946 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			946 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b SLASQ3 checks for deflation, computes a shift and calls dqds. Used by sbdsqr. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLASQ3 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasq3.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasq3.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasq3.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLASQ3( I0, N0, Z, PP, DMIN, SIGMA, DESIG, QMAX, NFAIL, */
 | |
| /*                          ITER, NDIV, IEEE, TTYPE, DMIN1, DMIN2, DN, DN1, */
 | |
| /*                          DN2, G, TAU ) */
 | |
| 
 | |
| /*       LOGICAL            IEEE */
 | |
| /*       INTEGER            I0, ITER, N0, NDIV, NFAIL, PP */
 | |
| /*       REAL               DESIG, DMIN, DMIN1, DMIN2, DN, DN1, DN2, G, */
 | |
| /*      $                   QMAX, SIGMA, TAU */
 | |
| /*       REAL               Z( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLASQ3 checks for deflation, computes a shift (TAU) and calls dqds. */
 | |
| /* > In case of failure it changes shifts, and tries again until output */
 | |
| /* > is positive. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] I0 */
 | |
| /* > \verbatim */
 | |
| /* >          I0 is INTEGER */
 | |
| /* >         First index. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] N0 */
 | |
| /* > \verbatim */
 | |
| /* >          N0 is INTEGER */
 | |
| /* >         Last index. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension ( 4*N0 ) */
 | |
| /* >         Z holds the qd array. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] PP */
 | |
| /* > \verbatim */
 | |
| /* >          PP is INTEGER */
 | |
| /* >         PP=0 for ping, PP=1 for pong. */
 | |
| /* >         PP=2 indicates that flipping was applied to the Z array */
 | |
| /* >         and that the initial tests for deflation should not be */
 | |
| /* >         performed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DMIN */
 | |
| /* > \verbatim */
 | |
| /* >          DMIN is REAL */
 | |
| /* >         Minimum value of d. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SIGMA */
 | |
| /* > \verbatim */
 | |
| /* >          SIGMA is REAL */
 | |
| /* >         Sum of shifts used in current segment. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DESIG */
 | |
| /* > \verbatim */
 | |
| /* >          DESIG is REAL */
 | |
| /* >         Lower order part of SIGMA */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] QMAX */
 | |
| /* > \verbatim */
 | |
| /* >          QMAX is REAL */
 | |
| /* >         Maximum value of q. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] NFAIL */
 | |
| /* > \verbatim */
 | |
| /* >          NFAIL is INTEGER */
 | |
| /* >         Increment NFAIL by 1 each time the shift was too big. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ITER */
 | |
| /* > \verbatim */
 | |
| /* >          ITER is INTEGER */
 | |
| /* >         Increment ITER by 1 for each iteration. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] NDIV */
 | |
| /* > \verbatim */
 | |
| /* >          NDIV is INTEGER */
 | |
| /* >         Increment NDIV by 1 for each division. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IEEE */
 | |
| /* > \verbatim */
 | |
| /* >          IEEE is LOGICAL */
 | |
| /* >         Flag for IEEE or non IEEE arithmetic (passed to SLASQ5). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] TTYPE */
 | |
| /* > \verbatim */
 | |
| /* >          TTYPE is INTEGER */
 | |
| /* >         Shift type. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DMIN1 */
 | |
| /* > \verbatim */
 | |
| /* >          DMIN1 is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DMIN2 */
 | |
| /* > \verbatim */
 | |
| /* >          DMIN2 is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DN */
 | |
| /* > \verbatim */
 | |
| /* >          DN is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DN1 */
 | |
| /* > \verbatim */
 | |
| /* >          DN1 is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DN2 */
 | |
| /* > \verbatim */
 | |
| /* >          DN2 is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] G */
 | |
| /* > \verbatim */
 | |
| /* >          G is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] TAU */
 | |
| /* > \verbatim */
 | |
| /* >          TAU is REAL */
 | |
| /* > */
 | |
| /* >         These are passed as arguments in order to save their values */
 | |
| /* >         between calls to SLASQ3. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup auxOTHERcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slasq3_(integer *i0, integer *n0, real *z__, integer *pp,
 | |
| 	 real *dmin__, real *sigma, real *desig, real *qmax, integer *nfail, 
 | |
| 	integer *iter, integer *ndiv, logical *ieee, integer *ttype, real *
 | |
| 	dmin1, real *dmin2, real *dn, real *dn1, real *dn2, real *g, real *
 | |
| 	tau)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real temp, s, t;
 | |
|     integer j4;
 | |
|     extern /* Subroutine */ void slasq4_(integer *, integer *, real *, integer 
 | |
| 	    *, integer *, real *, real *, real *, real *, real *, real *, 
 | |
| 	    real *, integer *, real *), slasq5_(integer *, integer *, real *, 
 | |
| 	    integer *, real *, real *, real *, real *, real *, real *, real *,
 | |
| 	     real *, logical *, real *), slasq6_(integer *, integer *, real *,
 | |
| 	     integer *, real *, real *, real *, real *, real *, real *);
 | |
|     integer nn;
 | |
|     extern real slamch_(char *);
 | |
|     extern logical sisnan_(real *);
 | |
|     real eps, tol;
 | |
|     integer n0in, ipn4;
 | |
|     real tol2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --z__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     n0in = *n0;
 | |
|     eps = slamch_("Precision");
 | |
|     tol = eps * 100.f;
 | |
| /* Computing 2nd power */
 | |
|     r__1 = tol;
 | |
|     tol2 = r__1 * r__1;
 | |
| 
 | |
| /*     Check for deflation. */
 | |
| 
 | |
| L10:
 | |
| 
 | |
|     if (*n0 < *i0) {
 | |
| 	return;
 | |
|     }
 | |
|     if (*n0 == *i0) {
 | |
| 	goto L20;
 | |
|     }
 | |
|     nn = (*n0 << 2) + *pp;
 | |
|     if (*n0 == *i0 + 1) {
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     Check whether E(N0-1) is negligible, 1 eigenvalue. */
 | |
| 
 | |
|     if (z__[nn - 5] > tol2 * (*sigma + z__[nn - 3]) && z__[nn - (*pp << 1) - 
 | |
| 	    4] > tol2 * z__[nn - 7]) {
 | |
| 	goto L30;
 | |
|     }
 | |
| 
 | |
| L20:
 | |
| 
 | |
|     z__[(*n0 << 2) - 3] = z__[(*n0 << 2) + *pp - 3] + *sigma;
 | |
|     --(*n0);
 | |
|     goto L10;
 | |
| 
 | |
| /*     Check  whether E(N0-2) is negligible, 2 eigenvalues. */
 | |
| 
 | |
| L30:
 | |
| 
 | |
|     if (z__[nn - 9] > tol2 * *sigma && z__[nn - (*pp << 1) - 8] > tol2 * z__[
 | |
| 	    nn - 11]) {
 | |
| 	goto L50;
 | |
|     }
 | |
| 
 | |
| L40:
 | |
| 
 | |
|     if (z__[nn - 3] > z__[nn - 7]) {
 | |
| 	s = z__[nn - 3];
 | |
| 	z__[nn - 3] = z__[nn - 7];
 | |
| 	z__[nn - 7] = s;
 | |
|     }
 | |
|     t = (z__[nn - 7] - z__[nn - 3] + z__[nn - 5]) * .5f;
 | |
|     if (z__[nn - 5] > z__[nn - 3] * tol2 && t != 0.f) {
 | |
| 	s = z__[nn - 3] * (z__[nn - 5] / t);
 | |
| 	if (s <= t) {
 | |
| 	    s = z__[nn - 3] * (z__[nn - 5] / (t * (sqrt(s / t + 1.f) + 1.f)));
 | |
| 	} else {
 | |
| 	    s = z__[nn - 3] * (z__[nn - 5] / (t + sqrt(t) * sqrt(t + s)));
 | |
| 	}
 | |
| 	t = z__[nn - 7] + (s + z__[nn - 5]);
 | |
| 	z__[nn - 3] *= z__[nn - 7] / t;
 | |
| 	z__[nn - 7] = t;
 | |
|     }
 | |
|     z__[(*n0 << 2) - 7] = z__[nn - 7] + *sigma;
 | |
|     z__[(*n0 << 2) - 3] = z__[nn - 3] + *sigma;
 | |
|     *n0 += -2;
 | |
|     goto L10;
 | |
| 
 | |
| L50:
 | |
|     if (*pp == 2) {
 | |
| 	*pp = 0;
 | |
|     }
 | |
| 
 | |
| /*     Reverse the qd-array, if warranted. */
 | |
| 
 | |
|     if (*dmin__ <= 0.f || *n0 < n0in) {
 | |
| 	if (z__[(*i0 << 2) + *pp - 3] * 1.5f < z__[(*n0 << 2) + *pp - 3]) {
 | |
| 	    ipn4 = *i0 + *n0 << 2;
 | |
| 	    i__1 = *i0 + *n0 - 1 << 1;
 | |
| 	    for (j4 = *i0 << 2; j4 <= i__1; j4 += 4) {
 | |
| 		temp = z__[j4 - 3];
 | |
| 		z__[j4 - 3] = z__[ipn4 - j4 - 3];
 | |
| 		z__[ipn4 - j4 - 3] = temp;
 | |
| 		temp = z__[j4 - 2];
 | |
| 		z__[j4 - 2] = z__[ipn4 - j4 - 2];
 | |
| 		z__[ipn4 - j4 - 2] = temp;
 | |
| 		temp = z__[j4 - 1];
 | |
| 		z__[j4 - 1] = z__[ipn4 - j4 - 5];
 | |
| 		z__[ipn4 - j4 - 5] = temp;
 | |
| 		temp = z__[j4];
 | |
| 		z__[j4] = z__[ipn4 - j4 - 4];
 | |
| 		z__[ipn4 - j4 - 4] = temp;
 | |
| /* L60: */
 | |
| 	    }
 | |
| 	    if (*n0 - *i0 <= 4) {
 | |
| 		z__[(*n0 << 2) + *pp - 1] = z__[(*i0 << 2) + *pp - 1];
 | |
| 		z__[(*n0 << 2) - *pp] = z__[(*i0 << 2) - *pp];
 | |
| 	    }
 | |
| /* Computing MIN */
 | |
| 	    r__1 = *dmin2, r__2 = z__[(*n0 << 2) + *pp - 1];
 | |
| 	    *dmin2 = f2cmin(r__1,r__2);
 | |
| /* Computing MIN */
 | |
| 	    r__1 = z__[(*n0 << 2) + *pp - 1], r__2 = z__[(*i0 << 2) + *pp - 1]
 | |
| 		    , r__1 = f2cmin(r__1,r__2), r__2 = z__[(*i0 << 2) + *pp + 3];
 | |
| 	    z__[(*n0 << 2) + *pp - 1] = f2cmin(r__1,r__2);
 | |
| /* Computing MIN */
 | |
| 	    r__1 = z__[(*n0 << 2) - *pp], r__2 = z__[(*i0 << 2) - *pp], r__1 =
 | |
| 		     f2cmin(r__1,r__2), r__2 = z__[(*i0 << 2) - *pp + 4];
 | |
| 	    z__[(*n0 << 2) - *pp] = f2cmin(r__1,r__2);
 | |
| /* Computing MAX */
 | |
| 	    r__1 = *qmax, r__2 = z__[(*i0 << 2) + *pp - 3], r__1 = f2cmax(r__1,
 | |
| 		    r__2), r__2 = z__[(*i0 << 2) + *pp + 1];
 | |
| 	    *qmax = f2cmax(r__1,r__2);
 | |
| 	    *dmin__ = 0.f;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Choose a shift. */
 | |
| 
 | |
|     slasq4_(i0, n0, &z__[1], pp, &n0in, dmin__, dmin1, dmin2, dn, dn1, dn2, 
 | |
| 	    tau, ttype, g);
 | |
| 
 | |
| /*     Call dqds until DMIN > 0. */
 | |
| 
 | |
| L70:
 | |
| 
 | |
|     slasq5_(i0, n0, &z__[1], pp, tau, sigma, dmin__, dmin1, dmin2, dn, dn1, 
 | |
| 	    dn2, ieee, &eps);
 | |
| 
 | |
|     *ndiv += *n0 - *i0 + 2;
 | |
|     ++(*iter);
 | |
| 
 | |
| /*     Check status. */
 | |
| 
 | |
|     if (*dmin__ >= 0.f && *dmin1 >= 0.f) {
 | |
| 
 | |
| /*        Success. */
 | |
| 
 | |
| 	goto L90;
 | |
| 
 | |
|     } else if (*dmin__ < 0.f && *dmin1 > 0.f && z__[(*n0 - 1 << 2) - *pp] < 
 | |
| 	    tol * (*sigma + *dn1) && abs(*dn) < tol * *sigma) {
 | |
| 
 | |
| /*        Convergence hidden by negative DN. */
 | |
| 
 | |
| 	z__[(*n0 - 1 << 2) - *pp + 2] = 0.f;
 | |
| 	*dmin__ = 0.f;
 | |
| 	goto L90;
 | |
|     } else if (*dmin__ < 0.f) {
 | |
| 
 | |
| /*        TAU too big. Select new TAU and try again. */
 | |
| 
 | |
| 	++(*nfail);
 | |
| 	if (*ttype < -22) {
 | |
| 
 | |
| /*           Failed twice. Play it safe. */
 | |
| 
 | |
| 	    *tau = 0.f;
 | |
| 	} else if (*dmin1 > 0.f) {
 | |
| 
 | |
| /*           Late failure. Gives excellent shift. */
 | |
| 
 | |
| 	    *tau = (*tau + *dmin__) * (1.f - eps * 2.f);
 | |
| 	    *ttype += -11;
 | |
| 	} else {
 | |
| 
 | |
| /*           Early failure. Divide by 4. */
 | |
| 
 | |
| 	    *tau *= .25f;
 | |
| 	    *ttype += -12;
 | |
| 	}
 | |
| 	goto L70;
 | |
|     } else if (sisnan_(dmin__)) {
 | |
| 
 | |
| /*        NaN. */
 | |
| 
 | |
| 	if (*tau == 0.f) {
 | |
| 	    goto L80;
 | |
| 	} else {
 | |
| 	    *tau = 0.f;
 | |
| 	    goto L70;
 | |
| 	}
 | |
|     } else {
 | |
| 
 | |
| /*        Possible underflow. Play it safe. */
 | |
| 
 | |
| 	goto L80;
 | |
|     }
 | |
| 
 | |
| /*     Risk of underflow. */
 | |
| 
 | |
| L80:
 | |
|     slasq6_(i0, n0, &z__[1], pp, dmin__, dmin1, dmin2, dn, dn1, dn2);
 | |
|     *ndiv += *n0 - *i0 + 2;
 | |
|     ++(*iter);
 | |
|     *tau = 0.f;
 | |
| 
 | |
| L90:
 | |
|     if (*tau < *sigma) {
 | |
| 	*desig += *tau;
 | |
| 	t = *sigma + *desig;
 | |
| 	*desig -= t - *sigma;
 | |
|     } else {
 | |
| 	t = *sigma + *tau;
 | |
| 	*desig = *sigma - (t - *tau) + *desig;
 | |
|     }
 | |
|     *sigma = t;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLASQ3 */
 | |
| 
 | |
| } /* slasq3_ */
 | |
| 
 |