SSPR2( UPLO, K-1, ONE, AP( K1 ), 1, BP( K1 ), 1,
 | |
|      $                     AP )
 | |
|                CALL SAXPY( K-1, CT, BP( K1 ), 1, AP( K1 ), 1 )
 | |
|                CALL SSCAL( K-1, BKK, AP( K1 ), 1 )
 | |
|                AP( KK ) = AKK*BKK**2
 | |
|    30       CONTINUE
 | |
|          ELSE
 | |
| *
 | |
| *           Compute L**T *A*L
 | |
| *
 | |
| *           JJ and J1J1 are the indices of A(j,j) and A(j+1,j+1)
 | |
| *
 | |
|             JJ = 1
 | |
|             DO 40 J = 1, N
 | |
|                J1J1 = JJ + N - J + 1
 | |
| *
 | |
| *              Compute the j-th column of the lower triangle of A
 | |
| *
 | |
|                AJJ = AP( JJ )
 | |
|                BJJ = BP( JJ )
 | |
|                AP( JJ ) = AJJ*BJJ + SDOT( N-J, AP( JJ+1 ), 1,
 | |
|      $                    BP( JJ+1 ), 1 )
 | |
|                CALL SSCAL( N-J, BJJ, AP( JJ+1 ), 1 )
 | |
|                CALL SSPMV( UPLO, N-J, ONE, AP( J1J1 ), BP( JJ+1 ), 1,
 | |
|      $                     ONE, AP( JJ+1 ), 1 )
 | |
|                CALL STPMV( UPLO, 'Transpose', 'Non-unit', N-J+1,
 | |
|      $                     BP( JJ ), AP( JJ ), 1 )
 | |
|                JJ = J1J1
 | |
|    40       CONTINUE
 | |
|          END IF
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSPGST
 | |
| *
 | |
|       END
 |