1527 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1527 lines
		
	
	
		
			41 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static real c_b9 = -1.f;
 | |
| static real c_b10 = 1.f;
 | |
| 
 | |
| /* > \brief \b SLASYF_ROOK computes a partial factorization of a real symmetric matrix using the bounded Bunch
 | |
| -Kaufman ("rook") diagonal pivoting method. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLASYF_ROOK + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasyf_
 | |
| rook.f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasyf_
 | |
| rook.f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasyf_
 | |
| rook.f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLASYF_ROOK( UPLO, N, NB, KB, A, LDA, IPIV, W, LDW, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          UPLO */
 | |
| /*       INTEGER            INFO, KB, LDA, LDW, N, NB */
 | |
| /*       INTEGER            IPIV( * ) */
 | |
| /*       REAL               A( LDA, * ), W( LDW, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLASYF_ROOK computes a partial factorization of a real symmetric */
 | |
| /* > matrix A using the bounded Bunch-Kaufman ("rook") diagonal */
 | |
| /* > pivoting method. The partial factorization has the form: */
 | |
| /* > */
 | |
| /* > A  =  ( I  U12 ) ( A11  0  ) (  I       0    )  if UPLO = 'U', or: */
 | |
| /* >       ( 0  U22 ) (  0   D  ) ( U12**T U22**T ) */
 | |
| /* > */
 | |
| /* > A  =  ( L11  0 ) (  D   0  ) ( L11**T L21**T )  if UPLO = 'L' */
 | |
| /* >       ( L21  I ) (  0  A22 ) (  0       I    ) */
 | |
| /* > */
 | |
| /* > where the order of D is at most NB. The actual order is returned in */
 | |
| /* > the argument KB, and is either NB or NB-1, or N if N <= NB. */
 | |
| /* > */
 | |
| /* > SLASYF_ROOK is an auxiliary routine called by SSYTRF_ROOK. It uses */
 | |
| /* > blocked code (calling Level 3 BLAS) to update the submatrix */
 | |
| /* > A11 (if UPLO = 'U') or A22 (if UPLO = 'L'). */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] UPLO */
 | |
| /* > \verbatim */
 | |
| /* >          UPLO is CHARACTER*1 */
 | |
| /* >          Specifies whether the upper or lower triangular part of the */
 | |
| /* >          symmetric matrix A is stored: */
 | |
| /* >          = 'U':  Upper triangular */
 | |
| /* >          = 'L':  Lower triangular */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NB */
 | |
| /* > \verbatim */
 | |
| /* >          NB is INTEGER */
 | |
| /* >          The maximum number of columns of the matrix A that should be */
 | |
| /* >          factored.  NB should be at least 2 to allow for 2-by-2 pivot */
 | |
| /* >          blocks. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] KB */
 | |
| /* > \verbatim */
 | |
| /* >          KB is INTEGER */
 | |
| /* >          The number of columns of A that were actually factored. */
 | |
| /* >          KB is either NB-1 or NB, or N if N <= NB. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,N) */
 | |
| /* >          On entry, the symmetric matrix A.  If UPLO = 'U', the leading */
 | |
| /* >          n-by-n upper triangular part of A contains the upper */
 | |
| /* >          triangular part of the matrix A, and the strictly lower */
 | |
| /* >          triangular part of A is not referenced.  If UPLO = 'L', the */
 | |
| /* >          leading n-by-n lower triangular part of A contains the lower */
 | |
| /* >          triangular part of the matrix A, and the strictly upper */
 | |
| /* >          triangular part of A is not referenced. */
 | |
| /* >          On exit, A contains details of the partial factorization. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >          Details of the interchanges and the block structure of D. */
 | |
| /* > */
 | |
| /* >          If UPLO = 'U': */
 | |
| /* >             Only the last KB elements of IPIV are set. */
 | |
| /* > */
 | |
| /* >             If IPIV(k) > 0, then rows and columns k and IPIV(k) were */
 | |
| /* >             interchanged and D(k,k) is a 1-by-1 diagonal block. */
 | |
| /* > */
 | |
| /* >             If IPIV(k) < 0 and IPIV(k-1) < 0, then rows and */
 | |
| /* >             columns k and -IPIV(k) were interchanged and rows and */
 | |
| /* >             columns k-1 and -IPIV(k-1) were inerchaged, */
 | |
| /* >             D(k-1:k,k-1:k) is a 2-by-2 diagonal block. */
 | |
| /* > */
 | |
| /* >          If UPLO = 'L': */
 | |
| /* >             Only the first KB elements of IPIV are set. */
 | |
| /* > */
 | |
| /* >             If IPIV(k) > 0, then rows and columns k and IPIV(k) */
 | |
| /* >             were interchanged and D(k,k) is a 1-by-1 diagonal block. */
 | |
| /* > */
 | |
| /* >             If IPIV(k) < 0 and IPIV(k+1) < 0, then rows and */
 | |
| /* >             columns k and -IPIV(k) were interchanged and rows and */
 | |
| /* >             columns k+1 and -IPIV(k+1) were inerchaged, */
 | |
| /* >             D(k:k+1,k:k+1) is a 2-by-2 diagonal block. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is REAL array, dimension (LDW,NB) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDW */
 | |
| /* > \verbatim */
 | |
| /* >          LDW is INTEGER */
 | |
| /* >          The leading dimension of the array W.  LDW >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0: successful exit */
 | |
| /* >          > 0: if INFO = k, D(k,k) is exactly zero.  The factorization */
 | |
| /* >               has been completed, but the block diagonal matrix D is */
 | |
| /* >               exactly singular. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date November 2013 */
 | |
| 
 | |
| /* > \ingroup realSYcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  November 2013,     Igor Kozachenko, */
 | |
| /* >                  Computer Science Division, */
 | |
| /* >                  University of California, Berkeley */
 | |
| /* > */
 | |
| /* >  September 2007, Sven Hammarling, Nicholas J. Higham, Craig Lucas, */
 | |
| /* >                  School of Mathematics, */
 | |
| /* >                  University of Manchester */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slasyf_rook_(char *uplo, integer *n, integer *nb, 
 | |
| 	integer *kb, real *a, integer *lda, integer *ipiv, real *w, integer *
 | |
| 	ldw, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, w_dim1, w_offset, i__1, i__2, i__3, i__4, i__5;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical done;
 | |
|     integer imax, jmax, j, k, p;
 | |
|     real t, alpha;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *), 
 | |
| 	    sgemm_(char *, char *, integer *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, real *, integer *, real *, real *, integer *);
 | |
|     real sfmin;
 | |
|     integer itemp;
 | |
|     extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, real *, integer *, real *, real *, integer *);
 | |
|     integer kstep;
 | |
|     real stemp;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *), sswap_(integer *, real *, integer *, real *, integer *
 | |
| 	    );
 | |
|     real r1, d11, d12, d21, d22;
 | |
|     integer jb, ii, jj, kk, kp;
 | |
|     real absakk;
 | |
|     integer kw;
 | |
|     extern real slamch_(char *);
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     real colmax;
 | |
|     integer jp1, jp2;
 | |
|     real rowmax;
 | |
|     integer kkw;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.5.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     November 2013 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --ipiv;
 | |
|     w_dim1 = *ldw;
 | |
|     w_offset = 1 + w_dim1 * 1;
 | |
|     w -= w_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Initialize ALPHA for use in choosing pivot block size. */
 | |
| 
 | |
|     alpha = (sqrt(17.f) + 1.f) / 8.f;
 | |
| 
 | |
| /*     Compute machine safe minimum */
 | |
| 
 | |
|     sfmin = slamch_("S");
 | |
| 
 | |
|     if (lsame_(uplo, "U")) {
 | |
| 
 | |
| /*        Factorize the trailing columns of A using the upper triangle */
 | |
| /*        of A and working backwards, and compute the matrix W = U12*D */
 | |
| /*        for use in updating A11 */
 | |
| 
 | |
| /*        K is the main loop index, decreasing from N in steps of 1 or 2 */
 | |
| 
 | |
| 	k = *n;
 | |
| L10:
 | |
| 
 | |
| /*        KW is the column of W which corresponds to column K of A */
 | |
| 
 | |
| 	kw = *nb + k - *n;
 | |
| 
 | |
| /*        Exit from loop */
 | |
| 
 | |
| 	if (k <= *n - *nb + 1 && *nb < *n || k < 1) {
 | |
| 	    goto L30;
 | |
| 	}
 | |
| 
 | |
| 	kstep = 1;
 | |
| 	p = k;
 | |
| 
 | |
| /*        Copy column K of A to column KW of W and update it */
 | |
| 
 | |
| 	scopy_(&k, &a[k * a_dim1 + 1], &c__1, &w[kw * w_dim1 + 1], &c__1);
 | |
| 	if (k < *n) {
 | |
| 	    i__1 = *n - k;
 | |
| 	    sgemv_("No transpose", &k, &i__1, &c_b9, &a[(k + 1) * a_dim1 + 1],
 | |
| 		     lda, &w[k + (kw + 1) * w_dim1], ldw, &c_b10, &w[kw * 
 | |
| 		    w_dim1 + 1], &c__1);
 | |
| 	}
 | |
| 
 | |
| /*        Determine rows and columns to be interchanged and whether */
 | |
| /*        a 1-by-1 or 2-by-2 pivot block will be used */
 | |
| 
 | |
| 	absakk = (r__1 = w[k + kw * w_dim1], abs(r__1));
 | |
| 
 | |
| /*        IMAX is the row-index of the largest off-diagonal element in */
 | |
| /*        column K, and COLMAX is its absolute value. */
 | |
| /*        Determine both COLMAX and IMAX. */
 | |
| 
 | |
| 	if (k > 1) {
 | |
| 	    i__1 = k - 1;
 | |
| 	    imax = isamax_(&i__1, &w[kw * w_dim1 + 1], &c__1);
 | |
| 	    colmax = (r__1 = w[imax + kw * w_dim1], abs(r__1));
 | |
| 	} else {
 | |
| 	    colmax = 0.f;
 | |
| 	}
 | |
| 
 | |
| 	if (f2cmax(absakk,colmax) == 0.f) {
 | |
| 
 | |
| /*           Column K is zero or underflow: set INFO and continue */
 | |
| 
 | |
| 	    if (*info == 0) {
 | |
| 		*info = k;
 | |
| 	    }
 | |
| 	    kp = k;
 | |
| 	    scopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &c__1);
 | |
| 	} else {
 | |
| 
 | |
| /*           ============================================================ */
 | |
| 
 | |
| /*           Test for interchange */
 | |
| 
 | |
| /*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
 | |
| /*           (used to handle NaN and Inf) */
 | |
| 
 | |
| 	    if (! (absakk < alpha * colmax)) {
 | |
| 
 | |
| /*              no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		kp = k;
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| 		done = FALSE_;
 | |
| 
 | |
| /*              Loop until pivot found */
 | |
| 
 | |
| L12:
 | |
| 
 | |
| /*                 Begin pivot search loop body */
 | |
| 
 | |
| 
 | |
| /*                 Copy column IMAX to column KW-1 of W and update it */
 | |
| 
 | |
| 		scopy_(&imax, &a[imax * a_dim1 + 1], &c__1, &w[(kw - 1) * 
 | |
| 			w_dim1 + 1], &c__1);
 | |
| 		i__1 = k - imax;
 | |
| 		scopy_(&i__1, &a[imax + (imax + 1) * a_dim1], lda, &w[imax + 
 | |
| 			1 + (kw - 1) * w_dim1], &c__1);
 | |
| 
 | |
| 		if (k < *n) {
 | |
| 		    i__1 = *n - k;
 | |
| 		    sgemv_("No transpose", &k, &i__1, &c_b9, &a[(k + 1) * 
 | |
| 			    a_dim1 + 1], lda, &w[imax + (kw + 1) * w_dim1], 
 | |
| 			    ldw, &c_b10, &w[(kw - 1) * w_dim1 + 1], &c__1);
 | |
| 		}
 | |
| 
 | |
| /*                 JMAX is the column-index of the largest off-diagonal */
 | |
| /*                 element in row IMAX, and ROWMAX is its absolute value. */
 | |
| /*                 Determine both ROWMAX and JMAX. */
 | |
| 
 | |
| 		if (imax != k) {
 | |
| 		    i__1 = k - imax;
 | |
| 		    jmax = imax + isamax_(&i__1, &w[imax + 1 + (kw - 1) * 
 | |
| 			    w_dim1], &c__1);
 | |
| 		    rowmax = (r__1 = w[jmax + (kw - 1) * w_dim1], abs(r__1));
 | |
| 		} else {
 | |
| 		    rowmax = 0.f;
 | |
| 		}
 | |
| 
 | |
| 		if (imax > 1) {
 | |
| 		    i__1 = imax - 1;
 | |
| 		    itemp = isamax_(&i__1, &w[(kw - 1) * w_dim1 + 1], &c__1);
 | |
| 		    stemp = (r__1 = w[itemp + (kw - 1) * w_dim1], abs(r__1));
 | |
| 		    if (stemp > rowmax) {
 | |
| 			rowmax = stemp;
 | |
| 			jmax = itemp;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*                 Equivalent to testing for */
 | |
| /*                 ABS( W( IMAX, KW-1 ) ).GE.ALPHA*ROWMAX */
 | |
| /*                 (used to handle NaN and Inf) */
 | |
| 
 | |
| 		if (! ((r__1 = w[imax + (kw - 1) * w_dim1], abs(r__1)) < 
 | |
| 			alpha * rowmax)) {
 | |
| 
 | |
| /*                    interchange rows and columns K and IMAX, */
 | |
| /*                    use 1-by-1 pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 
 | |
| /*                    copy column KW-1 of W to column KW of W */
 | |
| 
 | |
| 		    scopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * 
 | |
| 			    w_dim1 + 1], &c__1);
 | |
| 
 | |
| 		    done = TRUE_;
 | |
| 
 | |
| /*                 Equivalent to testing for ROWMAX.EQ.COLMAX, */
 | |
| /*                 (used to handle NaN and Inf) */
 | |
| 
 | |
| 		} else if (p == jmax || rowmax <= colmax) {
 | |
| 
 | |
| /*                    interchange rows and columns K-1 and IMAX, */
 | |
| /*                    use 2-by-2 pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 		    kstep = 2;
 | |
| 		    done = TRUE_;
 | |
| 		} else {
 | |
| 
 | |
| /*                    Pivot not found: set params and repeat */
 | |
| 
 | |
| 		    p = imax;
 | |
| 		    colmax = rowmax;
 | |
| 		    imax = jmax;
 | |
| 
 | |
| /*                    Copy updated JMAXth (next IMAXth) column to Kth of W */
 | |
| 
 | |
| 		    scopy_(&k, &w[(kw - 1) * w_dim1 + 1], &c__1, &w[kw * 
 | |
| 			    w_dim1 + 1], &c__1);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| /*                 End pivot search loop body */
 | |
| 
 | |
| 		if (! done) {
 | |
| 		    goto L12;
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| /*           ============================================================ */
 | |
| 
 | |
| 	    kk = k - kstep + 1;
 | |
| 
 | |
| /*           KKW is the column of W which corresponds to column KK of A */
 | |
| 
 | |
| 	    kkw = *nb + kk - *n;
 | |
| 
 | |
| 	    if (kstep == 2 && p != k) {
 | |
| 
 | |
| /*              Copy non-updated column K to column P */
 | |
| 
 | |
| 		i__1 = k - p;
 | |
| 		scopy_(&i__1, &a[p + 1 + k * a_dim1], &c__1, &a[p + (p + 1) * 
 | |
| 			a_dim1], lda);
 | |
| 		scopy_(&p, &a[k * a_dim1 + 1], &c__1, &a[p * a_dim1 + 1], &
 | |
| 			c__1);
 | |
| 
 | |
| /*              Interchange rows K and P in last N-K+1 columns of A */
 | |
| /*              and last N-K+2 columns of W */
 | |
| 
 | |
| 		i__1 = *n - k + 1;
 | |
| 		sswap_(&i__1, &a[k + k * a_dim1], lda, &a[p + k * a_dim1], 
 | |
| 			lda);
 | |
| 		i__1 = *n - kk + 1;
 | |
| 		sswap_(&i__1, &w[k + kkw * w_dim1], ldw, &w[p + kkw * w_dim1],
 | |
| 			 ldw);
 | |
| 	    }
 | |
| 
 | |
| /*           Updated column KP is already stored in column KKW of W */
 | |
| 
 | |
| 	    if (kp != kk) {
 | |
| 
 | |
| /*              Copy non-updated column KK to column KP */
 | |
| 
 | |
| 		a[kp + k * a_dim1] = a[kk + k * a_dim1];
 | |
| 		i__1 = k - 1 - kp;
 | |
| 		scopy_(&i__1, &a[kp + 1 + kk * a_dim1], &c__1, &a[kp + (kp + 
 | |
| 			1) * a_dim1], lda);
 | |
| 		scopy_(&kp, &a[kk * a_dim1 + 1], &c__1, &a[kp * a_dim1 + 1], &
 | |
| 			c__1);
 | |
| 
 | |
| /*              Interchange rows KK and KP in last N-KK+1 columns */
 | |
| /*              of A and W */
 | |
| 
 | |
| 		i__1 = *n - kk + 1;
 | |
| 		sswap_(&i__1, &a[kk + kk * a_dim1], lda, &a[kp + kk * a_dim1],
 | |
| 			 lda);
 | |
| 		i__1 = *n - kk + 1;
 | |
| 		sswap_(&i__1, &w[kk + kkw * w_dim1], ldw, &w[kp + kkw * 
 | |
| 			w_dim1], ldw);
 | |
| 	    }
 | |
| 
 | |
| 	    if (kstep == 1) {
 | |
| 
 | |
| /*              1-by-1 pivot block D(k): column KW of W now holds */
 | |
| 
 | |
| /*              W(k) = U(k)*D(k) */
 | |
| 
 | |
| /*              where U(k) is the k-th column of U */
 | |
| 
 | |
| /*              Store U(k) in column k of A */
 | |
| 
 | |
| 		scopy_(&k, &w[kw * w_dim1 + 1], &c__1, &a[k * a_dim1 + 1], &
 | |
| 			c__1);
 | |
| 		if (k > 1) {
 | |
| 		    if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
 | |
| 			r1 = 1.f / a[k + k * a_dim1];
 | |
| 			i__1 = k - 1;
 | |
| 			sscal_(&i__1, &r1, &a[k * a_dim1 + 1], &c__1);
 | |
| 		    } else if (a[k + k * a_dim1] != 0.f) {
 | |
| 			i__1 = k - 1;
 | |
| 			for (ii = 1; ii <= i__1; ++ii) {
 | |
| 			    a[ii + k * a_dim1] /= a[k + k * a_dim1];
 | |
| /* L14: */
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*              2-by-2 pivot block D(k): columns KW and KW-1 of W now */
 | |
| /*              hold */
 | |
| 
 | |
| /*              ( W(k-1) W(k) ) = ( U(k-1) U(k) )*D(k) */
 | |
| 
 | |
| /*              where U(k) and U(k-1) are the k-th and (k-1)-th columns */
 | |
| /*              of U */
 | |
| 
 | |
| 		if (k > 2) {
 | |
| 
 | |
| /*                 Store U(k) and U(k-1) in columns k and k-1 of A */
 | |
| 
 | |
| 		    d12 = w[k - 1 + kw * w_dim1];
 | |
| 		    d11 = w[k + kw * w_dim1] / d12;
 | |
| 		    d22 = w[k - 1 + (kw - 1) * w_dim1] / d12;
 | |
| 		    t = 1.f / (d11 * d22 - 1.f);
 | |
| 		    i__1 = k - 2;
 | |
| 		    for (j = 1; j <= i__1; ++j) {
 | |
| 			a[j + (k - 1) * a_dim1] = t * ((d11 * w[j + (kw - 1) *
 | |
| 				 w_dim1] - w[j + kw * w_dim1]) / d12);
 | |
| 			a[j + k * a_dim1] = t * ((d22 * w[j + kw * w_dim1] - 
 | |
| 				w[j + (kw - 1) * w_dim1]) / d12);
 | |
| /* L20: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Copy D(k) to A */
 | |
| 
 | |
| 		a[k - 1 + (k - 1) * a_dim1] = w[k - 1 + (kw - 1) * w_dim1];
 | |
| 		a[k - 1 + k * a_dim1] = w[k - 1 + kw * w_dim1];
 | |
| 		a[k + k * a_dim1] = w[k + kw * w_dim1];
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Store details of the interchanges in IPIV */
 | |
| 
 | |
| 	if (kstep == 1) {
 | |
| 	    ipiv[k] = kp;
 | |
| 	} else {
 | |
| 	    ipiv[k] = -p;
 | |
| 	    ipiv[k - 1] = -kp;
 | |
| 	}
 | |
| 
 | |
| /*        Decrease K and return to the start of the main loop */
 | |
| 
 | |
| 	k -= kstep;
 | |
| 	goto L10;
 | |
| 
 | |
| L30:
 | |
| 
 | |
| /*        Update the upper triangle of A11 (= A(1:k,1:k)) as */
 | |
| 
 | |
| /*        A11 := A11 - U12*D*U12**T = A11 - U12*W**T */
 | |
| 
 | |
| /*        computing blocks of NB columns at a time */
 | |
| 
 | |
| 	i__1 = -(*nb);
 | |
| 	for (j = (k - 1) / *nb * *nb + 1; i__1 < 0 ? j >= 1 : j <= 1; j += 
 | |
| 		i__1) {
 | |
| /* Computing MIN */
 | |
| 	    i__2 = *nb, i__3 = k - j + 1;
 | |
| 	    jb = f2cmin(i__2,i__3);
 | |
| 
 | |
| /*           Update the upper triangle of the diagonal block */
 | |
| 
 | |
| 	    i__2 = j + jb - 1;
 | |
| 	    for (jj = j; jj <= i__2; ++jj) {
 | |
| 		i__3 = jj - j + 1;
 | |
| 		i__4 = *n - k;
 | |
| 		sgemv_("No transpose", &i__3, &i__4, &c_b9, &a[j + (k + 1) * 
 | |
| 			a_dim1], lda, &w[jj + (kw + 1) * w_dim1], ldw, &c_b10,
 | |
| 			 &a[j + jj * a_dim1], &c__1);
 | |
| /* L40: */
 | |
| 	    }
 | |
| 
 | |
| /*           Update the rectangular superdiagonal block */
 | |
| 
 | |
| 	    if (j >= 2) {
 | |
| 		i__2 = j - 1;
 | |
| 		i__3 = *n - k;
 | |
| 		sgemm_("No transpose", "Transpose", &i__2, &jb, &i__3, &c_b9, 
 | |
| 			&a[(k + 1) * a_dim1 + 1], lda, &w[j + (kw + 1) * 
 | |
| 			w_dim1], ldw, &c_b10, &a[j * a_dim1 + 1], lda);
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
| 
 | |
| /*        Put U12 in standard form by partially undoing the interchanges */
 | |
| /*        in columns k+1:n */
 | |
| 
 | |
| 	j = k + 1;
 | |
| L60:
 | |
| 
 | |
| 	kstep = 1;
 | |
| 	jp1 = 1;
 | |
| 	jj = j;
 | |
| 	jp2 = ipiv[j];
 | |
| 	if (jp2 < 0) {
 | |
| 	    jp2 = -jp2;
 | |
| 	    ++j;
 | |
| 	    jp1 = -ipiv[j];
 | |
| 	    kstep = 2;
 | |
| 	}
 | |
| 
 | |
| 	++j;
 | |
| 	if (jp2 != jj && j <= *n) {
 | |
| 	    i__1 = *n - j + 1;
 | |
| 	    sswap_(&i__1, &a[jp2 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
 | |
| 		    ;
 | |
| 	}
 | |
| 	jj = j - 1;
 | |
| 	if (jp1 != jj && kstep == 2) {
 | |
| 	    i__1 = *n - j + 1;
 | |
| 	    sswap_(&i__1, &a[jp1 + j * a_dim1], lda, &a[jj + j * a_dim1], lda)
 | |
| 		    ;
 | |
| 	}
 | |
| 	if (j <= *n) {
 | |
| 	    goto L60;
 | |
| 	}
 | |
| 
 | |
| /*        Set KB to the number of columns factorized */
 | |
| 
 | |
| 	*kb = *n - k;
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        Factorize the leading columns of A using the lower triangle */
 | |
| /*        of A and working forwards, and compute the matrix W = L21*D */
 | |
| /*        for use in updating A22 */
 | |
| 
 | |
| /*        K is the main loop index, increasing from 1 in steps of 1 or 2 */
 | |
| 
 | |
| 	k = 1;
 | |
| L70:
 | |
| 
 | |
| /*        Exit from loop */
 | |
| 
 | |
| 	if (k >= *nb && *nb < *n || k > *n) {
 | |
| 	    goto L90;
 | |
| 	}
 | |
| 
 | |
| 	kstep = 1;
 | |
| 	p = k;
 | |
| 
 | |
| /*        Copy column K of A to column K of W and update it */
 | |
| 
 | |
| 	i__1 = *n - k + 1;
 | |
| 	scopy_(&i__1, &a[k + k * a_dim1], &c__1, &w[k + k * w_dim1], &c__1);
 | |
| 	if (k > 1) {
 | |
| 	    i__1 = *n - k + 1;
 | |
| 	    i__2 = k - 1;
 | |
| 	    sgemv_("No transpose", &i__1, &i__2, &c_b9, &a[k + a_dim1], lda, &
 | |
| 		    w[k + w_dim1], ldw, &c_b10, &w[k + k * w_dim1], &c__1);
 | |
| 	}
 | |
| 
 | |
| /*        Determine rows and columns to be interchanged and whether */
 | |
| /*        a 1-by-1 or 2-by-2 pivot block will be used */
 | |
| 
 | |
| 	absakk = (r__1 = w[k + k * w_dim1], abs(r__1));
 | |
| 
 | |
| /*        IMAX is the row-index of the largest off-diagonal element in */
 | |
| /*        column K, and COLMAX is its absolute value. */
 | |
| /*        Determine both COLMAX and IMAX. */
 | |
| 
 | |
| 	if (k < *n) {
 | |
| 	    i__1 = *n - k;
 | |
| 	    imax = k + isamax_(&i__1, &w[k + 1 + k * w_dim1], &c__1);
 | |
| 	    colmax = (r__1 = w[imax + k * w_dim1], abs(r__1));
 | |
| 	} else {
 | |
| 	    colmax = 0.f;
 | |
| 	}
 | |
| 
 | |
| 	if (f2cmax(absakk,colmax) == 0.f) {
 | |
| 
 | |
| /*           Column K is zero or underflow: set INFO and continue */
 | |
| 
 | |
| 	    if (*info == 0) {
 | |
| 		*info = k;
 | |
| 	    }
 | |
| 	    kp = k;
 | |
| 	    i__1 = *n - k + 1;
 | |
| 	    scopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
 | |
| 		    c__1);
 | |
| 	} else {
 | |
| 
 | |
| /*           ============================================================ */
 | |
| 
 | |
| /*           Test for interchange */
 | |
| 
 | |
| /*           Equivalent to testing for ABSAKK.GE.ALPHA*COLMAX */
 | |
| /*           (used to handle NaN and Inf) */
 | |
| 
 | |
| 	    if (! (absakk < alpha * colmax)) {
 | |
| 
 | |
| /*              no interchange, use 1-by-1 pivot block */
 | |
| 
 | |
| 		kp = k;
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| 		done = FALSE_;
 | |
| 
 | |
| /*              Loop until pivot found */
 | |
| 
 | |
| L72:
 | |
| 
 | |
| /*                 Begin pivot search loop body */
 | |
| 
 | |
| 
 | |
| /*                 Copy column IMAX to column K+1 of W and update it */
 | |
| 
 | |
| 		i__1 = imax - k;
 | |
| 		scopy_(&i__1, &a[imax + k * a_dim1], lda, &w[k + (k + 1) * 
 | |
| 			w_dim1], &c__1);
 | |
| 		i__1 = *n - imax + 1;
 | |
| 		scopy_(&i__1, &a[imax + imax * a_dim1], &c__1, &w[imax + (k + 
 | |
| 			1) * w_dim1], &c__1);
 | |
| 		if (k > 1) {
 | |
| 		    i__1 = *n - k + 1;
 | |
| 		    i__2 = k - 1;
 | |
| 		    sgemv_("No transpose", &i__1, &i__2, &c_b9, &a[k + a_dim1]
 | |
| 			    , lda, &w[imax + w_dim1], ldw, &c_b10, &w[k + (k 
 | |
| 			    + 1) * w_dim1], &c__1);
 | |
| 		}
 | |
| 
 | |
| /*                 JMAX is the column-index of the largest off-diagonal */
 | |
| /*                 element in row IMAX, and ROWMAX is its absolute value. */
 | |
| /*                 Determine both ROWMAX and JMAX. */
 | |
| 
 | |
| 		if (imax != k) {
 | |
| 		    i__1 = imax - k;
 | |
| 		    jmax = k - 1 + isamax_(&i__1, &w[k + (k + 1) * w_dim1], &
 | |
| 			    c__1);
 | |
| 		    rowmax = (r__1 = w[jmax + (k + 1) * w_dim1], abs(r__1));
 | |
| 		} else {
 | |
| 		    rowmax = 0.f;
 | |
| 		}
 | |
| 
 | |
| 		if (imax < *n) {
 | |
| 		    i__1 = *n - imax;
 | |
| 		    itemp = imax + isamax_(&i__1, &w[imax + 1 + (k + 1) * 
 | |
| 			    w_dim1], &c__1);
 | |
| 		    stemp = (r__1 = w[itemp + (k + 1) * w_dim1], abs(r__1));
 | |
| 		    if (stemp > rowmax) {
 | |
| 			rowmax = stemp;
 | |
| 			jmax = itemp;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*                 Equivalent to testing for */
 | |
| /*                 ABS( W( IMAX, K+1 ) ).GE.ALPHA*ROWMAX */
 | |
| /*                 (used to handle NaN and Inf) */
 | |
| 
 | |
| 		if (! ((r__1 = w[imax + (k + 1) * w_dim1], abs(r__1)) < alpha 
 | |
| 			* rowmax)) {
 | |
| 
 | |
| /*                    interchange rows and columns K and IMAX, */
 | |
| /*                    use 1-by-1 pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 
 | |
| /*                    copy column K+1 of W to column K of W */
 | |
| 
 | |
| 		    i__1 = *n - k + 1;
 | |
| 		    scopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k * 
 | |
| 			    w_dim1], &c__1);
 | |
| 
 | |
| 		    done = TRUE_;
 | |
| 
 | |
| /*                 Equivalent to testing for ROWMAX.EQ.COLMAX, */
 | |
| /*                 (used to handle NaN and Inf) */
 | |
| 
 | |
| 		} else if (p == jmax || rowmax <= colmax) {
 | |
| 
 | |
| /*                    interchange rows and columns K+1 and IMAX, */
 | |
| /*                    use 2-by-2 pivot block */
 | |
| 
 | |
| 		    kp = imax;
 | |
| 		    kstep = 2;
 | |
| 		    done = TRUE_;
 | |
| 		} else {
 | |
| 
 | |
| /*                    Pivot not found: set params and repeat */
 | |
| 
 | |
| 		    p = imax;
 | |
| 		    colmax = rowmax;
 | |
| 		    imax = jmax;
 | |
| 
 | |
| /*                    Copy updated JMAXth (next IMAXth) column to Kth of W */
 | |
| 
 | |
| 		    i__1 = *n - k + 1;
 | |
| 		    scopy_(&i__1, &w[k + (k + 1) * w_dim1], &c__1, &w[k + k * 
 | |
| 			    w_dim1], &c__1);
 | |
| 
 | |
| 		}
 | |
| 
 | |
| /*                 End pivot search loop body */
 | |
| 
 | |
| 		if (! done) {
 | |
| 		    goto L72;
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| /*           ============================================================ */
 | |
| 
 | |
| 	    kk = k + kstep - 1;
 | |
| 
 | |
| 	    if (kstep == 2 && p != k) {
 | |
| 
 | |
| /*              Copy non-updated column K to column P */
 | |
| 
 | |
| 		i__1 = p - k;
 | |
| 		scopy_(&i__1, &a[k + k * a_dim1], &c__1, &a[p + k * a_dim1], 
 | |
| 			lda);
 | |
| 		i__1 = *n - p + 1;
 | |
| 		scopy_(&i__1, &a[p + k * a_dim1], &c__1, &a[p + p * a_dim1], &
 | |
| 			c__1);
 | |
| 
 | |
| /*              Interchange rows K and P in first K columns of A */
 | |
| /*              and first K+1 columns of W */
 | |
| 
 | |
| 		sswap_(&k, &a[k + a_dim1], lda, &a[p + a_dim1], lda);
 | |
| 		sswap_(&kk, &w[k + w_dim1], ldw, &w[p + w_dim1], ldw);
 | |
| 	    }
 | |
| 
 | |
| /*           Updated column KP is already stored in column KK of W */
 | |
| 
 | |
| 	    if (kp != kk) {
 | |
| 
 | |
| /*              Copy non-updated column KK to column KP */
 | |
| 
 | |
| 		a[kp + k * a_dim1] = a[kk + k * a_dim1];
 | |
| 		i__1 = kp - k - 1;
 | |
| 		scopy_(&i__1, &a[k + 1 + kk * a_dim1], &c__1, &a[kp + (k + 1) 
 | |
| 			* a_dim1], lda);
 | |
| 		i__1 = *n - kp + 1;
 | |
| 		scopy_(&i__1, &a[kp + kk * a_dim1], &c__1, &a[kp + kp * 
 | |
| 			a_dim1], &c__1);
 | |
| 
 | |
| /*              Interchange rows KK and KP in first KK columns of A and W */
 | |
| 
 | |
| 		sswap_(&kk, &a[kk + a_dim1], lda, &a[kp + a_dim1], lda);
 | |
| 		sswap_(&kk, &w[kk + w_dim1], ldw, &w[kp + w_dim1], ldw);
 | |
| 	    }
 | |
| 
 | |
| 	    if (kstep == 1) {
 | |
| 
 | |
| /*              1-by-1 pivot block D(k): column k of W now holds */
 | |
| 
 | |
| /*              W(k) = L(k)*D(k) */
 | |
| 
 | |
| /*              where L(k) is the k-th column of L */
 | |
| 
 | |
| /*              Store L(k) in column k of A */
 | |
| 
 | |
| 		i__1 = *n - k + 1;
 | |
| 		scopy_(&i__1, &w[k + k * w_dim1], &c__1, &a[k + k * a_dim1], &
 | |
| 			c__1);
 | |
| 		if (k < *n) {
 | |
| 		    if ((r__1 = a[k + k * a_dim1], abs(r__1)) >= sfmin) {
 | |
| 			r1 = 1.f / a[k + k * a_dim1];
 | |
| 			i__1 = *n - k;
 | |
| 			sscal_(&i__1, &r1, &a[k + 1 + k * a_dim1], &c__1);
 | |
| 		    } else if (a[k + k * a_dim1] != 0.f) {
 | |
| 			i__1 = *n;
 | |
| 			for (ii = k + 1; ii <= i__1; ++ii) {
 | |
| 			    a[ii + k * a_dim1] /= a[k + k * a_dim1];
 | |
| /* L74: */
 | |
| 			}
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*              2-by-2 pivot block D(k): columns k and k+1 of W now hold */
 | |
| 
 | |
| /*              ( W(k) W(k+1) ) = ( L(k) L(k+1) )*D(k) */
 | |
| 
 | |
| /*              where L(k) and L(k+1) are the k-th and (k+1)-th columns */
 | |
| /*              of L */
 | |
| 
 | |
| 		if (k < *n - 1) {
 | |
| 
 | |
| /*                 Store L(k) and L(k+1) in columns k and k+1 of A */
 | |
| 
 | |
| 		    d21 = w[k + 1 + k * w_dim1];
 | |
| 		    d11 = w[k + 1 + (k + 1) * w_dim1] / d21;
 | |
| 		    d22 = w[k + k * w_dim1] / d21;
 | |
| 		    t = 1.f / (d11 * d22 - 1.f);
 | |
| 		    i__1 = *n;
 | |
| 		    for (j = k + 2; j <= i__1; ++j) {
 | |
| 			a[j + k * a_dim1] = t * ((d11 * w[j + k * w_dim1] - w[
 | |
| 				j + (k + 1) * w_dim1]) / d21);
 | |
| 			a[j + (k + 1) * a_dim1] = t * ((d22 * w[j + (k + 1) * 
 | |
| 				w_dim1] - w[j + k * w_dim1]) / d21);
 | |
| /* L80: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*              Copy D(k) to A */
 | |
| 
 | |
| 		a[k + k * a_dim1] = w[k + k * w_dim1];
 | |
| 		a[k + 1 + k * a_dim1] = w[k + 1 + k * w_dim1];
 | |
| 		a[k + 1 + (k + 1) * a_dim1] = w[k + 1 + (k + 1) * w_dim1];
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        Store details of the interchanges in IPIV */
 | |
| 
 | |
| 	if (kstep == 1) {
 | |
| 	    ipiv[k] = kp;
 | |
| 	} else {
 | |
| 	    ipiv[k] = -p;
 | |
| 	    ipiv[k + 1] = -kp;
 | |
| 	}
 | |
| 
 | |
| /*        Increase K and return to the start of the main loop */
 | |
| 
 | |
| 	k += kstep;
 | |
| 	goto L70;
 | |
| 
 | |
| L90:
 | |
| 
 | |
| /*        Update the lower triangle of A22 (= A(k:n,k:n)) as */
 | |
| 
 | |
| /*        A22 := A22 - L21*D*L21**T = A22 - L21*W**T */
 | |
| 
 | |
| /*        computing blocks of NB columns at a time */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	i__2 = *nb;
 | |
| 	for (j = k; i__2 < 0 ? j >= i__1 : j <= i__1; j += i__2) {
 | |
| /* Computing MIN */
 | |
| 	    i__3 = *nb, i__4 = *n - j + 1;
 | |
| 	    jb = f2cmin(i__3,i__4);
 | |
| 
 | |
| /*           Update the lower triangle of the diagonal block */
 | |
| 
 | |
| 	    i__3 = j + jb - 1;
 | |
| 	    for (jj = j; jj <= i__3; ++jj) {
 | |
| 		i__4 = j + jb - jj;
 | |
| 		i__5 = k - 1;
 | |
| 		sgemv_("No transpose", &i__4, &i__5, &c_b9, &a[jj + a_dim1], 
 | |
| 			lda, &w[jj + w_dim1], ldw, &c_b10, &a[jj + jj * 
 | |
| 			a_dim1], &c__1);
 | |
| /* L100: */
 | |
| 	    }
 | |
| 
 | |
| /*           Update the rectangular subdiagonal block */
 | |
| 
 | |
| 	    if (j + jb <= *n) {
 | |
| 		i__3 = *n - j - jb + 1;
 | |
| 		i__4 = k - 1;
 | |
| 		sgemm_("No transpose", "Transpose", &i__3, &jb, &i__4, &c_b9, 
 | |
| 			&a[j + jb + a_dim1], lda, &w[j + w_dim1], ldw, &c_b10,
 | |
| 			 &a[j + jb + j * a_dim1], lda);
 | |
| 	    }
 | |
| /* L110: */
 | |
| 	}
 | |
| 
 | |
| /*        Put L21 in standard form by partially undoing the interchanges */
 | |
| /*        in columns 1:k-1 */
 | |
| 
 | |
| 	j = k - 1;
 | |
| L120:
 | |
| 
 | |
| 	kstep = 1;
 | |
| 	jp1 = 1;
 | |
| 	jj = j;
 | |
| 	jp2 = ipiv[j];
 | |
| 	if (jp2 < 0) {
 | |
| 	    jp2 = -jp2;
 | |
| 	    --j;
 | |
| 	    jp1 = -ipiv[j];
 | |
| 	    kstep = 2;
 | |
| 	}
 | |
| 
 | |
| 	--j;
 | |
| 	if (jp2 != jj && j >= 1) {
 | |
| 	    sswap_(&j, &a[jp2 + a_dim1], lda, &a[jj + a_dim1], lda);
 | |
| 	}
 | |
| 	jj = j + 1;
 | |
| 	if (jp1 != jj && kstep == 2) {
 | |
| 	    sswap_(&j, &a[jp1 + a_dim1], lda, &a[jj + a_dim1], lda);
 | |
| 	}
 | |
| 	if (j >= 1) {
 | |
| 	    goto L120;
 | |
| 	}
 | |
| 
 | |
| /*        Set KB to the number of columns factorized */
 | |
| 
 | |
| 	*kb = k - 1;
 | |
| 
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| /*     End of SLASYF_ROOK */
 | |
| 
 | |
| } /* slasyf_rook__ */
 | |
| 
 |