321 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			321 lines
		
	
	
		
			9.5 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SORBDB1
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SORBDB1 + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sorbdb1.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sorbdb1.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sorbdb1.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
 | |
| *                           TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               PHI(*), THETA(*)
 | |
| *       REAL               TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
 | |
| *      $                   X11(LDX11,*), X21(LDX21,*)
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *>\verbatim
 | |
| *>
 | |
| *> SORBDB1 simultaneously bidiagonalizes the blocks of a tall and skinny
 | |
| *> matrix X with orthonormal columns:
 | |
| *>
 | |
| *>                            [ B11 ]
 | |
| *>      [ X11 ]   [ P1 |    ] [  0  ]
 | |
| *>      [-----] = [---------] [-----] Q1**T .
 | |
| *>      [ X21 ]   [    | P2 ] [ B21 ]
 | |
| *>                            [  0  ]
 | |
| *>
 | |
| *> X11 is P-by-Q, and X21 is (M-P)-by-Q. Q must be no larger than P,
 | |
| *> M-P, or M-Q. Routines SORBDB2, SORBDB3, and SORBDB4 handle cases in
 | |
| *> which Q is not the minimum dimension.
 | |
| *>
 | |
| *> The orthogonal matrices P1, P2, and Q1 are P-by-P, (M-P)-by-(M-P),
 | |
| *> and (M-Q)-by-(M-Q), respectively. They are represented implicitly by
 | |
| *> Householder vectors.
 | |
| *>
 | |
| *> B11 and B12 are Q-by-Q bidiagonal matrices represented implicitly by
 | |
| *> angles THETA, PHI.
 | |
| *>
 | |
| *>\endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] M
 | |
| *> \verbatim
 | |
| *>          M is INTEGER
 | |
| *>           The number of rows X11 plus the number of rows in X21.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] P
 | |
| *> \verbatim
 | |
| *>          P is INTEGER
 | |
| *>           The number of rows in X11. 0 <= P <= M.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] Q
 | |
| *> \verbatim
 | |
| *>          Q is INTEGER
 | |
| *>           The number of columns in X11 and X21. 0 <= Q <=
 | |
| *>           MIN(P,M-P,M-Q).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X11
 | |
| *> \verbatim
 | |
| *>          X11 is REAL array, dimension (LDX11,Q)
 | |
| *>           On entry, the top block of the matrix X to be reduced. On
 | |
| *>           exit, the columns of tril(X11) specify reflectors for P1 and
 | |
| *>           the rows of triu(X11,1) specify reflectors for Q1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX11
 | |
| *> \verbatim
 | |
| *>          LDX11 is INTEGER
 | |
| *>           The leading dimension of X11. LDX11 >= P.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X21
 | |
| *> \verbatim
 | |
| *>          X21 is REAL array, dimension (LDX21,Q)
 | |
| *>           On entry, the bottom block of the matrix X to be reduced. On
 | |
| *>           exit, the columns of tril(X21) specify reflectors for P2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX21
 | |
| *> \verbatim
 | |
| *>          LDX21 is INTEGER
 | |
| *>           The leading dimension of X21. LDX21 >= M-P.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] THETA
 | |
| *> \verbatim
 | |
| *>          THETA is REAL array, dimension (Q)
 | |
| *>           The entries of the bidiagonal blocks B11, B21 are defined by
 | |
| *>           THETA and PHI. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] PHI
 | |
| *> \verbatim
 | |
| *>          PHI is REAL array, dimension (Q-1)
 | |
| *>           The entries of the bidiagonal blocks B11, B21 are defined by
 | |
| *>           THETA and PHI. See Further Details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUP1
 | |
| *> \verbatim
 | |
| *>          TAUP1 is REAL array, dimension (P)
 | |
| *>           The scalar factors of the elementary reflectors that define
 | |
| *>           P1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUP2
 | |
| *> \verbatim
 | |
| *>          TAUP2 is REAL array, dimension (M-P)
 | |
| *>           The scalar factors of the elementary reflectors that define
 | |
| *>           P2.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] TAUQ1
 | |
| *> \verbatim
 | |
| *>          TAUQ1 is REAL array, dimension (Q)
 | |
| *>           The scalar factors of the elementary reflectors that define
 | |
| *>           Q1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>           The dimension of the array WORK. LWORK >= M-Q.
 | |
| *>
 | |
| *>           If LWORK = -1, then a workspace query is assumed; the routine
 | |
| *>           only calculates the optimal size of the WORK array, returns
 | |
| *>           this value as the first entry of the WORK array, and no error
 | |
| *>           message related to LWORK is issued by XERBLA.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>           = 0:  successful exit.
 | |
| *>           < 0:  if INFO = -i, the i-th argument had an illegal value.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The upper-bidiagonal blocks B11, B21 are represented implicitly by
 | |
| *>  angles THETA(1), ..., THETA(Q) and PHI(1), ..., PHI(Q-1). Every entry
 | |
| *>  in each bidiagonal band is a product of a sine or cosine of a THETA
 | |
| *>  with a sine or cosine of a PHI. See [1] or SORCSD for details.
 | |
| *>
 | |
| *>  P1, P2, and Q1 are represented as products of elementary reflectors.
 | |
| *>  See SORCSD2BY1 for details on generating P1, P2, and Q1 using SORGQR
 | |
| *>  and SORGLQ.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>  [1] Brian D. Sutton. Computing the complete CS decomposition. Numer.
 | |
| *>      Algorithms, 50(1):33-65, 2009.
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SORBDB1( M, P, Q, X11, LDX11, X21, LDX21, THETA, PHI,
 | |
|      $                    TAUP1, TAUP2, TAUQ1, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, LWORK, M, P, Q, LDX11, LDX21
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               PHI(*), THETA(*)
 | |
|       REAL               TAUP1(*), TAUP2(*), TAUQ1(*), WORK(*),
 | |
|      $                   X11(LDX11,*), X21(LDX21,*)
 | |
| *     ..
 | |
| *
 | |
| *  ====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       REAL               ONE
 | |
|       PARAMETER          ( ONE = 1.0E0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       REAL               C, S
 | |
|       INTEGER            CHILDINFO, I, ILARF, IORBDB5, LLARF, LORBDB5,
 | |
|      $                   LWORKMIN, LWORKOPT
 | |
|       LOGICAL            LQUERY
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLARF, SLARFGP, SORBDB5, SROT, XERBLA
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       REAL               SNRM2
 | |
|       EXTERNAL           SNRM2
 | |
| *     ..
 | |
| *     .. Intrinsic Function ..
 | |
|       INTRINSIC          ATAN2, COS, MAX, SIN, SQRT
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test input arguments
 | |
| *
 | |
|       INFO = 0
 | |
|       LQUERY = LWORK .EQ. -1
 | |
| *
 | |
|       IF( M .LT. 0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( P .LT. Q .OR. M-P .LT. Q ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( Q .LT. 0 .OR. M-Q .LT. Q ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDX11 .LT. MAX( 1, P ) ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDX21 .LT. MAX( 1, M-P ) ) THEN
 | |
|          INFO = -7
 | |
|       END IF
 | |
| *
 | |
| *     Compute workspace
 | |
| *
 | |
|       IF( INFO .EQ. 0 ) THEN
 | |
|          ILARF = 2
 | |
|          LLARF = MAX( P-1, M-P-1, Q-1 )
 | |
|          IORBDB5 = 2
 | |
|          LORBDB5 = Q-2
 | |
|          LWORKOPT = MAX( ILARF+LLARF-1, IORBDB5+LORBDB5-1 )
 | |
|          LWORKMIN = LWORKOPT
 | |
|          WORK(1) = LWORKOPT
 | |
|          IF( LWORK .LT. LWORKMIN .AND. .NOT.LQUERY ) THEN
 | |
|            INFO = -14
 | |
|          END IF
 | |
|       END IF
 | |
|       IF( INFO .NE. 0 ) THEN
 | |
|          CALL XERBLA( 'SORBDB1', -INFO )
 | |
|          RETURN
 | |
|       ELSE IF( LQUERY ) THEN
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Reduce columns 1, ..., Q of X11 and X21
 | |
| *
 | |
|       DO I = 1, Q
 | |
| *
 | |
|          CALL SLARFGP( P-I+1, X11(I,I), X11(I+1,I), 1, TAUP1(I) )
 | |
|          CALL SLARFGP( M-P-I+1, X21(I,I), X21(I+1,I), 1, TAUP2(I) )
 | |
|          THETA(I) = ATAN2( X21(I,I), X11(I,I) )
 | |
|          C = COS( THETA(I) )
 | |
|          S = SIN( THETA(I) )
 | |
|          X11(I,I) = ONE
 | |
|          X21(I,I) = ONE
 | |
|          CALL SLARF( 'L', P-I+1, Q-I, X11(I,I), 1, TAUP1(I), X11(I,I+1),
 | |
|      $               LDX11, WORK(ILARF) )
 | |
|          CALL SLARF( 'L', M-P-I+1, Q-I, X21(I,I), 1, TAUP2(I),
 | |
|      $               X21(I,I+1), LDX21, WORK(ILARF) )
 | |
| *
 | |
|          IF( I .LT. Q ) THEN
 | |
|             CALL SROT( Q-I, X11(I,I+1), LDX11, X21(I,I+1), LDX21, C, S )
 | |
|             CALL SLARFGP( Q-I, X21(I,I+1), X21(I,I+2), LDX21, TAUQ1(I) )
 | |
|             S = X21(I,I+1)
 | |
|             X21(I,I+1) = ONE
 | |
|             CALL SLARF( 'R', P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
 | |
|      $                  X11(I+1,I+1), LDX11, WORK(ILARF) )
 | |
|             CALL SLARF( 'R', M-P-I, Q-I, X21(I,I+1), LDX21, TAUQ1(I),
 | |
|      $                  X21(I+1,I+1), LDX21, WORK(ILARF) )
 | |
|             C = SQRT( SNRM2( P-I, X11(I+1,I+1), 1 )**2
 | |
|      $              + SNRM2( M-P-I, X21(I+1,I+1), 1 )**2 )
 | |
|             PHI(I) = ATAN2( S, C )
 | |
|             CALL SORBDB5( P-I, M-P-I, Q-I-1, X11(I+1,I+1), 1,
 | |
|      $                    X21(I+1,I+1), 1, X11(I+1,I+2), LDX11,
 | |
|      $                    X21(I+1,I+2), LDX21, WORK(IORBDB5), LORBDB5,
 | |
|      $                    CHILDINFO )
 | |
|          END IF
 | |
| *
 | |
|       END DO
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SORBDB1
 | |
| *
 | |
|       END
 | |
| 
 |