280 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			280 lines
		
	
	
		
			7.1 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORML2 multiplies a general matrix by the orthogonal matrix from a LQ factorization determined by sgelqf (unblocked algorithm).
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORML2 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorml2.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorml2.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorml2.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 | |
| *                          WORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          SIDE, TRANS
 | |
| *       INTEGER            INFO, K, LDA, LDC, M, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SORML2 overwrites the general real m by n matrix C with
 | |
| *>
 | |
| *>       Q * C  if SIDE = 'L' and TRANS = 'N', or
 | |
| *>
 | |
| *>       Q**T* C  if SIDE = 'L' and TRANS = 'T', or
 | |
| *>
 | |
| *>       C * Q  if SIDE = 'R' and TRANS = 'N', or
 | |
| *>
 | |
| *>       C * Q**T if SIDE = 'R' and TRANS = 'T',
 | |
| *>
 | |
| *> where Q is a real orthogonal matrix defined as the product of k
 | |
| *> elementary reflectors
 | |
| *>
 | |
| *>       Q = H(k) . . . H(2) H(1)
 | |
| *>
 | |
| *> as returned by SGELQF. Q is of order m if SIDE = 'L' and of order n
 | |
| *> if SIDE = 'R'.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] SIDE
 | |
| *> \verbatim
 | |
| *>          SIDE is CHARACTER*1
 | |
| *>          = 'L': apply Q or Q**T from the Left
 | |
| *>          = 'R': apply Q or Q**T from the Right
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          = 'N': apply Q  (No transpose)
 | |
| *>          = 'T': apply Q**T (Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>          The number of rows of the matrix C. M >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of columns of the matrix C. N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] K
 | |
| *> \verbatim
 | |
| *>          K is INTEGER
 | |
| *>          The number of elementary reflectors whose product defines
 | |
| *>          the matrix Q.
 | |
| *>          If SIDE = 'L', M >= K >= 0;
 | |
| *>          if SIDE = 'R', N >= K >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] A
 | |
| *> \verbatim
 | |
| *>          A is REAL array, dimension
 | |
| *>                               (LDA,M) if SIDE = 'L',
 | |
| *>                               (LDA,N) if SIDE = 'R'
 | |
| *>          The i-th row must contain the vector which defines the
 | |
| *>          elementary reflector H(i), for i = 1,2,...,k, as returned by
 | |
| *>          SGELQF in the first k rows of its array argument A.
 | |
| *>          A is modified by the routine but restored on exit.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDA
 | |
| *> \verbatim
 | |
| *>          LDA is INTEGER
 | |
| *>          The leading dimension of the array A. LDA >= max(1,K).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] TAU
 | |
| *> \verbatim
 | |
| *>          TAU is REAL array, dimension (K)
 | |
| *>          TAU(i) must contain the scalar factor of the elementary
 | |
| *>          reflector H(i), as returned by SGELQF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] C
 | |
| *> \verbatim
 | |
| *>          C is REAL array, dimension (LDC,N)
 | |
| *>          On entry, the m by n matrix C.
 | |
| *>          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDC
 | |
| *> \verbatim
 | |
| *>          LDC is INTEGER
 | |
| *>          The leading dimension of the array C. LDC >= max(1,M).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension
 | |
| *>                                   (N) if SIDE = 'L',
 | |
| *>                                   (M) if SIDE = 'R'
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0: successful exit
 | |
| *>          < 0: if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORML2( SIDE, TRANS, M, N, K, A, LDA, TAU, C, LDC,
 | |
|      $                   WORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          SIDE, TRANS
 | |
|       INTEGER            INFO, K, LDA, LDC, M, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               A( LDA, * ), C( LDC, * ), TAU( * ), WORK( * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            LEFT, NOTRAN
 | |
|       INTEGER            I, I1, I2, I3, IC, JC, MI, NI, NQ
 | |
|       REAL               AII
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARF, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LEFT = LSAME( SIDE, 'L' )
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
| *
 | |
| *     NQ is the order of Q
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          NQ = M
 | |
|       ELSE
 | |
|          NQ = N
 | |
|       END IF
 | |
|       IF( .NOT.LEFT .AND. .NOT.LSAME( SIDE, 'R' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( M.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( K.LT.0 .OR. K.GT.NQ ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDA.LT.MAX( 1, K ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDC.LT.MAX( 1, M ) ) THEN
 | |
|          INFO = -10
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SORML2', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( M.EQ.0 .OR. N.EQ.0 .OR. K.EQ.0 )
 | |
|      $   RETURN
 | |
| *
 | |
|       IF( ( LEFT .AND. NOTRAN ) .OR. ( .NOT.LEFT .AND. .NOT.NOTRAN ) )
 | |
|      $     THEN
 | |
|          I1 = 1
 | |
|          I2 = K
 | |
|          I3 = 1
 | |
|       ELSE
 | |
|          I1 = K
 | |
|          I2 = 1
 | |
|          I3 = -1
 | |
|       END IF
 | |
| *
 | |
|       IF( LEFT ) THEN
 | |
|          NI = N
 | |
|          JC = 1
 | |
|       ELSE
 | |
|          MI = M
 | |
|          IC = 1
 | |
|       END IF
 | |
| *
 | |
|       DO 10 I = I1, I2, I3
 | |
|          IF( LEFT ) THEN
 | |
| *
 | |
| *           H(i) is applied to C(i:m,1:n)
 | |
| *
 | |
|             MI = M - I + 1
 | |
|             IC = I
 | |
|          ELSE
 | |
| *
 | |
| *           H(i) is applied to C(1:m,i:n)
 | |
| *
 | |
|             NI = N - I + 1
 | |
|             JC = I
 | |
|          END IF
 | |
| *
 | |
| *        Apply H(i)
 | |
| *
 | |
|          AII = A( I, I )
 | |
|          A( I, I ) = ONE
 | |
|          CALL SLARF( SIDE, MI, NI, A( I, I ), LDA, TAU( I ),
 | |
|      $               C( IC, JC ), LDC, WORK )
 | |
|          A( I, I ) = AII
 | |
|    10 CONTINUE
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORML2
 | |
| *
 | |
|       END
 |