1286 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1286 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static real c_b9 = 0.f;
 | |
| static real c_b10 = 1.f;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b SSBTRD */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SSBTRD + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbtrd.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbtrd.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbtrd.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SSBTRD( VECT, UPLO, N, KD, AB, LDAB, D, E, Q, LDQ, */
 | |
| /*                          WORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO, VECT */
 | |
| /*       INTEGER            INFO, KD, LDAB, LDQ, N */
 | |
| /*       REAL               AB( LDAB, * ), D( * ), E( * ), Q( LDQ, * ), */
 | |
| /*      $                   WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SSBTRD reduces a real symmetric band matrix A to symmetric */
 | |
| /* > tridiagonal form T by an orthogonal similarity transformation: */
 | |
| /* > Q**T * A * Q = T. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] VECT */
 | |
| /* > \verbatim */
 | |
| /* >          VECT is CHARACTER*1 */
 | |
| /* >          = 'N':  do not form Q; */
 | |
| /* >          = 'V':  form Q; */
 | |
| /* >          = 'U':  update a matrix X, by forming X*Q. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          = 'U':  Upper triangle of A is stored; */
 | |
| /* >          = 'L':  Lower triangle of A is stored. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KD */
 | |
| /* > \verbatim */
 | |
| /* >          KD is INTEGER */
 | |
| /* >          The number of superdiagonals of the matrix A if UPLO = 'U', */
 | |
| /* >          or the number of subdiagonals if UPLO = 'L'.  KD >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is REAL array, dimension (LDAB,N) */
 | |
| /* >          On entry, the upper or lower triangle of the symmetric band */
 | |
| /* >          matrix A, stored in the first KD+1 rows of the array.  The */
 | |
| /* >          j-th column of A is stored in the j-th column of the array AB */
 | |
| /* >          as follows: */
 | |
| /* >          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
 | |
| /* >          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=f2cmin(n,j+kd). */
 | |
| /* >          On exit, the diagonal elements of AB are overwritten by the */
 | |
| /* >          diagonal elements of the tridiagonal matrix T; if KD > 0, the */
 | |
| /* >          elements on the first superdiagonal (if UPLO = 'U') or the */
 | |
| /* >          first subdiagonal (if UPLO = 'L') are overwritten by the */
 | |
| /* >          off-diagonal elements of T; the rest of AB is overwritten by */
 | |
| /* >          values generated during the reduction. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array AB.  LDAB >= KD+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >          The diagonal elements of the tridiagonal matrix T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is REAL array, dimension (N-1) */
 | |
| /* >          The off-diagonal elements of the tridiagonal matrix T: */
 | |
| /* >          E(i) = T(i,i+1) if UPLO = 'U'; E(i) = T(i+1,i) if UPLO = 'L'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is REAL array, dimension (LDQ,N) */
 | |
| /* >          On entry, if VECT = 'U', then Q must contain an N-by-N */
 | |
| /* >          matrix X; if VECT = 'N' or 'V', then Q need not be set. */
 | |
| /* > */
 | |
| /* >          On exit: */
 | |
| /* >          if VECT = 'V', Q contains the N-by-N orthogonal matrix Q; */
 | |
| /* >          if VECT = 'U', Q contains the product X*Q; */
 | |
| /* >          if VECT = 'N', the array Q is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >          The leading dimension of the array Q. */
 | |
| /* >          LDQ >= 1, and LDQ >= N if VECT = 'V' or 'U'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realOTHERcomputational */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Modified by Linda Kaufman, Bell Labs. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void ssbtrd_(char *vect, char *uplo, integer *n, integer *kd, 
 | |
| 	real *ab, integer *ldab, real *d__, real *e, real *q, integer *ldq, 
 | |
| 	real *work, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, q_dim1, q_offset, i__1, i__2, i__3, i__4, 
 | |
| 	    i__5;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer inca, jend, lend, jinc, incx, last;
 | |
|     real temp;
 | |
|     extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, real *);
 | |
|     integer j1end, j1inc, i__, j, k, l, iqend;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     logical initq, wantq, upper;
 | |
|     integer i2, j1, j2;
 | |
|     extern /* Subroutine */ void slar2v_(integer *, real *, real *, real *, 
 | |
| 	    integer *, real *, real *, integer *);
 | |
|     integer nq, nr, iqaend;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void slaset_(
 | |
| 	    char *, integer *, integer *, real *, real *, real *, integer *), slartg_(real *, real *, real *, real *, real *), slargv_(
 | |
| 	    integer *, real *, integer *, real *, integer *, real *, integer *
 | |
| 	    );
 | |
|     integer kd1;
 | |
|     extern /* Subroutine */ void slartv_(integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, real *, integer *);
 | |
|     integer ibl, iqb, kdn, jin, nrt, kdm1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     --d__;
 | |
|     --e;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     initq = lsame_(vect, "V");
 | |
|     wantq = initq || lsame_(vect, "U");
 | |
|     upper = lsame_(uplo, "U");
 | |
|     kd1 = *kd + 1;
 | |
|     kdm1 = *kd - 1;
 | |
|     incx = *ldab - 1;
 | |
|     iqend = 1;
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! wantq && ! lsame_(vect, "N")) {
 | |
| 	*info = -1;
 | |
|     } else if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*kd < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldab < kd1) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldq < f2cmax(1,*n) && wantq) {
 | |
| 	*info = -10;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SSBTRD", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Initialize Q to the unit matrix, if needed */
 | |
| 
 | |
|     if (initq) {
 | |
| 	slaset_("Full", n, n, &c_b9, &c_b10, &q[q_offset], ldq);
 | |
|     }
 | |
| 
 | |
| /*     Wherever possible, plane rotations are generated and applied in */
 | |
| /*     vector operations of length NR over the index set J1:J2:KD1. */
 | |
| 
 | |
| /*     The cosines and sines of the plane rotations are stored in the */
 | |
| /*     arrays D and WORK. */
 | |
| 
 | |
|     inca = kd1 * *ldab;
 | |
| /* Computing MIN */
 | |
|     i__1 = *n - 1;
 | |
|     kdn = f2cmin(i__1,*kd);
 | |
|     if (upper) {
 | |
| 
 | |
| 	if (*kd > 1) {
 | |
| 
 | |
| /*           Reduce to tridiagonal form, working with upper triangle */
 | |
| 
 | |
| 	    nr = 0;
 | |
| 	    j1 = kdn + 2;
 | |
| 	    j2 = 1;
 | |
| 
 | |
| 	    i__1 = *n - 2;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*              Reduce i-th row of matrix to tridiagonal form */
 | |
| 
 | |
| 		for (k = kdn + 1; k >= 2; --k) {
 | |
| 		    j1 += kdn;
 | |
| 		    j2 += kdn;
 | |
| 
 | |
| 		    if (nr > 0) {
 | |
| 
 | |
| /*                    generate plane rotations to annihilate nonzero */
 | |
| /*                    elements which have been created outside the band */
 | |
| 
 | |
| 			slargv_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &inca, &
 | |
| 				work[j1], &kd1, &d__[j1], &kd1);
 | |
| 
 | |
| /*                    apply rotations from the right */
 | |
| 
 | |
| 
 | |
| /*                    Dependent on the the number of diagonals either */
 | |
| /*                    SLARTV or SROT is used */
 | |
| 
 | |
| 			if (nr >= (*kd << 1) - 1) {
 | |
| 			    i__2 = *kd - 1;
 | |
| 			    for (l = 1; l <= i__2; ++l) {
 | |
| 				slartv_(&nr, &ab[l + 1 + (j1 - 1) * ab_dim1], 
 | |
| 					&inca, &ab[l + j1 * ab_dim1], &inca, &
 | |
| 					d__[j1], &work[j1], &kd1);
 | |
| /* L10: */
 | |
| 			    }
 | |
| 
 | |
| 			} else {
 | |
| 			    jend = j1 + (nr - 1) * kd1;
 | |
| 			    i__2 = jend;
 | |
| 			    i__3 = kd1;
 | |
| 			    for (jinc = j1; i__3 < 0 ? jinc >= i__2 : jinc <= 
 | |
| 				    i__2; jinc += i__3) {
 | |
| 				srot_(&kdm1, &ab[(jinc - 1) * ab_dim1 + 2], &
 | |
| 					c__1, &ab[jinc * ab_dim1 + 1], &c__1, 
 | |
| 					&d__[jinc], &work[jinc]);
 | |
| /* L20: */
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 
 | |
| 		    if (k > 2) {
 | |
| 			if (k <= *n - i__ + 1) {
 | |
| 
 | |
| /*                       generate plane rotation to annihilate a(i,i+k-1) */
 | |
| /*                       within the band */
 | |
| 
 | |
| 			    slartg_(&ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1]
 | |
| 				    , &ab[*kd - k + 2 + (i__ + k - 1) * 
 | |
| 				    ab_dim1], &d__[i__ + k - 1], &work[i__ + 
 | |
| 				    k - 1], &temp);
 | |
| 			    ab[*kd - k + 3 + (i__ + k - 2) * ab_dim1] = temp;
 | |
| 
 | |
| /*                       apply rotation from the right */
 | |
| 
 | |
| 			    i__3 = k - 3;
 | |
| 			    srot_(&i__3, &ab[*kd - k + 4 + (i__ + k - 2) * 
 | |
| 				    ab_dim1], &c__1, &ab[*kd - k + 3 + (i__ + 
 | |
| 				    k - 1) * ab_dim1], &c__1, &d__[i__ + k - 
 | |
| 				    1], &work[i__ + k - 1]);
 | |
| 			}
 | |
| 			++nr;
 | |
| 			j1 = j1 - kdn - 1;
 | |
| 		    }
 | |
| 
 | |
| /*                 apply plane rotations from both sides to diagonal */
 | |
| /*                 blocks */
 | |
| 
 | |
| 		    if (nr > 0) {
 | |
| 			slar2v_(&nr, &ab[kd1 + (j1 - 1) * ab_dim1], &ab[kd1 + 
 | |
| 				j1 * ab_dim1], &ab[*kd + j1 * ab_dim1], &inca,
 | |
| 				 &d__[j1], &work[j1], &kd1);
 | |
| 		    }
 | |
| 
 | |
| /*                 apply plane rotations from the left */
 | |
| 
 | |
| 		    if (nr > 0) {
 | |
| 			if ((*kd << 1) - 1 < nr) {
 | |
| 
 | |
| /*                    Dependent on the the number of diagonals either */
 | |
| /*                    SLARTV or SROT is used */
 | |
| 
 | |
| 			    i__3 = *kd - 1;
 | |
| 			    for (l = 1; l <= i__3; ++l) {
 | |
| 				if (j2 + l > *n) {
 | |
| 				    nrt = nr - 1;
 | |
| 				} else {
 | |
| 				    nrt = nr;
 | |
| 				}
 | |
| 				if (nrt > 0) {
 | |
| 				    slartv_(&nrt, &ab[*kd - l + (j1 + l) * 
 | |
| 					    ab_dim1], &inca, &ab[*kd - l + 1 
 | |
| 					    + (j1 + l) * ab_dim1], &inca, &
 | |
| 					    d__[j1], &work[j1], &kd1);
 | |
| 				}
 | |
| /* L30: */
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    j1end = j1 + kd1 * (nr - 2);
 | |
| 			    if (j1end >= j1) {
 | |
| 				i__3 = j1end;
 | |
| 				i__2 = kd1;
 | |
| 				for (jin = j1; i__2 < 0 ? jin >= i__3 : jin <=
 | |
| 					 i__3; jin += i__2) {
 | |
| 				    i__4 = *kd - 1;
 | |
| 				    srot_(&i__4, &ab[*kd - 1 + (jin + 1) * 
 | |
| 					    ab_dim1], &incx, &ab[*kd + (jin + 
 | |
| 					    1) * ab_dim1], &incx, &d__[jin], &
 | |
| 					    work[jin]);
 | |
| /* L40: */
 | |
| 				}
 | |
| 			    }
 | |
| /* Computing MIN */
 | |
| 			    i__2 = kdm1, i__3 = *n - j2;
 | |
| 			    lend = f2cmin(i__2,i__3);
 | |
| 			    last = j1end + kd1;
 | |
| 			    if (lend > 0) {
 | |
| 				srot_(&lend, &ab[*kd - 1 + (last + 1) * 
 | |
| 					ab_dim1], &incx, &ab[*kd + (last + 1) 
 | |
| 					* ab_dim1], &incx, &d__[last], &work[
 | |
| 					last]);
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (wantq) {
 | |
| 
 | |
| /*                    accumulate product of plane rotations in Q */
 | |
| 
 | |
| 			if (initq) {
 | |
| 
 | |
| /*                 take advantage of the fact that Q was */
 | |
| /*                 initially the Identity matrix */
 | |
| 
 | |
| 			    iqend = f2cmax(iqend,j2);
 | |
| /* Computing MAX */
 | |
| 			    i__2 = 0, i__3 = k - 3;
 | |
| 			    i2 = f2cmax(i__2,i__3);
 | |
| 			    iqaend = i__ * *kd + 1;
 | |
| 			    if (k == 2) {
 | |
| 				iqaend += *kd;
 | |
| 			    }
 | |
| 			    iqaend = f2cmin(iqaend,iqend);
 | |
| 			    i__2 = j2;
 | |
| 			    i__3 = kd1;
 | |
| 			    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j 
 | |
| 				    += i__3) {
 | |
| 				ibl = i__ - i2 / kdm1;
 | |
| 				++i2;
 | |
| /* Computing MAX */
 | |
| 				i__4 = 1, i__5 = j - ibl;
 | |
| 				iqb = f2cmax(i__4,i__5);
 | |
| 				nq = iqaend + 1 - iqb;
 | |
| /* Computing MIN */
 | |
| 				i__4 = iqaend + *kd;
 | |
| 				iqaend = f2cmin(i__4,iqend);
 | |
| 				srot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, 
 | |
| 					&q[iqb + j * q_dim1], &c__1, &d__[j], 
 | |
| 					&work[j]);
 | |
| /* L50: */
 | |
| 			    }
 | |
| 			} else {
 | |
| 
 | |
| 			    i__3 = j2;
 | |
| 			    i__2 = kd1;
 | |
| 			    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j 
 | |
| 				    += i__2) {
 | |
| 				srot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
 | |
| 					j * q_dim1 + 1], &c__1, &d__[j], &
 | |
| 					work[j]);
 | |
| /* L60: */
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		    if (j2 + kdn > *n) {
 | |
| 
 | |
| /*                    adjust J2 to keep within the bounds of the matrix */
 | |
| 
 | |
| 			--nr;
 | |
| 			j2 = j2 - kdn - 1;
 | |
| 		    }
 | |
| 
 | |
| 		    i__2 = j2;
 | |
| 		    i__3 = kd1;
 | |
| 		    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j += i__3) 
 | |
| 			    {
 | |
| 
 | |
| /*                    create nonzero element a(j-1,j+kd) outside the band */
 | |
| /*                    and store it in WORK */
 | |
| 
 | |
| 			work[j + *kd] = work[j] * ab[(j + *kd) * ab_dim1 + 1];
 | |
| 			ab[(j + *kd) * ab_dim1 + 1] = d__[j] * ab[(j + *kd) * 
 | |
| 				ab_dim1 + 1];
 | |
| /* L70: */
 | |
| 		    }
 | |
| /* L80: */
 | |
| 		}
 | |
| /* L90: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (*kd > 0) {
 | |
| 
 | |
| /*           copy off-diagonal elements to E */
 | |
| 
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		e[i__] = ab[*kd + (i__ + 1) * ab_dim1];
 | |
| /* L100: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           set E to zero if original matrix was diagonal */
 | |
| 
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		e[i__] = 0.f;
 | |
| /* L110: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        copy diagonal elements to D */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    d__[i__] = ab[kd1 + i__ * ab_dim1];
 | |
| /* L120: */
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| 	if (*kd > 1) {
 | |
| 
 | |
| /*           Reduce to tridiagonal form, working with lower triangle */
 | |
| 
 | |
| 	    nr = 0;
 | |
| 	    j1 = kdn + 2;
 | |
| 	    j2 = 1;
 | |
| 
 | |
| 	    i__1 = *n - 2;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| /*              Reduce i-th column of matrix to tridiagonal form */
 | |
| 
 | |
| 		for (k = kdn + 1; k >= 2; --k) {
 | |
| 		    j1 += kdn;
 | |
| 		    j2 += kdn;
 | |
| 
 | |
| 		    if (nr > 0) {
 | |
| 
 | |
| /*                    generate plane rotations to annihilate nonzero */
 | |
| /*                    elements which have been created outside the band */
 | |
| 
 | |
| 			slargv_(&nr, &ab[kd1 + (j1 - kd1) * ab_dim1], &inca, &
 | |
| 				work[j1], &kd1, &d__[j1], &kd1);
 | |
| 
 | |
| /*                    apply plane rotations from one side */
 | |
| 
 | |
| 
 | |
| /*                    Dependent on the the number of diagonals either */
 | |
| /*                    SLARTV or SROT is used */
 | |
| 
 | |
| 			if (nr > (*kd << 1) - 1) {
 | |
| 			    i__3 = *kd - 1;
 | |
| 			    for (l = 1; l <= i__3; ++l) {
 | |
| 				slartv_(&nr, &ab[kd1 - l + (j1 - kd1 + l) * 
 | |
| 					ab_dim1], &inca, &ab[kd1 - l + 1 + (
 | |
| 					j1 - kd1 + l) * ab_dim1], &inca, &d__[
 | |
| 					j1], &work[j1], &kd1);
 | |
| /* L130: */
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    jend = j1 + kd1 * (nr - 1);
 | |
| 			    i__3 = jend;
 | |
| 			    i__2 = kd1;
 | |
| 			    for (jinc = j1; i__2 < 0 ? jinc >= i__3 : jinc <= 
 | |
| 				    i__3; jinc += i__2) {
 | |
| 				srot_(&kdm1, &ab[*kd + (jinc - *kd) * ab_dim1]
 | |
| 					, &incx, &ab[kd1 + (jinc - *kd) * 
 | |
| 					ab_dim1], &incx, &d__[jinc], &work[
 | |
| 					jinc]);
 | |
| /* L140: */
 | |
| 			    }
 | |
| 			}
 | |
| 
 | |
| 		    }
 | |
| 
 | |
| 		    if (k > 2) {
 | |
| 			if (k <= *n - i__ + 1) {
 | |
| 
 | |
| /*                       generate plane rotation to annihilate a(i+k-1,i) */
 | |
| /*                       within the band */
 | |
| 
 | |
| 			    slartg_(&ab[k - 1 + i__ * ab_dim1], &ab[k + i__ * 
 | |
| 				    ab_dim1], &d__[i__ + k - 1], &work[i__ + 
 | |
| 				    k - 1], &temp);
 | |
| 			    ab[k - 1 + i__ * ab_dim1] = temp;
 | |
| 
 | |
| /*                       apply rotation from the left */
 | |
| 
 | |
| 			    i__2 = k - 3;
 | |
| 			    i__3 = *ldab - 1;
 | |
| 			    i__4 = *ldab - 1;
 | |
| 			    srot_(&i__2, &ab[k - 2 + (i__ + 1) * ab_dim1], &
 | |
| 				    i__3, &ab[k - 1 + (i__ + 1) * ab_dim1], &
 | |
| 				    i__4, &d__[i__ + k - 1], &work[i__ + k - 
 | |
| 				    1]);
 | |
| 			}
 | |
| 			++nr;
 | |
| 			j1 = j1 - kdn - 1;
 | |
| 		    }
 | |
| 
 | |
| /*                 apply plane rotations from both sides to diagonal */
 | |
| /*                 blocks */
 | |
| 
 | |
| 		    if (nr > 0) {
 | |
| 			slar2v_(&nr, &ab[(j1 - 1) * ab_dim1 + 1], &ab[j1 * 
 | |
| 				ab_dim1 + 1], &ab[(j1 - 1) * ab_dim1 + 2], &
 | |
| 				inca, &d__[j1], &work[j1], &kd1);
 | |
| 		    }
 | |
| 
 | |
| /*                 apply plane rotations from the right */
 | |
| 
 | |
| 
 | |
| /*                    Dependent on the the number of diagonals either */
 | |
| /*                    SLARTV or SROT is used */
 | |
| 
 | |
| 		    if (nr > 0) {
 | |
| 			if (nr > (*kd << 1) - 1) {
 | |
| 			    i__2 = *kd - 1;
 | |
| 			    for (l = 1; l <= i__2; ++l) {
 | |
| 				if (j2 + l > *n) {
 | |
| 				    nrt = nr - 1;
 | |
| 				} else {
 | |
| 				    nrt = nr;
 | |
| 				}
 | |
| 				if (nrt > 0) {
 | |
| 				    slartv_(&nrt, &ab[l + 2 + (j1 - 1) * 
 | |
| 					    ab_dim1], &inca, &ab[l + 1 + j1 * 
 | |
| 					    ab_dim1], &inca, &d__[j1], &work[
 | |
| 					    j1], &kd1);
 | |
| 				}
 | |
| /* L150: */
 | |
| 			    }
 | |
| 			} else {
 | |
| 			    j1end = j1 + kd1 * (nr - 2);
 | |
| 			    if (j1end >= j1) {
 | |
| 				i__2 = j1end;
 | |
| 				i__3 = kd1;
 | |
| 				for (j1inc = j1; i__3 < 0 ? j1inc >= i__2 : 
 | |
| 					j1inc <= i__2; j1inc += i__3) {
 | |
| 				    srot_(&kdm1, &ab[(j1inc - 1) * ab_dim1 + 
 | |
| 					    3], &c__1, &ab[j1inc * ab_dim1 + 
 | |
| 					    2], &c__1, &d__[j1inc], &work[
 | |
| 					    j1inc]);
 | |
| /* L160: */
 | |
| 				}
 | |
| 			    }
 | |
| /* Computing MIN */
 | |
| 			    i__3 = kdm1, i__2 = *n - j2;
 | |
| 			    lend = f2cmin(i__3,i__2);
 | |
| 			    last = j1end + kd1;
 | |
| 			    if (lend > 0) {
 | |
| 				srot_(&lend, &ab[(last - 1) * ab_dim1 + 3], &
 | |
| 					c__1, &ab[last * ab_dim1 + 2], &c__1, 
 | |
| 					&d__[last], &work[last]);
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 
 | |
| 
 | |
| 		    if (wantq) {
 | |
| 
 | |
| /*                    accumulate product of plane rotations in Q */
 | |
| 
 | |
| 			if (initq) {
 | |
| 
 | |
| /*                 take advantage of the fact that Q was */
 | |
| /*                 initially the Identity matrix */
 | |
| 
 | |
| 			    iqend = f2cmax(iqend,j2);
 | |
| /* Computing MAX */
 | |
| 			    i__3 = 0, i__2 = k - 3;
 | |
| 			    i2 = f2cmax(i__3,i__2);
 | |
| 			    iqaend = i__ * *kd + 1;
 | |
| 			    if (k == 2) {
 | |
| 				iqaend += *kd;
 | |
| 			    }
 | |
| 			    iqaend = f2cmin(iqaend,iqend);
 | |
| 			    i__3 = j2;
 | |
| 			    i__2 = kd1;
 | |
| 			    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j 
 | |
| 				    += i__2) {
 | |
| 				ibl = i__ - i2 / kdm1;
 | |
| 				++i2;
 | |
| /* Computing MAX */
 | |
| 				i__4 = 1, i__5 = j - ibl;
 | |
| 				iqb = f2cmax(i__4,i__5);
 | |
| 				nq = iqaend + 1 - iqb;
 | |
| /* Computing MIN */
 | |
| 				i__4 = iqaend + *kd;
 | |
| 				iqaend = f2cmin(i__4,iqend);
 | |
| 				srot_(&nq, &q[iqb + (j - 1) * q_dim1], &c__1, 
 | |
| 					&q[iqb + j * q_dim1], &c__1, &d__[j], 
 | |
| 					&work[j]);
 | |
| /* L170: */
 | |
| 			    }
 | |
| 			} else {
 | |
| 
 | |
| 			    i__2 = j2;
 | |
| 			    i__3 = kd1;
 | |
| 			    for (j = j1; i__3 < 0 ? j >= i__2 : j <= i__2; j 
 | |
| 				    += i__3) {
 | |
| 				srot_(n, &q[(j - 1) * q_dim1 + 1], &c__1, &q[
 | |
| 					j * q_dim1 + 1], &c__1, &d__[j], &
 | |
| 					work[j]);
 | |
| /* L180: */
 | |
| 			    }
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (j2 + kdn > *n) {
 | |
| 
 | |
| /*                    adjust J2 to keep within the bounds of the matrix */
 | |
| 
 | |
| 			--nr;
 | |
| 			j2 = j2 - kdn - 1;
 | |
| 		    }
 | |
| 
 | |
| 		    i__3 = j2;
 | |
| 		    i__2 = kd1;
 | |
| 		    for (j = j1; i__2 < 0 ? j >= i__3 : j <= i__3; j += i__2) 
 | |
| 			    {
 | |
| 
 | |
| /*                    create nonzero element a(j+kd,j-1) outside the */
 | |
| /*                    band and store it in WORK */
 | |
| 
 | |
| 			work[j + *kd] = work[j] * ab[kd1 + j * ab_dim1];
 | |
| 			ab[kd1 + j * ab_dim1] = d__[j] * ab[kd1 + j * ab_dim1]
 | |
| 				;
 | |
| /* L190: */
 | |
| 		    }
 | |
| /* L200: */
 | |
| 		}
 | |
| /* L210: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (*kd > 0) {
 | |
| 
 | |
| /*           copy off-diagonal elements to E */
 | |
| 
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		e[i__] = ab[i__ * ab_dim1 + 2];
 | |
| /* L220: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           set E to zero if original matrix was diagonal */
 | |
| 
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		e[i__] = 0.f;
 | |
| /* L230: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        copy diagonal elements to D */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    d__[i__] = ab[i__ * ab_dim1 + 1];
 | |
| /* L240: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SSBTRD */
 | |
| 
 | |
| } /* ssbtrd_ */
 | |
| 
 |