493 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			493 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SSPEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSPEVX + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sspevx.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sspevx.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sspevx.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
 | |
| *                          ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, RANGE, UPLO
 | |
| *       INTEGER            IL, INFO, IU, LDZ, M, N
 | |
| *       REAL               ABSTOL, VL, VU
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IFAIL( * ), IWORK( * )
 | |
| *       REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSPEVX computes selected eigenvalues and, optionally, eigenvectors
 | |
| *> of a real symmetric matrix A in packed storage.  Eigenvalues/vectors
 | |
| *> can be selected by specifying either a range of values or a range of
 | |
| *> indices for the desired eigenvalues.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] RANGE
 | |
| *> \verbatim
 | |
| *>          RANGE is CHARACTER*1
 | |
| *>          = 'A': all eigenvalues will be found;
 | |
| *>          = 'V': all eigenvalues in the half-open interval (VL,VU]
 | |
| *>                 will be found;
 | |
| *>          = 'I': the IL-th through IU-th eigenvalues will be found.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AP
 | |
| *> \verbatim
 | |
| *>          AP is REAL array, dimension (N*(N+1)/2)
 | |
| *>          On entry, the upper or lower triangle of the symmetric matrix
 | |
| *>          A, packed columnwise in a linear array.  The j-th column of A
 | |
| *>          is stored in the array AP as follows:
 | |
| *>          if UPLO = 'U', AP(i + (j-1)*j/2) = A(i,j) for 1<=i<=j;
 | |
| *>          if UPLO = 'L', AP(i + (j-1)*(2*n-j)/2) = A(i,j) for j<=i<=n.
 | |
| *>
 | |
| *>          On exit, AP is overwritten by values generated during the
 | |
| *>          reduction to tridiagonal form.  If UPLO = 'U', the diagonal
 | |
| *>          and first superdiagonal of the tridiagonal matrix T overwrite
 | |
| *>          the corresponding elements of A, and if UPLO = 'L', the
 | |
| *>          diagonal and first subdiagonal of T overwrite the
 | |
| *>          corresponding elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VL
 | |
| *> \verbatim
 | |
| *>          VL is REAL
 | |
| *>          If RANGE='V', the lower bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] VU
 | |
| *> \verbatim
 | |
| *>          VU is REAL
 | |
| *>          If RANGE='V', the upper bound of the interval to
 | |
| *>          be searched for eigenvalues. VL < VU.
 | |
| *>          Not referenced if RANGE = 'A' or 'I'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IL
 | |
| *> \verbatim
 | |
| *>          IL is INTEGER
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          smallest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IU
 | |
| *> \verbatim
 | |
| *>          IU is INTEGER
 | |
| *>          If RANGE='I', the index of the
 | |
| *>          largest eigenvalue to be returned.
 | |
| *>          1 <= IL <= IU <= N, if N > 0; IL = 1 and IU = 0 if N = 0.
 | |
| *>          Not referenced if RANGE = 'A' or 'V'.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ABSTOL
 | |
| *> \verbatim
 | |
| *>          ABSTOL is REAL
 | |
| *>          The absolute error tolerance for the eigenvalues.
 | |
| *>          An approximate eigenvalue is accepted as converged
 | |
| *>          when it is determined to lie in an interval [a,b]
 | |
| *>          of width less than or equal to
 | |
| *>
 | |
| *>                  ABSTOL + EPS *   max( |a|,|b| ) ,
 | |
| *>
 | |
| *>          where EPS is the machine precision.  If ABSTOL is less than
 | |
| *>          or equal to zero, then  EPS*|T|  will be used in its place,
 | |
| *>          where |T| is the 1-norm of the tridiagonal matrix obtained
 | |
| *>          by reducing AP to tridiagonal form.
 | |
| *>
 | |
| *>          Eigenvalues will be computed most accurately when ABSTOL is
 | |
| *>          set to twice the underflow threshold 2*SLAMCH('S'), not zero.
 | |
| *>          If this routine returns with INFO>0, indicating that some
 | |
| *>          eigenvectors did not converge, try setting ABSTOL to
 | |
| *>          2*SLAMCH('S').
 | |
| *>
 | |
| *>          See "Computing Small Singular Values of Bidiagonal Matrices
 | |
| *>          with Guaranteed High Relative Accuracy," by Demmel and
 | |
| *>          Kahan, LAPACK Working Note #3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The total number of eigenvalues found.  0 <= M <= N.
 | |
| *>          If RANGE = 'A', M = N, and if RANGE = 'I', M = IU-IL+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          If INFO = 0, the selected eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, max(1,M))
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M columns of Z
 | |
| *>          contain the orthonormal eigenvectors of the matrix A
 | |
| *>          corresponding to the selected eigenvalues, with the i-th
 | |
| *>          column of Z holding the eigenvector associated with W(i).
 | |
| *>          If an eigenvector fails to converge, then that column of Z
 | |
| *>          contains the latest approximation to the eigenvector, and the
 | |
| *>          index of the eigenvector is returned in IFAIL.
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *>          Note: the user must ensure that at least max(1,M) columns are
 | |
| *>          supplied in the array Z; if RANGE = 'V', the exact value of M
 | |
| *>          is not known in advance and an upper bound must be used.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (8*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (5*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IFAIL
 | |
| *> \verbatim
 | |
| *>          IFAIL is INTEGER array, dimension (N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, the first M elements of
 | |
| *>          IFAIL are zero.  If INFO > 0, then IFAIL contains the
 | |
| *>          indices of the eigenvectors that failed to converge.
 | |
| *>          If JOBZ = 'N', then IFAIL is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, then i eigenvectors failed to converge.
 | |
| *>                Their indices are stored in array IFAIL.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHEReigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSPEVX( JOBZ, RANGE, UPLO, N, AP, VL, VU, IL, IU,
 | |
|      $                   ABSTOL, M, W, Z, LDZ, WORK, IWORK, IFAIL,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, RANGE, UPLO
 | |
|       INTEGER            IL, INFO, IU, LDZ, M, N
 | |
|       REAL               ABSTOL, VL, VU
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IFAIL( * ), IWORK( * )
 | |
|       REAL               AP( * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E0, ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            ALLEIG, INDEIG, TEST, VALEIG, WANTZ
 | |
|       CHARACTER          ORDER
 | |
|       INTEGER            I, IINFO, IMAX, INDD, INDE, INDEE,
 | |
|      $                   INDISP, INDIWO, INDTAU, INDWRK, ISCALE, ITMP1,
 | |
|      $                   J, JJ, NSPLIT
 | |
|       REAL               ABSTLL, ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN,
 | |
|      $                   SIGMA, SMLNUM, TMP1, VLL, VUU
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANSP
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANSP
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SCOPY, SOPGTR, SOPMTR, SSCAL, SSPTRD, SSTEBZ,
 | |
|      $                   SSTEIN, SSTEQR, SSTERF, SSWAP, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       ALLEIG = LSAME( RANGE, 'A' )
 | |
|       VALEIG = LSAME( RANGE, 'V' )
 | |
|       INDEIG = LSAME( RANGE, 'I' )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( ALLEIG .OR. VALEIG .OR. INDEIG ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( .NOT.( LSAME( UPLO, 'L' ) .OR. LSAME( UPLO, 'U' ) ) )
 | |
|      $          THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE
 | |
|          IF( VALEIG ) THEN
 | |
|             IF( N.GT.0 .AND. VU.LE.VL )
 | |
|      $         INFO = -7
 | |
|          ELSE IF( INDEIG ) THEN
 | |
|             IF( IL.LT.1 .OR. IL.GT.MAX( 1, N ) ) THEN
 | |
|                INFO = -8
 | |
|             ELSE IF( IU.LT.MIN( N, IL ) .OR. IU.GT.N ) THEN
 | |
|                INFO = -9
 | |
|             END IF
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) )
 | |
|      $      INFO = -14
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSPEVX', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       M = 0
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          IF( ALLEIG .OR. INDEIG ) THEN
 | |
|             M = 1
 | |
|             W( 1 ) = AP( 1 )
 | |
|          ELSE
 | |
|             IF( VL.LT.AP( 1 ) .AND. VU.GE.AP( 1 ) ) THEN
 | |
|                M = 1
 | |
|                W( 1 ) = AP( 1 )
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( WANTZ )
 | |
|      $      Z( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = MIN( SQRT( BIGNUM ), ONE / SQRT( SQRT( SAFMIN ) ) )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ISCALE = 0
 | |
|       ABSTLL = ABSTOL
 | |
|       IF ( VALEIG ) THEN
 | |
|          VLL = VL
 | |
|          VUU = VU
 | |
|       ELSE
 | |
|          VLL = ZERO
 | |
|          VUU = ZERO
 | |
|       ENDIF
 | |
|       ANRM = SLANSP( 'M', UPLO, N, AP, WORK )
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / ANRM
 | |
|       ELSE IF( ANRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / ANRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          CALL SSCAL( ( N*( N+1 ) ) / 2, SIGMA, AP, 1 )
 | |
|          IF( ABSTOL.GT.0 )
 | |
|      $      ABSTLL = ABSTOL*SIGMA
 | |
|          IF( VALEIG ) THEN
 | |
|             VLL = VL*SIGMA
 | |
|             VUU = VU*SIGMA
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Call SSPTRD to reduce symmetric packed matrix to tridiagonal form.
 | |
| *
 | |
|       INDTAU = 1
 | |
|       INDE = INDTAU + N
 | |
|       INDD = INDE + N
 | |
|       INDWRK = INDD + N
 | |
|       CALL SSPTRD( UPLO, N, AP, WORK( INDD ), WORK( INDE ),
 | |
|      $             WORK( INDTAU ), IINFO )
 | |
| *
 | |
| *     If all eigenvalues are desired and ABSTOL is less than or equal
 | |
| *     to zero, then call SSTERF or SOPGTR and SSTEQR.  If this fails
 | |
| *     for some eigenvalue, then try SSTEBZ.
 | |
| *
 | |
|       TEST = .FALSE.
 | |
|       IF (INDEIG) THEN
 | |
|          IF (IL.EQ.1 .AND. IU.EQ.N) THEN
 | |
|             TEST = .TRUE.
 | |
|          END IF
 | |
|       END IF
 | |
|       IF ((ALLEIG .OR. TEST) .AND. (ABSTOL.LE.ZERO)) THEN
 | |
|          CALL SCOPY( N, WORK( INDD ), 1, W, 1 )
 | |
|          INDEE = INDWRK + 2*N
 | |
|          IF( .NOT.WANTZ ) THEN
 | |
|             CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
 | |
|             CALL SSTERF( N, W, WORK( INDEE ), INFO )
 | |
|          ELSE
 | |
|             CALL SOPGTR( UPLO, N, AP, WORK( INDTAU ), Z, LDZ,
 | |
|      $                   WORK( INDWRK ), IINFO )
 | |
|             CALL SCOPY( N-1, WORK( INDE ), 1, WORK( INDEE ), 1 )
 | |
|             CALL SSTEQR( JOBZ, N, W, WORK( INDEE ), Z, LDZ,
 | |
|      $                   WORK( INDWRK ), INFO )
 | |
|             IF( INFO.EQ.0 ) THEN
 | |
|                DO 10 I = 1, N
 | |
|                   IFAIL( I ) = 0
 | |
|    10          CONTINUE
 | |
|             END IF
 | |
|          END IF
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             M = N
 | |
|             GO TO 20
 | |
|          END IF
 | |
|          INFO = 0
 | |
|       END IF
 | |
| *
 | |
| *     Otherwise, call SSTEBZ and, if eigenvectors are desired, SSTEIN.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          ORDER = 'B'
 | |
|       ELSE
 | |
|          ORDER = 'E'
 | |
|       END IF
 | |
|       INDISP = 1 + N
 | |
|       INDIWO = INDISP + N
 | |
|       CALL SSTEBZ( RANGE, ORDER, N, VLL, VUU, IL, IU, ABSTLL,
 | |
|      $             WORK( INDD ), WORK( INDE ), M, NSPLIT, W,
 | |
|      $             IWORK( 1 ), IWORK( INDISP ), WORK( INDWRK ),
 | |
|      $             IWORK( INDIWO ), INFO )
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          CALL SSTEIN( N, WORK( INDD ), WORK( INDE ), M, W,
 | |
|      $                IWORK( 1 ), IWORK( INDISP ), Z, LDZ,
 | |
|      $                WORK( INDWRK ), IWORK( INDIWO ), IFAIL, INFO )
 | |
| *
 | |
| *        Apply orthogonal matrix used in reduction to tridiagonal
 | |
| *        form to eigenvectors returned by SSTEIN.
 | |
| *
 | |
|          CALL SOPMTR( 'L', UPLO, 'N', N, M, AP, WORK( INDTAU ), Z, LDZ,
 | |
|      $                WORK( INDWRK ), IINFO )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|    20 CONTINUE
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( INFO.EQ.0 ) THEN
 | |
|             IMAX = M
 | |
|          ELSE
 | |
|             IMAX = INFO - 1
 | |
|          END IF
 | |
|          CALL SSCAL( IMAX, ONE / SIGMA, W, 1 )
 | |
|       END IF
 | |
| *
 | |
| *     If eigenvalues are not in order, then sort them, along with
 | |
| *     eigenvectors.
 | |
| *
 | |
|       IF( WANTZ ) THEN
 | |
|          DO 40 J = 1, M - 1
 | |
|             I = 0
 | |
|             TMP1 = W( J )
 | |
|             DO 30 JJ = J + 1, M
 | |
|                IF( W( JJ ).LT.TMP1 ) THEN
 | |
|                   I = JJ
 | |
|                   TMP1 = W( JJ )
 | |
|                END IF
 | |
|    30       CONTINUE
 | |
| *
 | |
|             IF( I.NE.0 ) THEN
 | |
|                ITMP1 = IWORK( 1 + I-1 )
 | |
|                W( I ) = W( J )
 | |
|                IWORK( 1 + I-1 ) = IWORK( 1 + J-1 )
 | |
|                W( J ) = TMP1
 | |
|                IWORK( 1 + J-1 ) = ITMP1
 | |
|                CALL SSWAP( N, Z( 1, I ), 1, Z( 1, J ), 1 )
 | |
|                IF( INFO.NE.0 ) THEN
 | |
|                   ITMP1 = IFAIL( I )
 | |
|                   IFAIL( I ) = IFAIL( J )
 | |
|                   IFAIL( J ) = ITMP1
 | |
|                END IF
 | |
|             END IF
 | |
|    40    CONTINUE
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSPEVX
 | |
| *
 | |
|       END
 |