320 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			320 lines
		
	
	
		
			8.6 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORBDB6
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORBDB6 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb6.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb6.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb6.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
 | |
| *                           LDQ2, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
 | |
| *      $                   N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *>\verbatim
 | |
| *>
 | |
| *> SORBDB6 orthogonalizes the column vector
 | |
| *>      X = [ X1 ]
 | |
| *>          [ X2 ]
 | |
| *> with respect to the columns of
 | |
| *>      Q = [ Q1 ] .
 | |
| *>          [ Q2 ]
 | |
| *> The Euclidean norm of X must be one and the columns of Q must be
 | |
| *> orthonormal. The orthogonalized vector will be zero if and only if it
 | |
| *> lies entirely in the range of Q.
 | |
| *>
 | |
| *> The projection is computed with at most two iterations of the
 | |
| *> classical Gram-Schmidt algorithm, see
 | |
| *> * L. Giraud, J. Langou, M. Rozložník. "On the round-off error
 | |
| *>   analysis of the Gram-Schmidt algorithm with reorthogonalization."
 | |
| *>   2002. CERFACS Technical Report No. TR/PA/02/33. URL:
 | |
| *>   https://www.cerfacs.fr/algor/reports/2002/TR_PA_02_33.pdf
 | |
| *>
 | |
| *>\endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M1
 | |
| *> \verbatim
 | |
| *>          M1 is INTEGER
 | |
| *>           The dimension of X1 and the number of rows in Q1. 0 <= M1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] M2
 | |
| *> \verbatim
 | |
| *>          M2 is INTEGER
 | |
| *>           The dimension of X2 and the number of rows in Q2. 0 <= M2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           The number of columns in Q1 and Q2. 0 <= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X1
 | |
| *> \verbatim
 | |
| *>          X1 is REAL array, dimension (M1)
 | |
| *>           On entry, the top part of the vector to be orthogonalized.
 | |
| *>           On exit, the top part of the projected vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX1
 | |
| *> \verbatim
 | |
| *>          INCX1 is INTEGER
 | |
| *>           Increment for entries of X1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X2
 | |
| *> \verbatim
 | |
| *>          X2 is REAL array, dimension (M2)
 | |
| *>           On entry, the bottom part of the vector to be
 | |
| *>           orthogonalized. On exit, the bottom part of the projected
 | |
| *>           vector.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] INCX2
 | |
| *> \verbatim
 | |
| *>          INCX2 is INTEGER
 | |
| *>           Increment for entries of X2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q1
 | |
| *> \verbatim
 | |
| *>          Q1 is REAL array, dimension (LDQ1, N)
 | |
| *>           The top part of the orthonormal basis matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ1
 | |
| *> \verbatim
 | |
| *>          LDQ1 is INTEGER
 | |
| *>           The leading dimension of Q1. LDQ1 >= M1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q2
 | |
| *> \verbatim
 | |
| *>          Q2 is REAL array, dimension (LDQ2, N)
 | |
| *>           The bottom part of the orthonormal basis matrix.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDQ2
 | |
| *> \verbatim
 | |
| *>          LDQ2 is INTEGER
 | |
| *>           The leading dimension of Q2. LDQ2 >= M2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>           The dimension of the array WORK. LWORK >= N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           = 0:  successful exit.
 | |
| *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORBDB6( M1, M2, N, X1, INCX1, X2, INCX2, Q1, LDQ1, Q2,
 | |
|      $                    LDQ2, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INCX1, INCX2, INFO, LDQ1, LDQ2, LWORK, M1, M2,
 | |
|      $                   N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               Q1(LDQ1,*), Q2(LDQ2,*), WORK(*), X1(*), X2(*)
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ALPHA, REALONE, REALZERO
 | |
|       PARAMETER          ( ALPHA = 0.01E0, REALONE = 1.0E0,
 | |
|      $                     REALZERO = 0.0E0 )
 | |
|       REAL               NEGONE, ONE, ZERO
 | |
|       PARAMETER          ( NEGONE = -1.0E0, ONE = 1.0E0, ZERO = 0.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, IX
 | |
|       REAL               EPS, NORM, NORM_NEW, SCL, SSQ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SLAMCH
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGEMV, SLASSQ, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Function ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( M1 .LT. 0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( M2 .LT. 0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N .LT. 0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( INCX1 .LT. 1 ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( INCX2 .LT. 1 ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDQ1 .LT. MAX( 1, M1 ) ) THEN
 | |
|          INFO = -9
 | |
|       ELSE IF( LDQ2 .LT. MAX( 1, M2 ) ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LWORK .LT. N ) THEN
 | |
|          INFO = -13
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO .NE. 0 ) THEN
 | |
|          CALL XERBLA( 'SORBDB6', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       EPS = SLAMCH( 'Precision' )
 | |
| *
 | |
| *     First, project X onto the orthogonal complement of Q's column
 | |
| *     space
 | |
| *
 | |
| *     Christoph Conrads: In debugging mode the norm should be computed
 | |
| *     and an assertion added comparing the norm with one. Alas, Fortran
 | |
| *     never made it into 1989 when assert() was introduced into the C
 | |
| *     programming language.
 | |
|       NORM = REALONE
 | |
| *
 | |
|       IF( M1 .EQ. 0 ) THEN
 | |
|          DO I = 1, N
 | |
|             WORK(I) = ZERO
 | |
|          END DO
 | |
|       ELSE
 | |
|          CALL SGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
 | |
|      $               1 )
 | |
|       END IF
 | |
| *
 | |
|       CALL SGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
 | |
| *
 | |
|       CALL SGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
 | |
|      $            INCX1 )
 | |
|       CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
 | |
|      $            INCX2 )
 | |
| *
 | |
|       SCL = REALZERO
 | |
|       SSQ = REALZERO
 | |
|       CALL SLASSQ( M1, X1, INCX1, SCL, SSQ )
 | |
|       CALL SLASSQ( M2, X2, INCX2, SCL, SSQ )
 | |
|       NORM_NEW = SCL * SQRT(SSQ)
 | |
| *
 | |
| *     If projection is sufficiently large in norm, then stop.
 | |
| *     If projection is zero, then stop.
 | |
| *     Otherwise, project again.
 | |
| *
 | |
|       IF( NORM_NEW .GE. ALPHA * NORM ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( NORM_NEW .LE. N * EPS * NORM ) THEN
 | |
|          DO IX = 1, 1 + (M1-1)*INCX1, INCX1
 | |
|            X1( IX ) = ZERO
 | |
|          END DO
 | |
|          DO IX = 1, 1 + (M2-1)*INCX2, INCX2
 | |
|            X2( IX ) = ZERO
 | |
|          END DO
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       NORM = NORM_NEW
 | |
| *
 | |
|       DO I = 1, N
 | |
|          WORK(I) = ZERO
 | |
|       END DO
 | |
| *
 | |
|       IF( M1 .EQ. 0 ) THEN
 | |
|          DO I = 1, N
 | |
|             WORK(I) = ZERO
 | |
|          END DO
 | |
|       ELSE
 | |
|          CALL SGEMV( 'C', M1, N, ONE, Q1, LDQ1, X1, INCX1, ZERO, WORK,
 | |
|      $               1 )
 | |
|       END IF
 | |
| *
 | |
|       CALL SGEMV( 'C', M2, N, ONE, Q2, LDQ2, X2, INCX2, ONE, WORK, 1 )
 | |
| *
 | |
|       CALL SGEMV( 'N', M1, N, NEGONE, Q1, LDQ1, WORK, 1, ONE, X1,
 | |
|      $            INCX1 )
 | |
|       CALL SGEMV( 'N', M2, N, NEGONE, Q2, LDQ2, WORK, 1, ONE, X2,
 | |
|      $            INCX2 )
 | |
| *
 | |
|       SCL = REALZERO
 | |
|       SSQ = REALZERO
 | |
|       CALL SLASSQ( M1, X1, INCX1, SCL, SSQ )
 | |
|       CALL SLASSQ( M2, X2, INCX2, SCL, SSQ )
 | |
|       NORM_NEW = SCL * SQRT(SSQ)
 | |
| *
 | |
| *     If second projection is sufficiently large in norm, then do
 | |
| *     nothing more. Alternatively, if it shrunk significantly, then
 | |
| *     truncate it to zero.
 | |
| *
 | |
|       IF( NORM_NEW .LT. ALPHA * NORM ) THEN
 | |
|          DO IX = 1, 1 + (M1-1)*INCX1, INCX1
 | |
|             X1(IX) = ZERO
 | |
|          END DO
 | |
|          DO IX = 1, 1 + (M2-1)*INCX2, INCX2
 | |
|             X2(IX) = ZERO
 | |
|          END DO
 | |
|       END IF
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORBDB6
 | |
| *
 | |
|       END
 |