352 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			352 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SSBEVD computes the eigenvalues and, optionally, the left and/or right eigenvectors for OTHER matrices</b>
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SSBEVD + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/ssbevd.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/ssbevd.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/ssbevd.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 | |
| *                          LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          JOBZ, UPLO
 | |
| *       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IWORK( * )
 | |
| *       REAL               AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SSBEVD computes all the eigenvalues and, optionally, eigenvectors of
 | |
| *> a real symmetric band matrix A. If eigenvectors are desired, it uses
 | |
| *> a divide and conquer algorithm.
 | |
| *>
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOBZ
 | |
| *> \verbatim
 | |
| *>          JOBZ is CHARACTER*1
 | |
| *>          = 'N':  Compute eigenvalues only;
 | |
| *>          = 'V':  Compute eigenvalues and eigenvectors.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] UPLO
 | |
| *> \verbatim
 | |
| *>          UPLO is CHARACTER*1
 | |
| *>          = 'U':  Upper triangle of A is stored;
 | |
| *>          = 'L':  Lower triangle of A is stored.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KD
 | |
| *> \verbatim
 | |
| *>          KD is INTEGER
 | |
| *>          The number of superdiagonals of the matrix A if UPLO = 'U',
 | |
| *>          or the number of subdiagonals if UPLO = 'L'.  KD >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is REAL array, dimension (LDAB, N)
 | |
| *>          On entry, the upper or lower triangle of the symmetric band
 | |
| *>          matrix A, stored in the first KD+1 rows of the array.  The
 | |
| *>          j-th column of A is stored in the j-th column of the array AB
 | |
| *>          as follows:
 | |
| *>          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for max(1,j-kd)<=i<=j;
 | |
| *>          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=min(n,j+kd).
 | |
| *>
 | |
| *>          On exit, AB is overwritten by values generated during the
 | |
| *>          reduction to tridiagonal form.  If UPLO = 'U', the first
 | |
| *>          superdiagonal and the diagonal of the tridiagonal matrix T
 | |
| *>          are returned in rows KD and KD+1 of AB, and if UPLO = 'L',
 | |
| *>          the diagonal and first subdiagonal of T are returned in the
 | |
| *>          first two rows of AB.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= KD + 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] W
 | |
| *> \verbatim
 | |
| *>          W is REAL array, dimension (N)
 | |
| *>          If INFO = 0, the eigenvalues in ascending order.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ, N)
 | |
| *>          If JOBZ = 'V', then if INFO = 0, Z contains the orthonormal
 | |
| *>          eigenvectors of the matrix A, with the i-th column of Z
 | |
| *>          holding the eigenvector associated with W(i).
 | |
| *>          If JOBZ = 'N', then Z is not referenced.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>          The leading dimension of the array Z.  LDZ >= 1, and if
 | |
| *>          JOBZ = 'V', LDZ >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array,
 | |
| *>                                         dimension (LWORK)
 | |
| *>          On exit, if INFO = 0, WORK(1) returns the optimal LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>          The dimension of the array WORK.
 | |
| *>          IF N <= 1,                LWORK must be at least 1.
 | |
| *>          If JOBZ  = 'N' and N > 2, LWORK must be at least 2*N.
 | |
| *>          If JOBZ  = 'V' and N > 2, LWORK must be at least
 | |
| *>                         ( 1 + 5*N + 2*N**2 ).
 | |
| *>
 | |
| *>          If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>          only calculates the optimal sizes of the WORK and IWORK
 | |
| *>          arrays, returns these values as the first entries of the WORK
 | |
| *>          and IWORK arrays, and no error message related to LWORK or
 | |
| *>          LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (MAX(1,LIWORK))
 | |
| *>          On exit, if INFO = 0, IWORK(1) returns the optimal LIWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LIWORK
 | |
| *> \verbatim
 | |
| *>          LIWORK is INTEGER
 | |
| *>          The dimension of the array IWORK.
 | |
| *>          If JOBZ  = 'N' or N <= 1, LIWORK must be at least 1.
 | |
| *>          If JOBZ  = 'V' and N > 2, LIWORK must be at least 3 + 5*N.
 | |
| *>
 | |
| *>          If LIWORK = -1, then a workspace query is assumed; the
 | |
| *>          routine only calculates the optimal sizes of the WORK and
 | |
| *>          IWORK arrays, returns these values as the first entries of
 | |
| *>          the WORK and IWORK arrays, and no error message related to
 | |
| *>          LWORK or LIWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, the algorithm failed to converge; i
 | |
| *>                off-diagonal elements of an intermediate tridiagonal
 | |
| *>                form did not converge to zero.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHEReigen
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SSBEVD( JOBZ, UPLO, N, KD, AB, LDAB, W, Z, LDZ, WORK,
 | |
|      $                   LWORK, IWORK, LIWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          JOBZ, UPLO
 | |
|       INTEGER            INFO, KD, LDAB, LDZ, LIWORK, LWORK, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IWORK( * )
 | |
|       REAL               AB( LDAB, * ), W( * ), WORK( * ), Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LOWER, LQUERY, WANTZ
 | |
|       INTEGER            IINFO, INDE, INDWK2, INDWRK, ISCALE, LIWMIN,
 | |
|      $                   LLWRK2, LWMIN
 | |
|       REAL               ANRM, BIGNUM, EPS, RMAX, RMIN, SAFMIN, SIGMA,
 | |
|      $                   SMLNUM
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH, SLANSB
 | |
|       EXTERNAL           LSAME, SLAMCH, SLANSB
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMM, SLACPY, SLASCL, SSBTRD, SSCAL, SSTEDC,
 | |
|      $                   SSTERF, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       WANTZ = LSAME( JOBZ, 'V' )
 | |
|       LOWER = LSAME( UPLO, 'L' )
 | |
|       LQUERY = ( LWORK.EQ.-1 .OR. LIWORK.EQ.-1 )
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LE.1 ) THEN
 | |
|          LIWMIN = 1
 | |
|          LWMIN = 1
 | |
|       ELSE
 | |
|          IF( WANTZ ) THEN
 | |
|             LIWMIN = 3 + 5*N
 | |
|             LWMIN = 1 + 5*N + 2*N**2
 | |
|          ELSE
 | |
|             LIWMIN = 1
 | |
|             LWMIN = 2*N
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( .NOT.( WANTZ .OR. LSAME( JOBZ, 'N' ) ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.( LOWER .OR. LSAME( UPLO, 'U' ) ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( KD.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAB.LT.KD+1 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.N ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
|          WORK( 1 ) = LWMIN
 | |
|          IWORK( 1 ) = LIWMIN
 | |
| *
 | |
|          IF( LWORK.LT.LWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -11
 | |
|          ELSE IF( LIWORK.LT.LIWMIN .AND. .NOT.LQUERY ) THEN
 | |
|             INFO = -13
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SSBEVD', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( N.EQ.1 ) THEN
 | |
|          W( 1 ) = AB( 1, 1 )
 | |
|          IF( WANTZ )
 | |
|      $      Z( 1, 1 ) = ONE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Get machine constants.
 | |
| *
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
|       SMLNUM = SAFMIN / EPS
 | |
|       BIGNUM = ONE / SMLNUM
 | |
|       RMIN = SQRT( SMLNUM )
 | |
|       RMAX = SQRT( BIGNUM )
 | |
| *
 | |
| *     Scale matrix to allowable range, if necessary.
 | |
| *
 | |
|       ANRM = SLANSB( 'M', UPLO, N, KD, AB, LDAB, WORK )
 | |
|       ISCALE = 0
 | |
|       IF( ANRM.GT.ZERO .AND. ANRM.LT.RMIN ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMIN / ANRM
 | |
|       ELSE IF( ANRM.GT.RMAX ) THEN
 | |
|          ISCALE = 1
 | |
|          SIGMA = RMAX / ANRM
 | |
|       END IF
 | |
|       IF( ISCALE.EQ.1 ) THEN
 | |
|          IF( LOWER ) THEN
 | |
|             CALL SLASCL( 'B', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
 | |
|          ELSE
 | |
|             CALL SLASCL( 'Q', KD, KD, ONE, SIGMA, N, N, AB, LDAB, INFO )
 | |
|          END IF
 | |
|       END IF
 | |
| *
 | |
| *     Call SSBTRD to reduce symmetric band matrix to tridiagonal form.
 | |
| *
 | |
|       INDE = 1
 | |
|       INDWRK = INDE + N
 | |
|       INDWK2 = INDWRK + N*N
 | |
|       LLWRK2 = LWORK - INDWK2 + 1
 | |
|       CALL SSBTRD( JOBZ, UPLO, N, KD, AB, LDAB, W, WORK( INDE ), Z, LDZ,
 | |
|      $             WORK( INDWRK ), IINFO )
 | |
| *
 | |
| *     For eigenvalues only, call SSTERF.  For eigenvectors, call SSTEDC.
 | |
| *
 | |
|       IF( .NOT.WANTZ ) THEN
 | |
|          CALL SSTERF( N, W, WORK( INDE ), INFO )
 | |
|       ELSE
 | |
|          CALL SSTEDC( 'I', N, W, WORK( INDE ), WORK( INDWRK ), N,
 | |
|      $                WORK( INDWK2 ), LLWRK2, IWORK, LIWORK, INFO )
 | |
|          CALL SGEMM( 'N', 'N', N, N, N, ONE, Z, LDZ, WORK( INDWRK ), N,
 | |
|      $               ZERO, WORK( INDWK2 ), N )
 | |
|          CALL SLACPY( 'A', N, N, WORK( INDWK2 ), N, Z, LDZ )
 | |
|       END IF
 | |
| *
 | |
| *     If matrix was scaled, then rescale eigenvalues appropriately.
 | |
| *
 | |
|       IF( ISCALE.EQ.1 )
 | |
|      $   CALL SSCAL( N, ONE / SIGMA, W, 1 )
 | |
| *
 | |
|       WORK( 1 ) = LWMIN
 | |
|       IWORK( 1 ) = LIWMIN
 | |
|       RETURN
 | |
| *
 | |
| *     End of SSBEVD
 | |
| *
 | |
|       END
 |