1044 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1044 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static real c_b13 = 1.f;
 | |
| static real c_b26 = 0.f;
 | |
| 
 | |
| /* > \brief \b SLASD3 finds all square roots of the roots of the secular equation, as defined by the values in
 | |
|  D and Z, and then updates the singular vectors by matrix multiplication. Used by sbdsdc. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLASD3 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd3.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd3.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd3.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLASD3( NL, NR, SQRE, K, D, Q, LDQ, DSIGMA, U, LDU, U2, */
 | |
| /*                          LDU2, VT, LDVT, VT2, LDVT2, IDXC, CTOT, Z, */
 | |
| /*                          INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, K, LDQ, LDU, LDU2, LDVT, LDVT2, NL, NR, */
 | |
| /*      $                   SQRE */
 | |
| /*       INTEGER            CTOT( * ), IDXC( * ) */
 | |
| /*       REAL               D( * ), DSIGMA( * ), Q( LDQ, * ), U( LDU, * ), */
 | |
| /*      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
 | |
| /*      $                   Z( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLASD3 finds all the square roots of the roots of the secular */
 | |
| /* > equation, as defined by the values in D and Z.  It makes the */
 | |
| /* > appropriate calls to SLASD4 and then updates the singular */
 | |
| /* > vectors by matrix multiplication. */
 | |
| /* > */
 | |
| /* > This code makes very mild assumptions about floating point */
 | |
| /* > arithmetic. It will work on machines with a guard digit in */
 | |
| /* > add/subtract, or on those binary machines without guard digits */
 | |
| /* > which subtract like the Cray XMP, Cray YMP, Cray C 90, or Cray 2. */
 | |
| /* > It could conceivably fail on hexadecimal or decimal machines */
 | |
| /* > without guard digits, but we know of none. */
 | |
| /* > */
 | |
| /* > SLASD3 is called from SLASD1. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] NL */
 | |
| /* > \verbatim */
 | |
| /* >          NL is INTEGER */
 | |
| /* >         The row dimension of the upper block.  NL >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NR */
 | |
| /* > \verbatim */
 | |
| /* >          NR is INTEGER */
 | |
| /* >         The row dimension of the lower block.  NR >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SQRE */
 | |
| /* > \verbatim */
 | |
| /* >          SQRE is INTEGER */
 | |
| /* >         = 0: the lower block is an NR-by-NR square matrix. */
 | |
| /* >         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 | |
| /* > */
 | |
| /* >         The bidiagonal matrix has N = NL + NR + 1 rows and */
 | |
| /* >         M = N + SQRE >= N columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >         The size of the secular equation, 1 =< K = < N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension(K) */
 | |
| /* >         On exit the square roots of the roots of the secular equation, */
 | |
| /* >         in ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is REAL array, dimension (LDQ,K) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >         The leading dimension of the array Q.  LDQ >= K. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] DSIGMA */
 | |
| /* > \verbatim */
 | |
| /* >          DSIGMA is REAL array, dimension(K) */
 | |
| /* >         The first K elements of this array contain the old roots */
 | |
| /* >         of the deflated updating problem.  These are the poles */
 | |
| /* >         of the secular equation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is REAL array, dimension (LDU, N) */
 | |
| /* >         The last N - K columns of this matrix contain the deflated */
 | |
| /* >         left singular vectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >         The leading dimension of the array U.  LDU >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] U2 */
 | |
| /* > \verbatim */
 | |
| /* >          U2 is REAL array, dimension (LDU2, N) */
 | |
| /* >         The first K columns of this matrix contain the non-deflated */
 | |
| /* >         left singular vectors for the split problem. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU2 */
 | |
| /* > \verbatim */
 | |
| /* >          LDU2 is INTEGER */
 | |
| /* >         The leading dimension of the array U2.  LDU2 >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is REAL array, dimension (LDVT, M) */
 | |
| /* >         The last M - K columns of VT**T contain the deflated */
 | |
| /* >         right singular vectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT is INTEGER */
 | |
| /* >         The leading dimension of the array VT.  LDVT >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VT2 */
 | |
| /* > \verbatim */
 | |
| /* >          VT2 is REAL array, dimension (LDVT2, N) */
 | |
| /* >         The first K columns of VT2**T contain the non-deflated */
 | |
| /* >         right singular vectors for the split problem. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT2 */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT2 is INTEGER */
 | |
| /* >         The leading dimension of the array VT2.  LDVT2 >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IDXC */
 | |
| /* > \verbatim */
 | |
| /* >          IDXC is INTEGER array, dimension (N) */
 | |
| /* >         The permutation used to arrange the columns of U (and rows of */
 | |
| /* >         VT) into three groups:  the first group contains non-zero */
 | |
| /* >         entries only at and above (or before) NL +1; the second */
 | |
| /* >         contains non-zero entries only at and below (or after) NL+2; */
 | |
| /* >         and the third is dense. The first column of U and the row of */
 | |
| /* >         VT are treated separately, however. */
 | |
| /* > */
 | |
| /* >         The rows of the singular vectors found by SLASD4 */
 | |
| /* >         must be likewise permuted before the matrix multiplies can */
 | |
| /* >         take place. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] CTOT */
 | |
| /* > \verbatim */
 | |
| /* >          CTOT is INTEGER array, dimension (4) */
 | |
| /* >         A count of the total number of the various types of columns */
 | |
| /* >         in U (or rows in VT), as described in IDXC. The fourth column */
 | |
| /* >         type is any column which has been deflated. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension (K) */
 | |
| /* >         The first K elements of this array contain the components */
 | |
| /* >         of the deflation-adjusted updating row vector. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >         = 0:  successful exit. */
 | |
| /* >         < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >         > 0:  if INFO = 1, a singular value did not converge */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Huan Ren, Computer Science Division, University of */
 | |
| /* >     California at Berkeley, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slasd3_(integer *nl, integer *nr, integer *sqre, integer 
 | |
| 	*k, real *d__, real *q, integer *ldq, real *dsigma, real *u, integer *
 | |
| 	ldu, real *u2, integer *ldu2, real *vt, integer *ldvt, real *vt2, 
 | |
| 	integer *ldvt2, integer *idxc, integer *ctot, real *z__, integer *
 | |
| 	info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer q_dim1, q_offset, u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, 
 | |
| 	    vt_offset, vt2_dim1, vt2_offset, i__1, i__2;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real temp;
 | |
|     extern real snrm2_(integer *, real *, integer *);
 | |
|     integer i__, j, m, n, ctemp;
 | |
|     extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    real *, integer *);
 | |
|     integer ktemp;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     extern real slamc3_(real *, real *);
 | |
|     extern /* Subroutine */ void slasd4_(integer *, integer *, real *, real *, 
 | |
| 	    real *, real *, real *, real *, integer *);
 | |
|     integer jc;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void slascl_(
 | |
| 	    char *, integer *, integer *, real *, real *, integer *, integer *
 | |
| 	    , real *, integer *, integer *), slacpy_(char *, integer *
 | |
| 	    , integer *, real *, integer *, real *, integer *);
 | |
|     real rho;
 | |
|     integer nlp1, nlp2, nrp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     --dsigma;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     u2_dim1 = *ldu2;
 | |
|     u2_offset = 1 + u2_dim1 * 1;
 | |
|     u2 -= u2_offset;
 | |
|     vt_dim1 = *ldvt;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     vt2_dim1 = *ldvt2;
 | |
|     vt2_offset = 1 + vt2_dim1 * 1;
 | |
|     vt2 -= vt2_offset;
 | |
|     --idxc;
 | |
|     --ctot;
 | |
|     --z__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*nl < 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*nr < 1) {
 | |
| 	*info = -2;
 | |
|     } else if (*sqre != 1 && *sqre != 0) {
 | |
| 	*info = -3;
 | |
|     }
 | |
| 
 | |
|     n = *nl + *nr + 1;
 | |
|     m = n + *sqre;
 | |
|     nlp1 = *nl + 1;
 | |
|     nlp2 = *nl + 2;
 | |
| 
 | |
|     if (*k < 1 || *k > n) {
 | |
| 	*info = -4;
 | |
|     } else if (*ldq < *k) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldu < n) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldu2 < n) {
 | |
| 	*info = -12;
 | |
|     } else if (*ldvt < m) {
 | |
| 	*info = -14;
 | |
|     } else if (*ldvt2 < m) {
 | |
| 	*info = -16;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLASD3", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*k == 1) {
 | |
| 	d__[1] = abs(z__[1]);
 | |
| 	scopy_(&m, &vt2[vt2_dim1 + 1], ldvt2, &vt[vt_dim1 + 1], ldvt);
 | |
| 	if (z__[1] > 0.f) {
 | |
| 	    scopy_(&n, &u2[u2_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
 | |
| 	} else {
 | |
| 	    i__1 = n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		u[i__ + u_dim1] = -u2[i__ + u2_dim1];
 | |
| /* L10: */
 | |
| 	    }
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Modify values DSIGMA(i) to make sure all DSIGMA(i)-DSIGMA(j) can */
 | |
| /*     be computed with high relative accuracy (barring over/underflow). */
 | |
| /*     This is a problem on machines without a guard digit in */
 | |
| /*     add/subtract (Cray XMP, Cray YMP, Cray C 90 and Cray 2). */
 | |
| /*     The following code replaces DSIGMA(I) by 2*DSIGMA(I)-DSIGMA(I), */
 | |
| /*     which on any of these machines zeros out the bottommost */
 | |
| /*     bit of DSIGMA(I) if it is 1; this makes the subsequent */
 | |
| /*     subtractions DSIGMA(I)-DSIGMA(J) unproblematic when cancellation */
 | |
| /*     occurs. On binary machines with a guard digit (almost all */
 | |
| /*     machines) it does not change DSIGMA(I) at all. On hexadecimal */
 | |
| /*     and decimal machines with a guard digit, it slightly */
 | |
| /*     changes the bottommost bits of DSIGMA(I). It does not account */
 | |
| /*     for hexadecimal or decimal machines without guard digits */
 | |
| /*     (we know of none). We use a subroutine call to compute */
 | |
| /*     2*DSIGMA(I) to prevent optimizing compilers from eliminating */
 | |
| /*     this code. */
 | |
| 
 | |
|     i__1 = *k;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	dsigma[i__] = slamc3_(&dsigma[i__], &dsigma[i__]) - dsigma[i__];
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Keep a copy of Z. */
 | |
| 
 | |
|     scopy_(k, &z__[1], &c__1, &q[q_offset], &c__1);
 | |
| 
 | |
| /*     Normalize Z. */
 | |
| 
 | |
|     rho = snrm2_(k, &z__[1], &c__1);
 | |
|     slascl_("G", &c__0, &c__0, &rho, &c_b13, k, &c__1, &z__[1], k, info);
 | |
|     rho *= rho;
 | |
| 
 | |
| /*     Find the new singular values. */
 | |
| 
 | |
|     i__1 = *k;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	slasd4_(k, &j, &dsigma[1], &z__[1], &u[j * u_dim1 + 1], &rho, &d__[j],
 | |
| 		 &vt[j * vt_dim1 + 1], info);
 | |
| 
 | |
| /*        If the zero finder fails, report the convergence failure. */
 | |
| 
 | |
| 	if (*info != 0) {
 | |
| 	    return;
 | |
| 	}
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
| /*     Compute updated Z. */
 | |
| 
 | |
|     i__1 = *k;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	z__[i__] = u[i__ + *k * u_dim1] * vt[i__ + *k * vt_dim1];
 | |
| 	i__2 = i__ - 1;
 | |
| 	for (j = 1; j <= i__2; ++j) {
 | |
| 	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
 | |
| 		    i__] - dsigma[j]) / (dsigma[i__] + dsigma[j]);
 | |
| /* L40: */
 | |
| 	}
 | |
| 	i__2 = *k - 1;
 | |
| 	for (j = i__; j <= i__2; ++j) {
 | |
| 	    z__[i__] *= u[i__ + j * u_dim1] * vt[i__ + j * vt_dim1] / (dsigma[
 | |
| 		    i__] - dsigma[j + 1]) / (dsigma[i__] + dsigma[j + 1]);
 | |
| /* L50: */
 | |
| 	}
 | |
| 	r__2 = sqrt((r__1 = z__[i__], abs(r__1)));
 | |
| 	z__[i__] = r_sign(&r__2, &q[i__ + q_dim1]);
 | |
| /* L60: */
 | |
|     }
 | |
| 
 | |
| /*     Compute left singular vectors of the modified diagonal matrix, */
 | |
| /*     and store related information for the right singular vectors. */
 | |
| 
 | |
|     i__1 = *k;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	vt[i__ * vt_dim1 + 1] = z__[1] / u[i__ * u_dim1 + 1] / vt[i__ * 
 | |
| 		vt_dim1 + 1];
 | |
| 	u[i__ * u_dim1 + 1] = -1.f;
 | |
| 	i__2 = *k;
 | |
| 	for (j = 2; j <= i__2; ++j) {
 | |
| 	    vt[j + i__ * vt_dim1] = z__[j] / u[j + i__ * u_dim1] / vt[j + i__ 
 | |
| 		    * vt_dim1];
 | |
| 	    u[j + i__ * u_dim1] = dsigma[j] * vt[j + i__ * vt_dim1];
 | |
| /* L70: */
 | |
| 	}
 | |
| 	temp = snrm2_(k, &u[i__ * u_dim1 + 1], &c__1);
 | |
| 	q[i__ * q_dim1 + 1] = u[i__ * u_dim1 + 1] / temp;
 | |
| 	i__2 = *k;
 | |
| 	for (j = 2; j <= i__2; ++j) {
 | |
| 	    jc = idxc[j];
 | |
| 	    q[j + i__ * q_dim1] = u[jc + i__ * u_dim1] / temp;
 | |
| /* L80: */
 | |
| 	}
 | |
| /* L90: */
 | |
|     }
 | |
| 
 | |
| /*     Update the left singular vector matrix. */
 | |
| 
 | |
|     if (*k == 2) {
 | |
| 	sgemm_("N", "N", &n, k, k, &c_b13, &u2[u2_offset], ldu2, &q[q_offset],
 | |
| 		 ldq, &c_b26, &u[u_offset], ldu);
 | |
| 	goto L100;
 | |
|     }
 | |
|     if (ctot[1] > 0) {
 | |
| 	sgemm_("N", "N", nl, k, &ctot[1], &c_b13, &u2[(u2_dim1 << 1) + 1], 
 | |
| 		ldu2, &q[q_dim1 + 2], ldq, &c_b26, &u[u_dim1 + 1], ldu);
 | |
| 	if (ctot[3] > 0) {
 | |
| 	    ktemp = ctot[1] + 2 + ctot[2];
 | |
| 	    sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1]
 | |
| 		    , ldu2, &q[ktemp + q_dim1], ldq, &c_b13, &u[u_dim1 + 1], 
 | |
| 		    ldu);
 | |
| 	}
 | |
|     } else if (ctot[3] > 0) {
 | |
| 	ktemp = ctot[1] + 2 + ctot[2];
 | |
| 	sgemm_("N", "N", nl, k, &ctot[3], &c_b13, &u2[ktemp * u2_dim1 + 1], 
 | |
| 		ldu2, &q[ktemp + q_dim1], ldq, &c_b26, &u[u_dim1 + 1], ldu);
 | |
|     } else {
 | |
| 	slacpy_("F", nl, k, &u2[u2_offset], ldu2, &u[u_offset], ldu);
 | |
|     }
 | |
|     scopy_(k, &q[q_dim1 + 1], ldq, &u[nlp1 + u_dim1], ldu);
 | |
|     ktemp = ctot[1] + 2;
 | |
|     ctemp = ctot[2] + ctot[3];
 | |
|     sgemm_("N", "N", nr, k, &ctemp, &c_b13, &u2[nlp2 + ktemp * u2_dim1], ldu2,
 | |
| 	     &q[ktemp + q_dim1], ldq, &c_b26, &u[nlp2 + u_dim1], ldu);
 | |
| 
 | |
| /*     Generate the right singular vectors. */
 | |
| 
 | |
| L100:
 | |
|     i__1 = *k;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	temp = snrm2_(k, &vt[i__ * vt_dim1 + 1], &c__1);
 | |
| 	q[i__ + q_dim1] = vt[i__ * vt_dim1 + 1] / temp;
 | |
| 	i__2 = *k;
 | |
| 	for (j = 2; j <= i__2; ++j) {
 | |
| 	    jc = idxc[j];
 | |
| 	    q[i__ + j * q_dim1] = vt[jc + i__ * vt_dim1] / temp;
 | |
| /* L110: */
 | |
| 	}
 | |
| /* L120: */
 | |
|     }
 | |
| 
 | |
| /*     Update the right singular vector matrix. */
 | |
| 
 | |
|     if (*k == 2) {
 | |
| 	sgemm_("N", "N", k, &m, k, &c_b13, &q[q_offset], ldq, &vt2[vt2_offset]
 | |
| 		, ldvt2, &c_b26, &vt[vt_offset], ldvt);
 | |
| 	return;
 | |
|     }
 | |
|     ktemp = ctot[1] + 1;
 | |
|     sgemm_("N", "N", k, &nlp1, &ktemp, &c_b13, &q[q_dim1 + 1], ldq, &vt2[
 | |
| 	    vt2_dim1 + 1], ldvt2, &c_b26, &vt[vt_dim1 + 1], ldvt);
 | |
|     ktemp = ctot[1] + 2 + ctot[2];
 | |
|     if (ktemp <= *ldvt2) {
 | |
| 	sgemm_("N", "N", k, &nlp1, &ctot[3], &c_b13, &q[ktemp * q_dim1 + 1], 
 | |
| 		ldq, &vt2[ktemp + vt2_dim1], ldvt2, &c_b13, &vt[vt_dim1 + 1], 
 | |
| 		ldvt);
 | |
|     }
 | |
| 
 | |
|     ktemp = ctot[1] + 1;
 | |
|     nrp1 = *nr + *sqre;
 | |
|     if (ktemp > 1) {
 | |
| 	i__1 = *k;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    q[i__ + ktemp * q_dim1] = q[i__ + q_dim1];
 | |
| /* L130: */
 | |
| 	}
 | |
| 	i__1 = m;
 | |
| 	for (i__ = nlp2; i__ <= i__1; ++i__) {
 | |
| 	    vt2[ktemp + i__ * vt2_dim1] = vt2[i__ * vt2_dim1 + 1];
 | |
| /* L140: */
 | |
| 	}
 | |
|     }
 | |
|     ctemp = ctot[2] + 1 + ctot[3];
 | |
|     sgemm_("N", "N", k, &nrp1, &ctemp, &c_b13, &q[ktemp * q_dim1 + 1], ldq, &
 | |
| 	    vt2[ktemp + nlp2 * vt2_dim1], ldvt2, &c_b26, &vt[nlp2 * vt_dim1 + 
 | |
| 	    1], ldvt);
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLASD3 */
 | |
| 
 | |
| } /* slasd3_ */
 | |
| 
 |