1421 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1421 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static real c_b36 = .5f;
 | |
| 
 | |
| /* > \brief \b SLATBS solves a triangular banded system of equations. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLATBS + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slatbs.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slatbs.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slatbs.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLATBS( UPLO, TRANS, DIAG, NORMIN, N, KD, AB, LDAB, X, */
 | |
| /*                          SCALE, CNORM, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          DIAG, NORMIN, TRANS, UPLO */
 | |
| /*       INTEGER            INFO, KD, LDAB, N */
 | |
| /*       REAL               SCALE */
 | |
| /*       REAL               AB( LDAB, * ), CNORM( * ), X( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLATBS solves one of the triangular systems */
 | |
| /* > */
 | |
| /* >    A *x = s*b  or  A**T*x = s*b */
 | |
| /* > */
 | |
| /* > with scaling to prevent overflow, where A is an upper or lower */
 | |
| /* > triangular band matrix.  Here A**T denotes the transpose of A, x and b */
 | |
| /* > are n-element vectors, and s is a scaling factor, usually less than */
 | |
| /* > or equal to 1, chosen so that the components of x will be less than */
 | |
| /* > the overflow threshold.  If the unscaled problem will not cause */
 | |
| /* > overflow, the Level 2 BLAS routine STBSV is called.  If the matrix A */
 | |
| /* > is singular (A(j,j) = 0 for some j), then s is set to 0 and a */
 | |
| /* > non-trivial solution to A*x = 0 is returned. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          Specifies whether the matrix A is upper or lower triangular. */
 | |
| /* >          = 'U':  Upper triangular */
 | |
| /* >          = 'L':  Lower triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >          Specifies the operation applied to A. */
 | |
| /* >          = 'N':  Solve A * x = s*b  (No transpose) */
 | |
| /* >          = 'T':  Solve A**T* x = s*b  (Transpose) */
 | |
| /* >          = 'C':  Solve A**T* x = s*b  (Conjugate transpose = Transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] DIAG */
 | |
| /* > \verbatim */
 | |
| /* >          DIAG is CHARACTER*1 */
 | |
| /* >          Specifies whether or not the matrix A is unit triangular. */
 | |
| /* >          = 'N':  Non-unit triangular */
 | |
| /* >          = 'U':  Unit triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NORMIN */
 | |
| /* > \verbatim */
 | |
| /* >          NORMIN is CHARACTER*1 */
 | |
| /* >          Specifies whether CNORM has been set or not. */
 | |
| /* >          = 'Y':  CNORM contains the column norms on entry */
 | |
| /* >          = 'N':  CNORM is not set on entry.  On exit, the norms will */
 | |
| /* >                  be computed and stored in CNORM. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KD */
 | |
| /* > \verbatim */
 | |
| /* >          KD is INTEGER */
 | |
| /* >          The number of subdiagonals or superdiagonals in the */
 | |
| /* >          triangular matrix A.  KD >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] AB */
 | |
| /* > \verbatim */
 | |
| /* >          AB is REAL array, dimension (LDAB,N) */
 | |
| /* >          The upper or lower triangular band matrix A, stored in the */
 | |
| /* >          first KD+1 rows of the array. The j-th column of A is stored */
 | |
| /* >          in the j-th column of the array AB as follows: */
 | |
| /* >          if UPLO = 'U', AB(kd+1+i-j,j) = A(i,j) for f2cmax(1,j-kd)<=i<=j; */
 | |
| /* >          if UPLO = 'L', AB(1+i-j,j)    = A(i,j) for j<=i<=f2cmin(n,j+kd). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAB */
 | |
| /* > \verbatim */
 | |
| /* >          LDAB is INTEGER */
 | |
| /* >          The leading dimension of the array AB.  LDAB >= KD+1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is REAL array, dimension (N) */
 | |
| /* >          On entry, the right hand side b of the triangular system. */
 | |
| /* >          On exit, X is overwritten by the solution vector x. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SCALE */
 | |
| /* > \verbatim */
 | |
| /* >          SCALE is REAL */
 | |
| /* >          The scaling factor s for the triangular system */
 | |
| /* >             A * x = s*b  or  A**T* x = s*b. */
 | |
| /* >          If SCALE = 0, the matrix A is singular or badly scaled, and */
 | |
| /* >          the vector x is an exact or approximate solution to A*x = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] CNORM */
 | |
| /* > \verbatim */
 | |
| /* >          CNORM is REAL array, dimension (N) */
 | |
| /* > */
 | |
| /* >          If NORMIN = 'Y', CNORM is an input argument and CNORM(j) */
 | |
| /* >          contains the norm of the off-diagonal part of the j-th column */
 | |
| /* >          of A.  If TRANS = 'N', CNORM(j) must be greater than or equal */
 | |
| /* >          to the infinity-norm, and if TRANS = 'T' or 'C', CNORM(j) */
 | |
| /* >          must be greater than or equal to the 1-norm. */
 | |
| /* > */
 | |
| /* >          If NORMIN = 'N', CNORM is an output argument and CNORM(j) */
 | |
| /* >          returns the 1-norm of the offdiagonal part of the j-th column */
 | |
| /* >          of A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -k, the k-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realOTHERauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  A rough bound on x is computed; if that is less than overflow, STBSV */
 | |
| /* >  is called, otherwise, specific code is used which checks for possible */
 | |
| /* >  overflow or divide-by-zero at every operation. */
 | |
| /* > */
 | |
| /* >  A columnwise scheme is used for solving A*x = b.  The basic algorithm */
 | |
| /* >  if A is lower triangular is */
 | |
| /* > */
 | |
| /* >       x[1:n] := b[1:n] */
 | |
| /* >       for j = 1, ..., n */
 | |
| /* >            x(j) := x(j) / A(j,j) */
 | |
| /* >            x[j+1:n] := x[j+1:n] - x(j) * A[j+1:n,j] */
 | |
| /* >       end */
 | |
| /* > */
 | |
| /* >  Define bounds on the components of x after j iterations of the loop: */
 | |
| /* >     M(j) = bound on x[1:j] */
 | |
| /* >     G(j) = bound on x[j+1:n] */
 | |
| /* >  Initially, let M(0) = 0 and G(0) = f2cmax{x(i), i=1,...,n}. */
 | |
| /* > */
 | |
| /* >  Then for iteration j+1 we have */
 | |
| /* >     M(j+1) <= G(j) / | A(j+1,j+1) | */
 | |
| /* >     G(j+1) <= G(j) + M(j+1) * | A[j+2:n,j+1] | */
 | |
| /* >            <= G(j) ( 1 + CNORM(j+1) / | A(j+1,j+1) | ) */
 | |
| /* > */
 | |
| /* >  where CNORM(j+1) is greater than or equal to the infinity-norm of */
 | |
| /* >  column j+1 of A, not counting the diagonal.  Hence */
 | |
| /* > */
 | |
| /* >     G(j) <= G(0) product ( 1 + CNORM(i) / | A(i,i) | ) */
 | |
| /* >                  1<=i<=j */
 | |
| /* >  and */
 | |
| /* > */
 | |
| /* >     |x(j)| <= ( G(0) / |A(j,j)| ) product ( 1 + CNORM(i) / |A(i,i)| ) */
 | |
| /* >                                   1<=i< j */
 | |
| /* > */
 | |
| /* >  Since |x(j)| <= M(j), we use the Level 2 BLAS routine STBSV if the */
 | |
| /* >  reciprocal of the largest M(j), j=1,..,n, is larger than */
 | |
| /* >  f2cmax(underflow, 1/overflow). */
 | |
| /* > */
 | |
| /* >  The bound on x(j) is also used to determine when a step in the */
 | |
| /* >  columnwise method can be performed without fear of overflow.  If */
 | |
| /* >  the computed bound is greater than a large constant, x is scaled to */
 | |
| /* >  prevent overflow, but if the bound overflows, x is set to 0, x(j) to */
 | |
| /* >  1, and scale to 0, and a non-trivial solution to A*x = 0 is found. */
 | |
| /* > */
 | |
| /* >  Similarly, a row-wise scheme is used to solve A**T*x = b.  The basic */
 | |
| /* >  algorithm for A upper triangular is */
 | |
| /* > */
 | |
| /* >       for j = 1, ..., n */
 | |
| /* >            x(j) := ( b(j) - A[1:j-1,j]**T * x[1:j-1] ) / A(j,j) */
 | |
| /* >       end */
 | |
| /* > */
 | |
| /* >  We simultaneously compute two bounds */
 | |
| /* >       G(j) = bound on ( b(i) - A[1:i-1,i]**T * x[1:i-1] ), 1<=i<=j */
 | |
| /* >       M(j) = bound on x(i), 1<=i<=j */
 | |
| /* > */
 | |
| /* >  The initial values are G(0) = 0, M(0) = f2cmax{b(i), i=1,..,n}, and we */
 | |
| /* >  add the constraint G(j) >= G(j-1) and M(j) >= M(j-1) for j >= 1. */
 | |
| /* >  Then the bound on x(j) is */
 | |
| /* > */
 | |
| /* >       M(j) <= M(j-1) * ( 1 + CNORM(j) ) / | A(j,j) | */
 | |
| /* > */
 | |
| /* >            <= M(0) * product ( ( 1 + CNORM(i) ) / |A(i,i)| ) */
 | |
| /* >                      1<=i<=j */
 | |
| /* > */
 | |
| /* >  and we can safely call STBSV if 1/M(n) and 1/G(n) are both greater */
 | |
| /* >  than f2cmax(underflow, 1/overflow). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slatbs_(char *uplo, char *trans, char *diag, char *
 | |
| 	normin, integer *n, integer *kd, real *ab, integer *ldab, real *x, 
 | |
| 	real *scale, real *cnorm, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer ab_dim1, ab_offset, i__1, i__2, i__3, i__4;
 | |
|     real r__1, r__2, r__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer jinc, jlen;
 | |
|     real xbnd;
 | |
|     integer imax;
 | |
|     real tmax, tjjs;
 | |
|     extern real sdot_(integer *, real *, integer *, real *, integer *);
 | |
|     real xmax, grow, sumj;
 | |
|     integer i__, j, maind;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | |
|     real tscal, uscal;
 | |
|     integer jlast;
 | |
|     extern real sasum_(integer *, real *, integer *);
 | |
|     logical upper;
 | |
|     extern /* Subroutine */ void stbsv_(char *, char *, char *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, integer *), saxpy_(integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     real xj;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     real bignum;
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     logical notran;
 | |
|     integer jfirst;
 | |
|     real smlnum;
 | |
|     logical nounit;
 | |
|     real rec, tjj;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     ab_dim1 = *ldab;
 | |
|     ab_offset = 1 + ab_dim1 * 1;
 | |
|     ab -= ab_offset;
 | |
|     --x;
 | |
|     --cnorm;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     upper = lsame_(uplo, "U");
 | |
|     notran = lsame_(trans, "N");
 | |
|     nounit = lsame_(diag, "N");
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     if (! upper && ! lsame_(uplo, "L")) {
 | |
| 	*info = -1;
 | |
|     } else if (! notran && ! lsame_(trans, "T") && ! 
 | |
| 	    lsame_(trans, "C")) {
 | |
| 	*info = -2;
 | |
|     } else if (! nounit && ! lsame_(diag, "U")) {
 | |
| 	*info = -3;
 | |
|     } else if (! lsame_(normin, "Y") && ! lsame_(normin,
 | |
| 	     "N")) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*kd < 0) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldab < *kd + 1) {
 | |
| 	*info = -8;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLATBS", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine machine dependent parameters to control overflow. */
 | |
| 
 | |
|     smlnum = slamch_("Safe minimum") / slamch_("Precision");
 | |
|     bignum = 1.f / smlnum;
 | |
|     *scale = 1.f;
 | |
| 
 | |
|     if (lsame_(normin, "N")) {
 | |
| 
 | |
| /*        Compute the 1-norm of each column, not including the diagonal. */
 | |
| 
 | |
| 	if (upper) {
 | |
| 
 | |
| /*           A is upper triangular. */
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MIN */
 | |
| 		i__2 = *kd, i__3 = j - 1;
 | |
| 		jlen = f2cmin(i__2,i__3);
 | |
| 		cnorm[j] = sasum_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1], &
 | |
| 			c__1);
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           A is lower triangular. */
 | |
| 
 | |
| 	    i__1 = *n;
 | |
| 	    for (j = 1; j <= i__1; ++j) {
 | |
| /* Computing MIN */
 | |
| 		i__2 = *kd, i__3 = *n - j;
 | |
| 		jlen = f2cmin(i__2,i__3);
 | |
| 		if (jlen > 0) {
 | |
| 		    cnorm[j] = sasum_(&jlen, &ab[j * ab_dim1 + 2], &c__1);
 | |
| 		} else {
 | |
| 		    cnorm[j] = 0.f;
 | |
| 		}
 | |
| /* L20: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Scale the column norms by TSCAL if the maximum element in CNORM is */
 | |
| /*     greater than BIGNUM. */
 | |
| 
 | |
|     imax = isamax_(n, &cnorm[1], &c__1);
 | |
|     tmax = cnorm[imax];
 | |
|     if (tmax <= bignum) {
 | |
| 	tscal = 1.f;
 | |
|     } else {
 | |
| 	tscal = 1.f / (smlnum * tmax);
 | |
| 	sscal_(n, &tscal, &cnorm[1], &c__1);
 | |
|     }
 | |
| 
 | |
| /*     Compute a bound on the computed solution vector to see if the */
 | |
| /*     Level 2 BLAS routine STBSV can be used. */
 | |
| 
 | |
|     j = isamax_(n, &x[1], &c__1);
 | |
|     xmax = (r__1 = x[j], abs(r__1));
 | |
|     xbnd = xmax;
 | |
|     if (notran) {
 | |
| 
 | |
| /*        Compute the growth in A * x = b. */
 | |
| 
 | |
| 	if (upper) {
 | |
| 	    jfirst = *n;
 | |
| 	    jlast = 1;
 | |
| 	    jinc = -1;
 | |
| 	    maind = *kd + 1;
 | |
| 	} else {
 | |
| 	    jfirst = 1;
 | |
| 	    jlast = *n;
 | |
| 	    jinc = 1;
 | |
| 	    maind = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (tscal != 1.f) {
 | |
| 	    grow = 0.f;
 | |
| 	    goto L50;
 | |
| 	}
 | |
| 
 | |
| 	if (nounit) {
 | |
| 
 | |
| /*           A is non-unit triangular. */
 | |
| 
 | |
| /*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
 | |
| /*           Initially, G(0) = f2cmax{x(i), i=1,...,n}. */
 | |
| 
 | |
| 	    grow = 1.f / f2cmax(xbnd,smlnum);
 | |
| 	    xbnd = grow;
 | |
| 	    i__1 = jlast;
 | |
| 	    i__2 = jinc;
 | |
| 	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | |
| 
 | |
| /*              Exit the loop if the growth factor is too small. */
 | |
| 
 | |
| 		if (grow <= smlnum) {
 | |
| 		    goto L50;
 | |
| 		}
 | |
| 
 | |
| /*              M(j) = G(j-1) / abs(A(j,j)) */
 | |
| 
 | |
| 		tjj = (r__1 = ab[maind + j * ab_dim1], abs(r__1));
 | |
| /* Computing MIN */
 | |
| 		r__1 = xbnd, r__2 = f2cmin(1.f,tjj) * grow;
 | |
| 		xbnd = f2cmin(r__1,r__2);
 | |
| 		if (tjj + cnorm[j] >= smlnum) {
 | |
| 
 | |
| /*                 G(j) = G(j-1)*( 1 + CNORM(j) / abs(A(j,j)) ) */
 | |
| 
 | |
| 		    grow *= tjj / (tjj + cnorm[j]);
 | |
| 		} else {
 | |
| 
 | |
| /*                 G(j) could overflow, set GROW to 0. */
 | |
| 
 | |
| 		    grow = 0.f;
 | |
| 		}
 | |
| /* L30: */
 | |
| 	    }
 | |
| 	    grow = xbnd;
 | |
| 	} else {
 | |
| 
 | |
| /*           A is unit triangular. */
 | |
| 
 | |
| /*           Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    r__1 = 1.f, r__2 = 1.f / f2cmax(xbnd,smlnum);
 | |
| 	    grow = f2cmin(r__1,r__2);
 | |
| 	    i__2 = jlast;
 | |
| 	    i__1 = jinc;
 | |
| 	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 | |
| 
 | |
| /*              Exit the loop if the growth factor is too small. */
 | |
| 
 | |
| 		if (grow <= smlnum) {
 | |
| 		    goto L50;
 | |
| 		}
 | |
| 
 | |
| /*              G(j) = G(j-1)*( 1 + CNORM(j) ) */
 | |
| 
 | |
| 		grow *= 1.f / (cnorm[j] + 1.f);
 | |
| /* L40: */
 | |
| 	    }
 | |
| 	}
 | |
| L50:
 | |
| 
 | |
| 	;
 | |
|     } else {
 | |
| 
 | |
| /*        Compute the growth in A**T * x = b. */
 | |
| 
 | |
| 	if (upper) {
 | |
| 	    jfirst = 1;
 | |
| 	    jlast = *n;
 | |
| 	    jinc = 1;
 | |
| 	    maind = *kd + 1;
 | |
| 	} else {
 | |
| 	    jfirst = *n;
 | |
| 	    jlast = 1;
 | |
| 	    jinc = -1;
 | |
| 	    maind = 1;
 | |
| 	}
 | |
| 
 | |
| 	if (tscal != 1.f) {
 | |
| 	    grow = 0.f;
 | |
| 	    goto L80;
 | |
| 	}
 | |
| 
 | |
| 	if (nounit) {
 | |
| 
 | |
| /*           A is non-unit triangular. */
 | |
| 
 | |
| /*           Compute GROW = 1/G(j) and XBND = 1/M(j). */
 | |
| /*           Initially, M(0) = f2cmax{x(i), i=1,...,n}. */
 | |
| 
 | |
| 	    grow = 1.f / f2cmax(xbnd,smlnum);
 | |
| 	    xbnd = grow;
 | |
| 	    i__1 = jlast;
 | |
| 	    i__2 = jinc;
 | |
| 	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | |
| 
 | |
| /*              Exit the loop if the growth factor is too small. */
 | |
| 
 | |
| 		if (grow <= smlnum) {
 | |
| 		    goto L80;
 | |
| 		}
 | |
| 
 | |
| /*              G(j) = f2cmax( G(j-1), M(j-1)*( 1 + CNORM(j) ) ) */
 | |
| 
 | |
| 		xj = cnorm[j] + 1.f;
 | |
| /* Computing MIN */
 | |
| 		r__1 = grow, r__2 = xbnd / xj;
 | |
| 		grow = f2cmin(r__1,r__2);
 | |
| 
 | |
| /*              M(j) = M(j-1)*( 1 + CNORM(j) ) / abs(A(j,j)) */
 | |
| 
 | |
| 		tjj = (r__1 = ab[maind + j * ab_dim1], abs(r__1));
 | |
| 		if (xj > tjj) {
 | |
| 		    xbnd *= tjj / xj;
 | |
| 		}
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	    grow = f2cmin(grow,xbnd);
 | |
| 	} else {
 | |
| 
 | |
| /*           A is unit triangular. */
 | |
| 
 | |
| /*           Compute GROW = 1/G(j), where G(0) = f2cmax{x(i), i=1,...,n}. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	    r__1 = 1.f, r__2 = 1.f / f2cmax(xbnd,smlnum);
 | |
| 	    grow = f2cmin(r__1,r__2);
 | |
| 	    i__2 = jlast;
 | |
| 	    i__1 = jinc;
 | |
| 	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 | |
| 
 | |
| /*              Exit the loop if the growth factor is too small. */
 | |
| 
 | |
| 		if (grow <= smlnum) {
 | |
| 		    goto L80;
 | |
| 		}
 | |
| 
 | |
| /*              G(j) = ( 1 + CNORM(j) )*G(j-1) */
 | |
| 
 | |
| 		xj = cnorm[j] + 1.f;
 | |
| 		grow /= xj;
 | |
| /* L70: */
 | |
| 	    }
 | |
| 	}
 | |
| L80:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     if (grow * tscal > smlnum) {
 | |
| 
 | |
| /*        Use the Level 2 BLAS solve if the reciprocal of the bound on */
 | |
| /*        elements of X is not too small. */
 | |
| 
 | |
| 	stbsv_(uplo, trans, diag, n, kd, &ab[ab_offset], ldab, &x[1], &c__1);
 | |
|     } else {
 | |
| 
 | |
| /*        Use a Level 1 BLAS solve, scaling intermediate results. */
 | |
| 
 | |
| 	if (xmax > bignum) {
 | |
| 
 | |
| /*           Scale X so that its components are less than or equal to */
 | |
| /*           BIGNUM in absolute value. */
 | |
| 
 | |
| 	    *scale = bignum / xmax;
 | |
| 	    sscal_(n, scale, &x[1], &c__1);
 | |
| 	    xmax = bignum;
 | |
| 	}
 | |
| 
 | |
| 	if (notran) {
 | |
| 
 | |
| /*           Solve A * x = b */
 | |
| 
 | |
| 	    i__1 = jlast;
 | |
| 	    i__2 = jinc;
 | |
| 	    for (j = jfirst; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | |
| 
 | |
| /*              Compute x(j) = b(j) / A(j,j), scaling x if necessary. */
 | |
| 
 | |
| 		xj = (r__1 = x[j], abs(r__1));
 | |
| 		if (nounit) {
 | |
| 		    tjjs = ab[maind + j * ab_dim1] * tscal;
 | |
| 		} else {
 | |
| 		    tjjs = tscal;
 | |
| 		    if (tscal == 1.f) {
 | |
| 			goto L95;
 | |
| 		    }
 | |
| 		}
 | |
| 		tjj = abs(tjjs);
 | |
| 		if (tjj > smlnum) {
 | |
| 
 | |
| /*                    abs(A(j,j)) > SMLNUM: */
 | |
| 
 | |
| 		    if (tjj < 1.f) {
 | |
| 			if (xj > tjj * bignum) {
 | |
| 
 | |
| /*                          Scale x by 1/b(j). */
 | |
| 
 | |
| 			    rec = 1.f / xj;
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 		    }
 | |
| 		    x[j] /= tjjs;
 | |
| 		    xj = (r__1 = x[j], abs(r__1));
 | |
| 		} else if (tjj > 0.f) {
 | |
| 
 | |
| /*                    0 < abs(A(j,j)) <= SMLNUM: */
 | |
| 
 | |
| 		    if (xj > tjj * bignum) {
 | |
| 
 | |
| /*                       Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM */
 | |
| /*                       to avoid overflow when dividing by A(j,j). */
 | |
| 
 | |
| 			rec = tjj * bignum / xj;
 | |
| 			if (cnorm[j] > 1.f) {
 | |
| 
 | |
| /*                          Scale by 1/CNORM(j) to avoid overflow when */
 | |
| /*                          multiplying x(j) times column j. */
 | |
| 
 | |
| 			    rec /= cnorm[j];
 | |
| 			}
 | |
| 			sscal_(n, &rec, &x[1], &c__1);
 | |
| 			*scale *= rec;
 | |
| 			xmax *= rec;
 | |
| 		    }
 | |
| 		    x[j] /= tjjs;
 | |
| 		    xj = (r__1 = x[j], abs(r__1));
 | |
| 		} else {
 | |
| 
 | |
| /*                    A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
 | |
| /*                    scale = 0, and compute a solution to A*x = 0. */
 | |
| 
 | |
| 		    i__3 = *n;
 | |
| 		    for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 			x[i__] = 0.f;
 | |
| /* L90: */
 | |
| 		    }
 | |
| 		    x[j] = 1.f;
 | |
| 		    xj = 1.f;
 | |
| 		    *scale = 0.f;
 | |
| 		    xmax = 0.f;
 | |
| 		}
 | |
| L95:
 | |
| 
 | |
| /*              Scale x if necessary to avoid overflow when adding a */
 | |
| /*              multiple of column j of A. */
 | |
| 
 | |
| 		if (xj > 1.f) {
 | |
| 		    rec = 1.f / xj;
 | |
| 		    if (cnorm[j] > (bignum - xmax) * rec) {
 | |
| 
 | |
| /*                    Scale x by 1/(2*abs(x(j))). */
 | |
| 
 | |
| 			rec *= .5f;
 | |
| 			sscal_(n, &rec, &x[1], &c__1);
 | |
| 			*scale *= rec;
 | |
| 		    }
 | |
| 		} else if (xj * cnorm[j] > bignum - xmax) {
 | |
| 
 | |
| /*                 Scale x by 1/2. */
 | |
| 
 | |
| 		    sscal_(n, &c_b36, &x[1], &c__1);
 | |
| 		    *scale *= .5f;
 | |
| 		}
 | |
| 
 | |
| 		if (upper) {
 | |
| 		    if (j > 1) {
 | |
| 
 | |
| /*                    Compute the update */
 | |
| /*                       x(f2cmax(1,j-kd):j-1) := x(f2cmax(1,j-kd):j-1) - */
 | |
| /*                                             x(j)* A(f2cmax(1,j-kd):j-1,j) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 			i__3 = *kd, i__4 = j - 1;
 | |
| 			jlen = f2cmin(i__3,i__4);
 | |
| 			r__1 = -x[j] * tscal;
 | |
| 			saxpy_(&jlen, &r__1, &ab[*kd + 1 - jlen + j * ab_dim1]
 | |
| 				, &c__1, &x[j - jlen], &c__1);
 | |
| 			i__3 = j - 1;
 | |
| 			i__ = isamax_(&i__3, &x[1], &c__1);
 | |
| 			xmax = (r__1 = x[i__], abs(r__1));
 | |
| 		    }
 | |
| 		} else if (j < *n) {
 | |
| 
 | |
| /*                 Compute the update */
 | |
| /*                    x(j+1:f2cmin(j+kd,n)) := x(j+1:f2cmin(j+kd,n)) - */
 | |
| /*                                          x(j) * A(j+1:f2cmin(j+kd,n),j) */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *kd, i__4 = *n - j;
 | |
| 		    jlen = f2cmin(i__3,i__4);
 | |
| 		    if (jlen > 0) {
 | |
| 			r__1 = -x[j] * tscal;
 | |
| 			saxpy_(&jlen, &r__1, &ab[j * ab_dim1 + 2], &c__1, &x[
 | |
| 				j + 1], &c__1);
 | |
| 		    }
 | |
| 		    i__3 = *n - j;
 | |
| 		    i__ = j + isamax_(&i__3, &x[j + 1], &c__1);
 | |
| 		    xmax = (r__1 = x[i__], abs(r__1));
 | |
| 		}
 | |
| /* L100: */
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           Solve A**T * x = b */
 | |
| 
 | |
| 	    i__2 = jlast;
 | |
| 	    i__1 = jinc;
 | |
| 	    for (j = jfirst; i__1 < 0 ? j >= i__2 : j <= i__2; j += i__1) {
 | |
| 
 | |
| /*              Compute x(j) = b(j) - sum A(k,j)*x(k). */
 | |
| /*                                    k<>j */
 | |
| 
 | |
| 		xj = (r__1 = x[j], abs(r__1));
 | |
| 		uscal = tscal;
 | |
| 		rec = 1.f / f2cmax(xmax,1.f);
 | |
| 		if (cnorm[j] > (bignum - xj) * rec) {
 | |
| 
 | |
| /*                 If x(j) could overflow, scale x by 1/(2*XMAX). */
 | |
| 
 | |
| 		    rec *= .5f;
 | |
| 		    if (nounit) {
 | |
| 			tjjs = ab[maind + j * ab_dim1] * tscal;
 | |
| 		    } else {
 | |
| 			tjjs = tscal;
 | |
| 		    }
 | |
| 		    tjj = abs(tjjs);
 | |
| 		    if (tjj > 1.f) {
 | |
| 
 | |
| /*                       Divide by A(j,j) when scaling x if A(j,j) > 1. */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 			r__1 = 1.f, r__2 = rec * tjj;
 | |
| 			rec = f2cmin(r__1,r__2);
 | |
| 			uscal /= tjjs;
 | |
| 		    }
 | |
| 		    if (rec < 1.f) {
 | |
| 			sscal_(n, &rec, &x[1], &c__1);
 | |
| 			*scale *= rec;
 | |
| 			xmax *= rec;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		sumj = 0.f;
 | |
| 		if (uscal == 1.f) {
 | |
| 
 | |
| /*                 If the scaling needed for A in the dot product is 1, */
 | |
| /*                 call SDOT to perform the dot product. */
 | |
| 
 | |
| 		    if (upper) {
 | |
| /* Computing MIN */
 | |
| 			i__3 = *kd, i__4 = j - 1;
 | |
| 			jlen = f2cmin(i__3,i__4);
 | |
| 			sumj = sdot_(&jlen, &ab[*kd + 1 - jlen + j * ab_dim1],
 | |
| 				 &c__1, &x[j - jlen], &c__1);
 | |
| 		    } else {
 | |
| /* Computing MIN */
 | |
| 			i__3 = *kd, i__4 = *n - j;
 | |
| 			jlen = f2cmin(i__3,i__4);
 | |
| 			if (jlen > 0) {
 | |
| 			    sumj = sdot_(&jlen, &ab[j * ab_dim1 + 2], &c__1, &
 | |
| 				    x[j + 1], &c__1);
 | |
| 			}
 | |
| 		    }
 | |
| 		} else {
 | |
| 
 | |
| /*                 Otherwise, use in-line code for the dot product. */
 | |
| 
 | |
| 		    if (upper) {
 | |
| /* Computing MIN */
 | |
| 			i__3 = *kd, i__4 = j - 1;
 | |
| 			jlen = f2cmin(i__3,i__4);
 | |
| 			i__3 = jlen;
 | |
| 			for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 			    sumj += ab[*kd + i__ - jlen + j * ab_dim1] * 
 | |
| 				    uscal * x[j - jlen - 1 + i__];
 | |
| /* L110: */
 | |
| 			}
 | |
| 		    } else {
 | |
| /* Computing MIN */
 | |
| 			i__3 = *kd, i__4 = *n - j;
 | |
| 			jlen = f2cmin(i__3,i__4);
 | |
| 			i__3 = jlen;
 | |
| 			for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 			    sumj += ab[i__ + 1 + j * ab_dim1] * uscal * x[j + 
 | |
| 				    i__];
 | |
| /* L120: */
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		if (uscal == tscal) {
 | |
| 
 | |
| /*                 Compute x(j) := ( x(j) - sumj ) / A(j,j) if 1/A(j,j) */
 | |
| /*                 was not used to scale the dotproduct. */
 | |
| 
 | |
| 		    x[j] -= sumj;
 | |
| 		    xj = (r__1 = x[j], abs(r__1));
 | |
| 		    if (nounit) {
 | |
| 
 | |
| /*                    Compute x(j) = x(j) / A(j,j), scaling if necessary. */
 | |
| 
 | |
| 			tjjs = ab[maind + j * ab_dim1] * tscal;
 | |
| 		    } else {
 | |
| 			tjjs = tscal;
 | |
| 			if (tscal == 1.f) {
 | |
| 			    goto L135;
 | |
| 			}
 | |
| 		    }
 | |
| 		    tjj = abs(tjjs);
 | |
| 		    if (tjj > smlnum) {
 | |
| 
 | |
| /*                       abs(A(j,j)) > SMLNUM: */
 | |
| 
 | |
| 			if (tjj < 1.f) {
 | |
| 			    if (xj > tjj * bignum) {
 | |
| 
 | |
| /*                             Scale X by 1/abs(x(j)). */
 | |
| 
 | |
| 				rec = 1.f / xj;
 | |
| 				sscal_(n, &rec, &x[1], &c__1);
 | |
| 				*scale *= rec;
 | |
| 				xmax *= rec;
 | |
| 			    }
 | |
| 			}
 | |
| 			x[j] /= tjjs;
 | |
| 		    } else if (tjj > 0.f) {
 | |
| 
 | |
| /*                       0 < abs(A(j,j)) <= SMLNUM: */
 | |
| 
 | |
| 			if (xj > tjj * bignum) {
 | |
| 
 | |
| /*                          Scale x by (1/abs(x(j)))*abs(A(j,j))*BIGNUM. */
 | |
| 
 | |
| 			    rec = tjj * bignum / xj;
 | |
| 			    sscal_(n, &rec, &x[1], &c__1);
 | |
| 			    *scale *= rec;
 | |
| 			    xmax *= rec;
 | |
| 			}
 | |
| 			x[j] /= tjjs;
 | |
| 		    } else {
 | |
| 
 | |
| /*                       A(j,j) = 0:  Set x(1:n) = 0, x(j) = 1, and */
 | |
| /*                       scale = 0, and compute a solution to A**T*x = 0. */
 | |
| 
 | |
| 			i__3 = *n;
 | |
| 			for (i__ = 1; i__ <= i__3; ++i__) {
 | |
| 			    x[i__] = 0.f;
 | |
| /* L130: */
 | |
| 			}
 | |
| 			x[j] = 1.f;
 | |
| 			*scale = 0.f;
 | |
| 			xmax = 0.f;
 | |
| 		    }
 | |
| L135:
 | |
| 		    ;
 | |
| 		} else {
 | |
| 
 | |
| /*                 Compute x(j) := x(j) / A(j,j) - sumj if the dot */
 | |
| /*                 product has already been divided by 1/A(j,j). */
 | |
| 
 | |
| 		    x[j] = x[j] / tjjs - sumj;
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		r__2 = xmax, r__3 = (r__1 = x[j], abs(r__1));
 | |
| 		xmax = f2cmax(r__2,r__3);
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	}
 | |
| 	*scale /= tscal;
 | |
|     }
 | |
| 
 | |
| /*     Scale the column norms by 1/TSCAL for return. */
 | |
| 
 | |
|     if (tscal != 1.f) {
 | |
| 	r__1 = 1.f / tscal;
 | |
| 	sscal_(n, &r__1, &cnorm[1], &c__1);
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLATBS */
 | |
| 
 | |
| } /* slatbs_ */
 | |
| 
 |