992 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			992 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__0 = 0;
 | |
| static real c_b7 = 1.f;
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* > \brief \b SLASD6 computes the SVD of an updated upper bidiagonal matrix obtained by merging two smaller o
 | |
| nes by appending a row. Used by sbdsdc. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLASD6 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd6.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd6.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd6.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLASD6( ICOMPQ, NL, NR, SQRE, D, VF, VL, ALPHA, BETA, */
 | |
| /*                          IDXQ, PERM, GIVPTR, GIVCOL, LDGCOL, GIVNUM, */
 | |
| /*                          LDGNUM, POLES, DIFL, DIFR, Z, K, C, S, WORK, */
 | |
| /*                          IWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            GIVPTR, ICOMPQ, INFO, K, LDGCOL, LDGNUM, NL, */
 | |
| /*      $                   NR, SQRE */
 | |
| /*       REAL               ALPHA, BETA, C, S */
 | |
| /*       INTEGER            GIVCOL( LDGCOL, * ), IDXQ( * ), IWORK( * ), */
 | |
| /*      $                   PERM( * ) */
 | |
| /*       REAL               D( * ), DIFL( * ), DIFR( * ), */
 | |
| /*      $                   GIVNUM( LDGNUM, * ), POLES( LDGNUM, * ), */
 | |
| /*      $                   VF( * ), VL( * ), WORK( * ), Z( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLASD6 computes the SVD of an updated upper bidiagonal matrix B */
 | |
| /* > obtained by merging two smaller ones by appending a row. This */
 | |
| /* > routine is used only for the problem which requires all singular */
 | |
| /* > values and optionally singular vector matrices in factored form. */
 | |
| /* > B is an N-by-M matrix with N = NL + NR + 1 and M = N + SQRE. */
 | |
| /* > A related subroutine, SLASD1, handles the case in which all singular */
 | |
| /* > values and singular vectors of the bidiagonal matrix are desired. */
 | |
| /* > */
 | |
| /* > SLASD6 computes the SVD as follows: */
 | |
| /* > */
 | |
| /* >               ( D1(in)    0    0       0 ) */
 | |
| /* >   B = U(in) * (   Z1**T   a   Z2**T    b ) * VT(in) */
 | |
| /* >               (   0       0   D2(in)   0 ) */
 | |
| /* > */
 | |
| /* >     = U(out) * ( D(out) 0) * VT(out) */
 | |
| /* > */
 | |
| /* > where Z**T = (Z1**T a Z2**T b) = u**T VT**T, and u is a vector of dimension M */
 | |
| /* > with ALPHA and BETA in the NL+1 and NL+2 th entries and zeros */
 | |
| /* > elsewhere; and the entry b is empty if SQRE = 0. */
 | |
| /* > */
 | |
| /* > The singular values of B can be computed using D1, D2, the first */
 | |
| /* > components of all the right singular vectors of the lower block, and */
 | |
| /* > the last components of all the right singular vectors of the upper */
 | |
| /* > block. These components are stored and updated in VF and VL, */
 | |
| /* > respectively, in SLASD6. Hence U and VT are not explicitly */
 | |
| /* > referenced. */
 | |
| /* > */
 | |
| /* > The singular values are stored in D. The algorithm consists of two */
 | |
| /* > stages: */
 | |
| /* > */
 | |
| /* >       The first stage consists of deflating the size of the problem */
 | |
| /* >       when there are multiple singular values or if there is a zero */
 | |
| /* >       in the Z vector. For each such occurrence the dimension of the */
 | |
| /* >       secular equation problem is reduced by one. This stage is */
 | |
| /* >       performed by the routine SLASD7. */
 | |
| /* > */
 | |
| /* >       The second stage consists of calculating the updated */
 | |
| /* >       singular values. This is done by finding the roots of the */
 | |
| /* >       secular equation via the routine SLASD4 (as called by SLASD8). */
 | |
| /* >       This routine also updates VF and VL and computes the distances */
 | |
| /* >       between the updated singular values and the old singular */
 | |
| /* >       values. */
 | |
| /* > */
 | |
| /* > SLASD6 is called from SLASDA. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] ICOMPQ */
 | |
| /* > \verbatim */
 | |
| /* >          ICOMPQ is INTEGER */
 | |
| /* >         Specifies whether singular vectors are to be computed in */
 | |
| /* >         factored form: */
 | |
| /* >         = 0: Compute singular values only. */
 | |
| /* >         = 1: Compute singular vectors in factored form as well. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NL */
 | |
| /* > \verbatim */
 | |
| /* >          NL is INTEGER */
 | |
| /* >         The row dimension of the upper block.  NL >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NR */
 | |
| /* > \verbatim */
 | |
| /* >          NR is INTEGER */
 | |
| /* >         The row dimension of the lower block.  NR >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SQRE */
 | |
| /* > \verbatim */
 | |
| /* >          SQRE is INTEGER */
 | |
| /* >         = 0: the lower block is an NR-by-NR square matrix. */
 | |
| /* >         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 | |
| /* > */
 | |
| /* >         The bidiagonal matrix has row dimension N = NL + NR + 1, */
 | |
| /* >         and column dimension M = N + SQRE. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (NL+NR+1). */
 | |
| /* >         On entry D(1:NL,1:NL) contains the singular values of the */
 | |
| /* >         upper block, and D(NL+2:N) contains the singular values */
 | |
| /* >         of the lower block. On exit D(1:N) contains the singular */
 | |
| /* >         values of the modified matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VF */
 | |
| /* > \verbatim */
 | |
| /* >          VF is REAL array, dimension (M) */
 | |
| /* >         On entry, VF(1:NL+1) contains the first components of all */
 | |
| /* >         right singular vectors of the upper block; and VF(NL+2:M) */
 | |
| /* >         contains the first components of all right singular vectors */
 | |
| /* >         of the lower block. On exit, VF contains the first components */
 | |
| /* >         of all right singular vectors of the bidiagonal matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is REAL array, dimension (M) */
 | |
| /* >         On entry, VL(1:NL+1) contains the  last components of all */
 | |
| /* >         right singular vectors of the upper block; and VL(NL+2:M) */
 | |
| /* >         contains the last components of all right singular vectors of */
 | |
| /* >         the lower block. On exit, VL contains the last components of */
 | |
| /* >         all right singular vectors of the bidiagonal matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is REAL */
 | |
| /* >         Contains the diagonal element associated with the added row. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL */
 | |
| /* >         Contains the off-diagonal element associated with the added */
 | |
| /* >         row. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] IDXQ */
 | |
| /* > \verbatim */
 | |
| /* >          IDXQ is INTEGER array, dimension (N) */
 | |
| /* >         This contains the permutation which will reintegrate the */
 | |
| /* >         subproblem just solved back into sorted order, i.e. */
 | |
| /* >         D( IDXQ( I = 1, N ) ) will be in ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] PERM */
 | |
| /* > \verbatim */
 | |
| /* >          PERM is INTEGER array, dimension ( N ) */
 | |
| /* >         The permutations (from deflation and sorting) to be applied */
 | |
| /* >         to each block. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] GIVPTR */
 | |
| /* > \verbatim */
 | |
| /* >          GIVPTR is INTEGER */
 | |
| /* >         The number of Givens rotations which took place in this */
 | |
| /* >         subproblem. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] GIVCOL */
 | |
| /* > \verbatim */
 | |
| /* >          GIVCOL is INTEGER array, dimension ( LDGCOL, 2 ) */
 | |
| /* >         Each pair of numbers indicates a pair of columns to take place */
 | |
| /* >         in a Givens rotation. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDGCOL */
 | |
| /* > \verbatim */
 | |
| /* >          LDGCOL is INTEGER */
 | |
| /* >         leading dimension of GIVCOL, must be at least N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] GIVNUM */
 | |
| /* > \verbatim */
 | |
| /* >          GIVNUM is REAL array, dimension ( LDGNUM, 2 ) */
 | |
| /* >         Each number indicates the C or S value to be used in the */
 | |
| /* >         corresponding Givens rotation. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDGNUM */
 | |
| /* > \verbatim */
 | |
| /* >          LDGNUM is INTEGER */
 | |
| /* >         The leading dimension of GIVNUM and POLES, must be at least N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] POLES */
 | |
| /* > \verbatim */
 | |
| /* >          POLES is REAL array, dimension ( LDGNUM, 2 ) */
 | |
| /* >         On exit, POLES(1,*) is an array containing the new singular */
 | |
| /* >         values obtained from solving the secular equation, and */
 | |
| /* >         POLES(2,*) is an array containing the poles in the secular */
 | |
| /* >         equation. Not referenced if ICOMPQ = 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DIFL */
 | |
| /* > \verbatim */
 | |
| /* >          DIFL is REAL array, dimension ( N ) */
 | |
| /* >         On exit, DIFL(I) is the distance between I-th updated */
 | |
| /* >         (undeflated) singular value and the I-th (undeflated) old */
 | |
| /* >         singular value. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DIFR */
 | |
| /* > \verbatim */
 | |
| /* >          DIFR is REAL array, */
 | |
| /* >                   dimension ( LDDIFR, 2 ) if ICOMPQ = 1 and */
 | |
| /* >                   dimension ( K ) if ICOMPQ = 0. */
 | |
| /* >          On exit, DIFR(I,1) = D(I) - DSIGMA(I+1), DIFR(K,1) is not */
 | |
| /* >          defined and will not be referenced. */
 | |
| /* > */
 | |
| /* >          If ICOMPQ = 1, DIFR(1:K,2) is an array containing the */
 | |
| /* >          normalizing factors for the right singular vector matrix. */
 | |
| /* > */
 | |
| /* >         See SLASD8 for details on DIFL and DIFR. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension ( M ) */
 | |
| /* >         The first elements of this array contain the components */
 | |
| /* >         of the deflation-adjusted updating row vector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >         Contains the dimension of the non-deflated matrix, */
 | |
| /* >         This is the order of the related secular equation. 1 <= K <=N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL */
 | |
| /* >         C contains garbage if SQRE =0 and the C-value of a Givens */
 | |
| /* >         rotation related to the right null space if SQRE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL */
 | |
| /* >         S contains garbage if SQRE =0 and the S-value of a Givens */
 | |
| /* >         rotation related to the right null space if SQRE = 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension ( 4 * M ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension ( 3 * N ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  if INFO = 1, a singular value did not converge */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Huan Ren, Computer Science Division, University of */
 | |
| /* >     California at Berkeley, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slasd6_(integer *icompq, integer *nl, integer *nr, 
 | |
| 	integer *sqre, real *d__, real *vf, real *vl, real *alpha, real *beta,
 | |
| 	 integer *idxq, integer *perm, integer *givptr, integer *givcol, 
 | |
| 	integer *ldgcol, real *givnum, integer *ldgnum, real *poles, real *
 | |
| 	difl, real *difr, real *z__, integer *k, real *c__, real *s, real *
 | |
| 	work, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer givcol_dim1, givcol_offset, givnum_dim1, givnum_offset, 
 | |
| 	    poles_dim1, poles_offset, i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer idxc, idxp, ivfw, ivlw, i__, m, n;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer n1, n2;
 | |
|     extern /* Subroutine */ void slasd7_(integer *, integer *, integer *, 
 | |
| 	    integer *, integer *, real *, real *, real *, real *, real *, 
 | |
| 	    real *, real *, real *, real *, real *, integer *, integer *, 
 | |
| 	    integer *, integer *, integer *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, real *, integer *), slasd8_(integer *, integer 
 | |
| 	    *, real *, real *, real *, real *, real *, real *, integer *, 
 | |
| 	    real *, real *, integer *);
 | |
|     integer iw, isigma;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void slascl_(
 | |
| 	    char *, integer *, integer *, real *, real *, integer *, integer *
 | |
| 	    , real *, integer *, integer *), slamrg_(integer *, 
 | |
| 	    integer *, real *, integer *, integer *, integer *);
 | |
|     real orgnrm;
 | |
|     integer idx;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --vf;
 | |
|     --vl;
 | |
|     --idxq;
 | |
|     --perm;
 | |
|     givcol_dim1 = *ldgcol;
 | |
|     givcol_offset = 1 + givcol_dim1 * 1;
 | |
|     givcol -= givcol_offset;
 | |
|     poles_dim1 = *ldgnum;
 | |
|     poles_offset = 1 + poles_dim1 * 1;
 | |
|     poles -= poles_offset;
 | |
|     givnum_dim1 = *ldgnum;
 | |
|     givnum_offset = 1 + givnum_dim1 * 1;
 | |
|     givnum -= givnum_offset;
 | |
|     --difl;
 | |
|     --difr;
 | |
|     --z__;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     n = *nl + *nr + 1;
 | |
|     m = n + *sqre;
 | |
| 
 | |
|     if (*icompq < 0 || *icompq > 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*nl < 1) {
 | |
| 	*info = -2;
 | |
|     } else if (*nr < 1) {
 | |
| 	*info = -3;
 | |
|     } else if (*sqre < 0 || *sqre > 1) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldgcol < n) {
 | |
| 	*info = -14;
 | |
|     } else if (*ldgnum < n) {
 | |
| 	*info = -16;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLASD6", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     The following values are for bookkeeping purposes only.  They are */
 | |
| /*     integer pointers which indicate the portion of the workspace */
 | |
| /*     used by a particular array in SLASD7 and SLASD8. */
 | |
| 
 | |
|     isigma = 1;
 | |
|     iw = isigma + n;
 | |
|     ivfw = iw + m;
 | |
|     ivlw = ivfw + m;
 | |
| 
 | |
|     idx = 1;
 | |
|     idxc = idx + n;
 | |
|     idxp = idxc + n;
 | |
| 
 | |
| /*     Scale. */
 | |
| 
 | |
| /* Computing MAX */
 | |
|     r__1 = abs(*alpha), r__2 = abs(*beta);
 | |
|     orgnrm = f2cmax(r__1,r__2);
 | |
|     d__[*nl + 1] = 0.f;
 | |
|     i__1 = n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	if ((r__1 = d__[i__], abs(r__1)) > orgnrm) {
 | |
| 	    orgnrm = (r__1 = d__[i__], abs(r__1));
 | |
| 	}
 | |
| /* L10: */
 | |
|     }
 | |
|     slascl_("G", &c__0, &c__0, &orgnrm, &c_b7, &n, &c__1, &d__[1], &n, info);
 | |
|     *alpha /= orgnrm;
 | |
|     *beta /= orgnrm;
 | |
| 
 | |
| /*     Sort and Deflate singular values. */
 | |
| 
 | |
|     slasd7_(icompq, nl, nr, sqre, k, &d__[1], &z__[1], &work[iw], &vf[1], &
 | |
| 	    work[ivfw], &vl[1], &work[ivlw], alpha, beta, &work[isigma], &
 | |
| 	    iwork[idx], &iwork[idxp], &idxq[1], &perm[1], givptr, &givcol[
 | |
| 	    givcol_offset], ldgcol, &givnum[givnum_offset], ldgnum, c__, s, 
 | |
| 	    info);
 | |
| 
 | |
| /*     Solve Secular Equation, compute DIFL, DIFR, and update VF, VL. */
 | |
| 
 | |
|     slasd8_(icompq, k, &d__[1], &z__[1], &vf[1], &vl[1], &difl[1], &difr[1], 
 | |
| 	    ldgnum, &work[isigma], &work[iw], info);
 | |
| 
 | |
| /*     Report the possible convergence failure. */
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Save the poles if ICOMPQ = 1. */
 | |
| 
 | |
|     if (*icompq == 1) {
 | |
| 	scopy_(k, &d__[1], &c__1, &poles[poles_dim1 + 1], &c__1);
 | |
| 	scopy_(k, &work[isigma], &c__1, &poles[(poles_dim1 << 1) + 1], &c__1);
 | |
|     }
 | |
| 
 | |
| /*     Unscale. */
 | |
| 
 | |
|     slascl_("G", &c__0, &c__0, &c_b7, &orgnrm, &n, &c__1, &d__[1], &n, info);
 | |
| 
 | |
| /*     Prepare the IDXQ sorting permutation. */
 | |
| 
 | |
|     n1 = *k;
 | |
|     n2 = n - *k;
 | |
|     slamrg_(&n1, &n2, &d__[1], &c__1, &c_n1, &idxq[1]);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLASD6 */
 | |
| 
 | |
| } /* slasd6_ */
 | |
| 
 |