1137 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1137 lines
		
	
	
		
			32 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b SLASD7 merges the two sets of singular values together into a single sorted set. Then it tries 
 | |
| to deflate the size of the problem. Used by sbdsdc. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLASD7 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd7.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd7.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd7.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLASD7( ICOMPQ, NL, NR, SQRE, K, D, Z, ZW, VF, VFW, VL, */
 | |
| /*                          VLW, ALPHA, BETA, DSIGMA, IDX, IDXP, IDXQ, */
 | |
| /*                          PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, LDGNUM, */
 | |
| /*                          C, S, INFO ) */
 | |
| 
 | |
| /*       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
 | |
| /*      $                   NR, SQRE */
 | |
| /*       REAL               ALPHA, BETA, C, S */
 | |
| /*       INTEGER            GIVCOL( LDGCOL, * ), IDX( * ), IDXP( * ), */
 | |
| /*      $                   IDXQ( * ), PERM( * ) */
 | |
| /*       REAL               D( * ), DSIGMA( * ), GIVNUM( LDGNUM, * ), */
 | |
| /*      $                   VF( * ), VFW( * ), VL( * ), VLW( * ), Z( * ), */
 | |
| /*      $                   ZW( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLASD7 merges the two sets of singular values together into a single */
 | |
| /* > sorted set. Then it tries to deflate the size of the problem. There */
 | |
| /* > are two ways in which deflation can occur:  when two or more singular */
 | |
| /* > values are close together or if there is a tiny entry in the Z */
 | |
| /* > vector. For each such occurrence the order of the related */
 | |
| /* > secular equation problem is reduced by one. */
 | |
| /* > */
 | |
| /* > SLASD7 is called from SLASD6. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] ICOMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          ICOMPQ is INTEGER */
 | |
| /* >          Specifies whether singular vectors are to be computed */
 | |
| /* >          in compact form, as follows: */
 | |
| /* >          = 0: Compute singular values only. */
 | |
| /* >          = 1: Compute singular vectors of upper */
 | |
| /* >               bidiagonal matrix in compact form. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NL */
 | |
| /* > \verbatim */
 | |
| /* >          NL is INTEGER */
 | |
| /* >         The row dimension of the upper block. NL >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NR */
 | |
| /* > \verbatim */
 | |
| /* >          NR is INTEGER */
 | |
| /* >         The row dimension of the lower block. NR >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SQRE */
 | |
| /* > \verbatim */
 | |
| /* >          SQRE is INTEGER */
 | |
| /* >         = 0: the lower block is an NR-by-NR square matrix. */
 | |
| /* >         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 | |
| /* > */
 | |
| /* >         The bidiagonal matrix has */
 | |
| /* >         N = NL + NR + 1 rows and */
 | |
| /* >         M = N + SQRE >= N columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >         Contains the dimension of the non-deflated matrix, this is */
 | |
| /* >         the order of the related secular equation. 1 <= K <=N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension ( N ) */
 | |
| /* >         On entry D contains the singular values of the two submatrices */
 | |
| /* >         to be combined. On exit D contains the trailing (N-K) updated */
 | |
| /* >         singular values (those which were deflated) sorted into */
 | |
| /* >         increasing order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension ( M ) */
 | |
| /* >         On exit Z contains the updating row vector in the secular */
 | |
| /* >         equation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ZW */
 | |
| /* > \verbatim */
 | |
| /* >          ZW is REAL array, dimension ( M ) */
 | |
| /* >         Workspace for Z. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VF */
 | |
| /* > \verbatim */
 | |
| /* >          VF is REAL array, dimension ( M ) */
 | |
| /* >         On entry, VF(1:NL+1) contains the first components of all */
 | |
| /* >         right singular vectors of the upper block; and VF(NL+2:M) */
 | |
| /* >         contains the first components of all right singular vectors */
 | |
| /* >         of the lower block. On exit, VF contains the first components */
 | |
| /* >         of all right singular vectors of the bidiagonal matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VFW */
 | |
| /* > \verbatim */
 | |
| /* >          VFW is REAL array, dimension ( M ) */
 | |
| /* >         Workspace for VF. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is REAL array, dimension ( M ) */
 | |
| /* >         On entry, VL(1:NL+1) contains the  last components of all */
 | |
| /* >         right singular vectors of the upper block; and VL(NL+2:M) */
 | |
| /* >         contains the last components of all right singular vectors */
 | |
| /* >         of the lower block. On exit, VL contains the last components */
 | |
| /* >         of all right singular vectors of the bidiagonal matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VLW */
 | |
| /* > \verbatim */
 | |
| /* >          VLW is REAL array, dimension ( M ) */
 | |
| /* >         Workspace for VL. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is REAL */
 | |
| /* >         Contains the diagonal element associated with the added row. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL */
 | |
| /* >         Contains the off-diagonal element associated with the added */
 | |
| /* >         row. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DSIGMA */
 | |
| /* > \verbatim */
 | |
| /* >          DSIGMA is REAL array, dimension ( N ) */
 | |
| /* >         Contains a copy of the diagonal elements (K-1 singular values */
 | |
| /* >         and one zero) in the secular equation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IDX */
 | |
| /* > \verbatim */
 | |
| /* >          IDX is INTEGER array, dimension ( N ) */
 | |
| /* >         This will contain the permutation used to sort the contents of */
 | |
| /* >         D into ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IDXP */
 | |
| /* > \verbatim */
 | |
| /* >          IDXP is INTEGER array, dimension ( N ) */
 | |
| /* >         This will contain the permutation used to place deflated */
 | |
| /* >         values of D at the end of the array. On output IDXP(2:K) */
 | |
| /* >         points to the nondeflated D-values and IDXP(K+1:N) */
 | |
| /* >         points to the deflated singular values. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IDXQ */
 | |
| /* > \verbatim */
 | |
| /* >          IDXQ is INTEGER array, dimension ( N ) */
 | |
| /* >         This contains the permutation which separately sorts the two */
 | |
| /* >         sub-problems in D into ascending order.  Note that entries in */
 | |
| /* >         the first half of this permutation must first be moved one */
 | |
| /* >         position backward; and entries in the second half */
 | |
| /* >         must first have NL+1 added to their values. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] PERM */
 | |
| /* > \verbatim */
 | |
| /* >          PERM is INTEGER array, dimension ( N ) */
 | |
| /* >         The permutations (from deflation and sorting) to be applied */
 | |
| /* >         to each singular block. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] GIVPTR */
 | |
| /* > \verbatim */
 | |
| /* >          GIVPTR is INTEGER */
 | |
| /* >         The number of Givens rotations which took place in this */
 | |
| /* >         subproblem. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] GIVCOL */
 | |
| /* > \verbatim */
 | |
| /* >          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
 | |
| /* >         Each pair of numbers indicates a pair of columns to take place */
 | |
| /* >         in a Givens rotation. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDGCOL */
 | |
| /* > \verbatim */
 | |
| /* >          LDGCOL is INTEGER */
 | |
| /* >         The leading dimension of GIVCOL, must be at least N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] GIVNUM */
 | |
| /* > \verbatim */
 | |
| /* >          GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */
 | |
| /* >         Each number indicates the C or S value to be used in the */
 | |
| /* >         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDGNUM */
 | |
| /* > \verbatim */
 | |
| /* >          LDGNUM is INTEGER */
 | |
| /* >         The leading dimension of GIVNUM, must be at least N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL */
 | |
| /* >         C contains garbage if SQRE =0 and the C-value of a Givens */
 | |
| /* >         rotation related to the right null space if SQRE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL */
 | |
| /* >         S contains garbage if SQRE =0 and the S-value of a Givens */
 | |
| /* >         rotation related to the right null space if SQRE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >         = 0:  successful exit. */
 | |
| /* >         < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Huan Ren, Computer Science Division, University of */
 | |
| /* >     California at Berkeley, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slasd7_(integer *icompq, integer *nl, integer *nr, 
 | |
| 	integer *sqre, integer *k, real *d__, real *z__, real *zw, real *vf, 
 | |
| 	real *vfw, real *vl, real *vlw, real *alpha, real *beta, real *dsigma,
 | |
| 	 integer *idx, integer *idxp, integer *idxq, integer *perm, integer *
 | |
| 	givptr, integer *givcol, integer *ldgcol, real *givnum, integer *
 | |
| 	ldgnum, real *c__, real *s, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer idxi, idxj;
 | |
|     extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, real *);
 | |
|     integer i__, j, m, n, idxjp, jprev, k2;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     real z1;
 | |
|     extern real slapy2_(real *, real *);
 | |
|     integer jp;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void slamrg_(
 | |
| 	    integer *, integer *, real *, integer *, integer *, integer *);
 | |
|     real hlftol, eps, tau, tol;
 | |
|     integer nlp1, nlp2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --z__;
 | |
|     --zw;
 | |
|     --vf;
 | |
|     --vfw;
 | |
|     --vl;
 | |
|     --vlw;
 | |
|     --dsigma;
 | |
|     --idx;
 | |
|     --idxp;
 | |
|     --idxq;
 | |
|     --perm;
 | |
|     givcol_dim1 = *ldgcol;
 | |
|     givcol_offset = 1 + givcol_dim1 * 1;
 | |
|     givcol -= givcol_offset;
 | |
|     givnum_dim1 = *ldgnum;
 | |
|     givnum_offset = 1 + givnum_dim1 * 1;
 | |
|     givnum -= givnum_offset;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     n = *nl + *nr + 1;
 | |
|     m = n + *sqre;
 | |
| 
 | |
|     if (*icompq < 0 || *icompq > 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*nl < 1) {
 | |
| 	*info = -2;
 | |
|     } else if (*nr < 1) {
 | |
| 	*info = -3;
 | |
|     } else if (*sqre < 0 || *sqre > 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldgcol < n) {
 | |
| 	*info = -22;
 | |
|     } else if (*ldgnum < n) {
 | |
| 	*info = -24;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLASD7", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     nlp1 = *nl + 1;
 | |
|     nlp2 = *nl + 2;
 | |
|     if (*icompq == 1) {
 | |
| 	*givptr = 0;
 | |
|     }
 | |
| 
 | |
| /*     Generate the first part of the vector Z and move the singular */
 | |
| /*     values in the first part of D one position backward. */
 | |
| 
 | |
|     z1 = *alpha * vl[nlp1];
 | |
|     vl[nlp1] = 0.f;
 | |
|     tau = vf[nlp1];
 | |
|     for (i__ = *nl; i__ >= 1; --i__) {
 | |
| 	z__[i__ + 1] = *alpha * vl[i__];
 | |
| 	vl[i__] = 0.f;
 | |
| 	vf[i__ + 1] = vf[i__];
 | |
| 	d__[i__ + 1] = d__[i__];
 | |
| 	idxq[i__ + 1] = idxq[i__] + 1;
 | |
| /* L10: */
 | |
|     }
 | |
|     vf[1] = tau;
 | |
| 
 | |
| /*     Generate the second part of the vector Z. */
 | |
| 
 | |
|     i__1 = m;
 | |
|     for (i__ = nlp2; i__ <= i__1; ++i__) {
 | |
| 	z__[i__] = *beta * vf[i__];
 | |
| 	vf[i__] = 0.f;
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Sort the singular values into increasing order */
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (i__ = nlp2; i__ <= i__1; ++i__) {
 | |
| 	idxq[i__] += nlp1;
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
| /*     DSIGMA, IDXC, IDXC, and ZW are used as storage space. */
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	dsigma[i__] = d__[idxq[i__]];
 | |
| 	zw[i__] = z__[idxq[i__]];
 | |
| 	vfw[i__] = vf[idxq[i__]];
 | |
| 	vlw[i__] = vl[idxq[i__]];
 | |
| /* L40: */
 | |
|     }
 | |
| 
 | |
|     slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	idxi = idx[i__] + 1;
 | |
| 	d__[i__] = dsigma[idxi];
 | |
| 	z__[i__] = zw[idxi];
 | |
| 	vf[i__] = vfw[idxi];
 | |
| 	vl[i__] = vlw[idxi];
 | |
| /* L50: */
 | |
|     }
 | |
| 
 | |
| /*     Calculate the allowable deflation tolerance */
 | |
| 
 | |
|     eps = slamch_("Epsilon");
 | |
| /* Computing MAX */
 | |
|     r__1 = abs(*alpha), r__2 = abs(*beta);
 | |
|     tol = f2cmax(r__1,r__2);
 | |
| /* Computing MAX */
 | |
|     r__2 = (r__1 = d__[n], abs(r__1));
 | |
|     tol = eps * 64.f * f2cmax(r__2,tol);
 | |
| 
 | |
| /*     There are 2 kinds of deflation -- first a value in the z-vector */
 | |
| /*     is small, second two (or more) singular values are very close */
 | |
| /*     together (their difference is small). */
 | |
| 
 | |
| /*     If the value in the z-vector is small, we simply permute the */
 | |
| /*     array so that the corresponding singular value is moved to the */
 | |
| /*     end. */
 | |
| 
 | |
| /*     If two values in the D-vector are close, we perform a two-sided */
 | |
| /*     rotation designed to make one of the corresponding z-vector */
 | |
| /*     entries zero, and then permute the array so that the deflated */
 | |
| /*     singular value is moved to the end. */
 | |
| 
 | |
| /*     If there are multiple singular values then the problem deflates. */
 | |
| /*     Here the number of equal singular values are found.  As each equal */
 | |
| /*     singular value is found, an elementary reflector is computed to */
 | |
| /*     rotate the corresponding singular subspace so that the */
 | |
| /*     corresponding components of Z are zero in this new basis. */
 | |
| 
 | |
|     *k = 1;
 | |
|     k2 = n + 1;
 | |
|     i__1 = n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	if ((r__1 = z__[j], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*           Deflate due to small z component. */
 | |
| 
 | |
| 	    --k2;
 | |
| 	    idxp[k2] = j;
 | |
| 	    if (j == n) {
 | |
| 		goto L100;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    jprev = j;
 | |
| 	    goto L70;
 | |
| 	}
 | |
| /* L60: */
 | |
|     }
 | |
| L70:
 | |
|     j = jprev;
 | |
| L80:
 | |
|     ++j;
 | |
|     if (j > n) {
 | |
| 	goto L90;
 | |
|     }
 | |
|     if ((r__1 = z__[j], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*        Deflate due to small z component. */
 | |
| 
 | |
| 	--k2;
 | |
| 	idxp[k2] = j;
 | |
|     } else {
 | |
| 
 | |
| /*        Check if singular values are close enough to allow deflation. */
 | |
| 
 | |
| 	if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*           Deflation is possible. */
 | |
| 
 | |
| 	    *s = z__[jprev];
 | |
| 	    *c__ = z__[j];
 | |
| 
 | |
| /*           Find sqrt(a**2+b**2) without overflow or */
 | |
| /*           destructive underflow. */
 | |
| 
 | |
| 	    tau = slapy2_(c__, s);
 | |
| 	    z__[j] = tau;
 | |
| 	    z__[jprev] = 0.f;
 | |
| 	    *c__ /= tau;
 | |
| 	    *s = -(*s) / tau;
 | |
| 
 | |
| /*           Record the appropriate Givens rotation */
 | |
| 
 | |
| 	    if (*icompq == 1) {
 | |
| 		++(*givptr);
 | |
| 		idxjp = idxq[idx[jprev] + 1];
 | |
| 		idxj = idxq[idx[j] + 1];
 | |
| 		if (idxjp <= nlp1) {
 | |
| 		    --idxjp;
 | |
| 		}
 | |
| 		if (idxj <= nlp1) {
 | |
| 		    --idxj;
 | |
| 		}
 | |
| 		givcol[*givptr + (givcol_dim1 << 1)] = idxjp;
 | |
| 		givcol[*givptr + givcol_dim1] = idxj;
 | |
| 		givnum[*givptr + (givnum_dim1 << 1)] = *c__;
 | |
| 		givnum[*givptr + givnum_dim1] = *s;
 | |
| 	    }
 | |
| 	    srot_(&c__1, &vf[jprev], &c__1, &vf[j], &c__1, c__, s);
 | |
| 	    srot_(&c__1, &vl[jprev], &c__1, &vl[j], &c__1, c__, s);
 | |
| 	    --k2;
 | |
| 	    idxp[k2] = jprev;
 | |
| 	    jprev = j;
 | |
| 	} else {
 | |
| 	    ++(*k);
 | |
| 	    zw[*k] = z__[jprev];
 | |
| 	    dsigma[*k] = d__[jprev];
 | |
| 	    idxp[*k] = jprev;
 | |
| 	    jprev = j;
 | |
| 	}
 | |
|     }
 | |
|     goto L80;
 | |
| L90:
 | |
| 
 | |
| /*     Record the last singular value. */
 | |
| 
 | |
|     ++(*k);
 | |
|     zw[*k] = z__[jprev];
 | |
|     dsigma[*k] = d__[jprev];
 | |
|     idxp[*k] = jprev;
 | |
| 
 | |
| L100:
 | |
| 
 | |
| /*     Sort the singular values into DSIGMA. The singular values which */
 | |
| /*     were not deflated go into the first K slots of DSIGMA, except */
 | |
| /*     that DSIGMA(1) is treated separately. */
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	jp = idxp[j];
 | |
| 	dsigma[j] = d__[jp];
 | |
| 	vfw[j] = vf[jp];
 | |
| 	vlw[j] = vl[jp];
 | |
| /* L110: */
 | |
|     }
 | |
|     if (*icompq == 1) {
 | |
| 	i__1 = n;
 | |
| 	for (j = 2; j <= i__1; ++j) {
 | |
| 	    jp = idxp[j];
 | |
| 	    perm[j] = idxq[idx[jp] + 1];
 | |
| 	    if (perm[j] <= nlp1) {
 | |
| 		--perm[j];
 | |
| 	    }
 | |
| /* L120: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     The deflated singular values go back into the last N - K slots of */
 | |
| /*     D. */
 | |
| 
 | |
|     i__1 = n - *k;
 | |
|     scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
 | |
| 
 | |
| /*     Determine DSIGMA(1), DSIGMA(2), Z(1), VF(1), VL(1), VF(M), and */
 | |
| /*     VL(M). */
 | |
| 
 | |
|     dsigma[1] = 0.f;
 | |
|     hlftol = tol / 2.f;
 | |
|     if (abs(dsigma[2]) <= hlftol) {
 | |
| 	dsigma[2] = hlftol;
 | |
|     }
 | |
|     if (m > n) {
 | |
| 	z__[1] = slapy2_(&z1, &z__[m]);
 | |
| 	if (z__[1] <= tol) {
 | |
| 	    *c__ = 1.f;
 | |
| 	    *s = 0.f;
 | |
| 	    z__[1] = tol;
 | |
| 	} else {
 | |
| 	    *c__ = z1 / z__[1];
 | |
| 	    *s = -z__[m] / z__[1];
 | |
| 	}
 | |
| 	srot_(&c__1, &vf[m], &c__1, &vf[1], &c__1, c__, s);
 | |
| 	srot_(&c__1, &vl[m], &c__1, &vl[1], &c__1, c__, s);
 | |
|     } else {
 | |
| 	if (abs(z1) <= tol) {
 | |
| 	    z__[1] = tol;
 | |
| 	} else {
 | |
| 	    z__[1] = z1;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Restore Z, VF, and VL. */
 | |
| 
 | |
|     i__1 = *k - 1;
 | |
|     scopy_(&i__1, &zw[2], &c__1, &z__[2], &c__1);
 | |
|     i__1 = n - 1;
 | |
|     scopy_(&i__1, &vfw[2], &c__1, &vf[2], &c__1);
 | |
|     i__1 = n - 1;
 | |
|     scopy_(&i__1, &vlw[2], &c__1, &vl[2], &c__1);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLASD7 */
 | |
| 
 | |
| } /* slasd7_ */
 | |
| 
 |