1213 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1213 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static real c_b30 = 0.f;
 | |
| 
 | |
| /* > \brief \b SLASD2 merges the two sets of singular values together into a single sorted set. Used by sbdsdc
 | |
| . */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLASD2 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slasd2.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slasd2.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slasd2.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLASD2( NL, NR, SQRE, K, D, Z, ALPHA, BETA, U, LDU, VT, */
 | |
| /*                          LDVT, DSIGMA, U2, LDU2, VT2, LDVT2, IDXP, IDX, */
 | |
| /*                          IDXC, IDXQ, COLTYP, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, K, LDU, LDU2, LDVT, LDVT2, NL, NR, SQRE */
 | |
| /*       REAL               ALPHA, BETA */
 | |
| /*       INTEGER            COLTYP( * ), IDX( * ), IDXC( * ), IDXP( * ), */
 | |
| /*      $                   IDXQ( * ) */
 | |
| /*       REAL               D( * ), DSIGMA( * ), U( LDU, * ), */
 | |
| /*      $                   U2( LDU2, * ), VT( LDVT, * ), VT2( LDVT2, * ), */
 | |
| /*      $                   Z( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLASD2 merges the two sets of singular values together into a single */
 | |
| /* > sorted set.  Then it tries to deflate the size of the problem. */
 | |
| /* > There are two ways in which deflation can occur:  when two or more */
 | |
| /* > singular values are close together or if there is a tiny entry in the */
 | |
| /* > Z vector.  For each such occurrence the order of the related secular */
 | |
| /* > equation problem is reduced by one. */
 | |
| /* > */
 | |
| /* > SLASD2 is called from SLASD1. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] NL */
 | |
| /* > \verbatim */
 | |
| /* >          NL is INTEGER */
 | |
| /* >         The row dimension of the upper block.  NL >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NR */
 | |
| /* > \verbatim */
 | |
| /* >          NR is INTEGER */
 | |
| /* >         The row dimension of the lower block.  NR >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SQRE */
 | |
| /* > \verbatim */
 | |
| /* >          SQRE is INTEGER */
 | |
| /* >         = 0: the lower block is an NR-by-NR square matrix. */
 | |
| /* >         = 1: the lower block is an NR-by-(NR+1) rectangular matrix. */
 | |
| /* > */
 | |
| /* >         The bidiagonal matrix has N = NL + NR + 1 rows and */
 | |
| /* >         M = N + SQRE >= N columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >         Contains the dimension of the non-deflated matrix, */
 | |
| /* >         This is the order of the related secular equation. 1 <= K <=N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >         On entry D contains the singular values of the two submatrices */
 | |
| /* >         to be combined.  On exit D contains the trailing (N-K) updated */
 | |
| /* >         singular values (those which were deflated) sorted into */
 | |
| /* >         increasing order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension (N) */
 | |
| /* >         On exit Z contains the updating row vector in the secular */
 | |
| /* >         equation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ALPHA */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHA is REAL */
 | |
| /* >         Contains the diagonal element associated with the added row. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL */
 | |
| /* >         Contains the off-diagonal element associated with the added */
 | |
| /* >         row. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is REAL array, dimension (LDU,N) */
 | |
| /* >         On entry U contains the left singular vectors of two */
 | |
| /* >         submatrices in the two square blocks with corners at (1,1), */
 | |
| /* >         (NL, NL), and (NL+2, NL+2), (N,N). */
 | |
| /* >         On exit U contains the trailing (N-K) updated left singular */
 | |
| /* >         vectors (those which were deflated) in its last N-K columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >         The leading dimension of the array U.  LDU >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is REAL array, dimension (LDVT,M) */
 | |
| /* >         On entry VT**T contains the right singular vectors of two */
 | |
| /* >         submatrices in the two square blocks with corners at (1,1), */
 | |
| /* >         (NL+1, NL+1), and (NL+2, NL+2), (M,M). */
 | |
| /* >         On exit VT**T contains the trailing (N-K) updated right singular */
 | |
| /* >         vectors (those which were deflated) in its last N-K columns. */
 | |
| /* >         In case SQRE =1, the last row of VT spans the right null */
 | |
| /* >         space. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT is INTEGER */
 | |
| /* >         The leading dimension of the array VT.  LDVT >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DSIGMA */
 | |
| /* > \verbatim */
 | |
| /* >          DSIGMA is REAL array, dimension (N) */
 | |
| /* >         Contains a copy of the diagonal elements (K-1 singular values */
 | |
| /* >         and one zero) in the secular equation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U2 */
 | |
| /* > \verbatim */
 | |
| /* >          U2 is REAL array, dimension (LDU2,N) */
 | |
| /* >         Contains a copy of the first K-1 left singular vectors which */
 | |
| /* >         will be used by SLASD3 in a matrix multiply (SGEMM) to solve */
 | |
| /* >         for the new left singular vectors. U2 is arranged into four */
 | |
| /* >         blocks. The first block contains a column with 1 at NL+1 and */
 | |
| /* >         zero everywhere else; the second block contains non-zero */
 | |
| /* >         entries only at and above NL; the third contains non-zero */
 | |
| /* >         entries only below NL+1; and the fourth is dense. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU2 */
 | |
| /* > \verbatim */
 | |
| /* >          LDU2 is INTEGER */
 | |
| /* >         The leading dimension of the array U2.  LDU2 >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VT2 */
 | |
| /* > \verbatim */
 | |
| /* >          VT2 is REAL array, dimension (LDVT2,N) */
 | |
| /* >         VT2**T contains a copy of the first K right singular vectors */
 | |
| /* >         which will be used by SLASD3 in a matrix multiply (SGEMM) to */
 | |
| /* >         solve for the new right singular vectors. VT2 is arranged into */
 | |
| /* >         three blocks. The first block contains a row that corresponds */
 | |
| /* >         to the special 0 diagonal element in SIGMA; the second block */
 | |
| /* >         contains non-zeros only at and before NL +1; the third block */
 | |
| /* >         contains non-zeros only at and after  NL +2. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT2 */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT2 is INTEGER */
 | |
| /* >         The leading dimension of the array VT2.  LDVT2 >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IDXP */
 | |
| /* > \verbatim */
 | |
| /* >          IDXP is INTEGER array, dimension (N) */
 | |
| /* >         This will contain the permutation used to place deflated */
 | |
| /* >         values of D at the end of the array. On output IDXP(2:K) */
 | |
| /* >         points to the nondeflated D-values and IDXP(K+1:N) */
 | |
| /* >         points to the deflated singular values. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IDX */
 | |
| /* > \verbatim */
 | |
| /* >          IDX is INTEGER array, dimension (N) */
 | |
| /* >         This will contain the permutation used to sort the contents of */
 | |
| /* >         D into ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IDXC */
 | |
| /* > \verbatim */
 | |
| /* >          IDXC is INTEGER array, dimension (N) */
 | |
| /* >         This will contain the permutation used to arrange the columns */
 | |
| /* >         of the deflated U matrix into three groups:  the first group */
 | |
| /* >         contains non-zero entries only at and above NL, the second */
 | |
| /* >         contains non-zero entries only below NL+2, and the third is */
 | |
| /* >         dense. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] IDXQ */
 | |
| /* > \verbatim */
 | |
| /* >          IDXQ is INTEGER array, dimension (N) */
 | |
| /* >         This contains the permutation which separately sorts the two */
 | |
| /* >         sub-problems in D into ascending order.  Note that entries in */
 | |
| /* >         the first hlaf of this permutation must first be moved one */
 | |
| /* >         position backward; and entries in the second half */
 | |
| /* >         must first have NL+1 added to their values. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] COLTYP */
 | |
| /* > \verbatim */
 | |
| /* >          COLTYP is INTEGER array, dimension (N) */
 | |
| /* >         As workspace, this will contain a label which will indicate */
 | |
| /* >         which of the following types a column in the U2 matrix or a */
 | |
| /* >         row in the VT2 matrix is: */
 | |
| /* >         1 : non-zero in the upper half only */
 | |
| /* >         2 : non-zero in the lower half only */
 | |
| /* >         3 : dense */
 | |
| /* >         4 : deflated */
 | |
| /* > */
 | |
| /* >         On exit, it is an array of dimension 4, with COLTYP(I) being */
 | |
| /* >         the dimension of the I-th type columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Huan Ren, Computer Science Division, University of */
 | |
| /* >     California at Berkeley, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slasd2_(integer *nl, integer *nr, integer *sqre, integer 
 | |
| 	*k, real *d__, real *z__, real *alpha, real *beta, real *u, integer *
 | |
| 	ldu, real *vt, integer *ldvt, real *dsigma, real *u2, integer *ldu2, 
 | |
| 	real *vt2, integer *ldvt2, integer *idxp, integer *idx, integer *idxc,
 | |
| 	 integer *idxq, integer *coltyp, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer u_dim1, u_offset, u2_dim1, u2_offset, vt_dim1, vt_offset, 
 | |
| 	    vt2_dim1, vt2_offset, i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer idxi, idxj, ctot[4];
 | |
|     extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, real *);
 | |
|     real c__;
 | |
|     integer i__, j, m, n;
 | |
|     real s;
 | |
|     integer idxjp, jprev, k2;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     real z1;
 | |
|     extern real slapy2_(real *, real *);
 | |
|     integer ct, jp;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void slamrg_(
 | |
| 	    integer *, integer *, real *, integer *, integer *, integer *);
 | |
|     real hlftol;
 | |
|     extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, integer *), slaset_(char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *);
 | |
|     real eps, tau, tol;
 | |
|     integer psm[4], nlp1, nlp2;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     --z__;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     vt_dim1 = *ldvt;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     --dsigma;
 | |
|     u2_dim1 = *ldu2;
 | |
|     u2_offset = 1 + u2_dim1 * 1;
 | |
|     u2 -= u2_offset;
 | |
|     vt2_dim1 = *ldvt2;
 | |
|     vt2_offset = 1 + vt2_dim1 * 1;
 | |
|     vt2 -= vt2_offset;
 | |
|     --idxp;
 | |
|     --idx;
 | |
|     --idxc;
 | |
|     --idxq;
 | |
|     --coltyp;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*nl < 1) {
 | |
| 	*info = -1;
 | |
|     } else if (*nr < 1) {
 | |
| 	*info = -2;
 | |
|     } else if (*sqre != 1 && *sqre != 0) {
 | |
| 	*info = -3;
 | |
|     }
 | |
| 
 | |
|     n = *nl + *nr + 1;
 | |
|     m = n + *sqre;
 | |
| 
 | |
|     if (*ldu < n) {
 | |
| 	*info = -10;
 | |
|     } else if (*ldvt < m) {
 | |
| 	*info = -12;
 | |
|     } else if (*ldu2 < n) {
 | |
| 	*info = -15;
 | |
|     } else if (*ldvt2 < m) {
 | |
| 	*info = -17;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLASD2", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     nlp1 = *nl + 1;
 | |
|     nlp2 = *nl + 2;
 | |
| 
 | |
| /*     Generate the first part of the vector Z; and move the singular */
 | |
| /*     values in the first part of D one position backward. */
 | |
| 
 | |
|     z1 = *alpha * vt[nlp1 + nlp1 * vt_dim1];
 | |
|     z__[1] = z1;
 | |
|     for (i__ = *nl; i__ >= 1; --i__) {
 | |
| 	z__[i__ + 1] = *alpha * vt[i__ + nlp1 * vt_dim1];
 | |
| 	d__[i__ + 1] = d__[i__];
 | |
| 	idxq[i__ + 1] = idxq[i__] + 1;
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
| /*     Generate the second part of the vector Z. */
 | |
| 
 | |
|     i__1 = m;
 | |
|     for (i__ = nlp2; i__ <= i__1; ++i__) {
 | |
| 	z__[i__] = *beta * vt[i__ + nlp2 * vt_dim1];
 | |
| /* L20: */
 | |
|     }
 | |
| 
 | |
| /*     Initialize some reference arrays. */
 | |
| 
 | |
|     i__1 = nlp1;
 | |
|     for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	coltyp[i__] = 1;
 | |
| /* L30: */
 | |
|     }
 | |
|     i__1 = n;
 | |
|     for (i__ = nlp2; i__ <= i__1; ++i__) {
 | |
| 	coltyp[i__] = 2;
 | |
| /* L40: */
 | |
|     }
 | |
| 
 | |
| /*     Sort the singular values into increasing order */
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (i__ = nlp2; i__ <= i__1; ++i__) {
 | |
| 	idxq[i__] += nlp1;
 | |
| /* L50: */
 | |
|     }
 | |
| 
 | |
| /*     DSIGMA, IDXC, IDXC, and the first column of U2 */
 | |
| /*     are used as storage space. */
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	dsigma[i__] = d__[idxq[i__]];
 | |
| 	u2[i__ + u2_dim1] = z__[idxq[i__]];
 | |
| 	idxc[i__] = coltyp[idxq[i__]];
 | |
| /* L60: */
 | |
|     }
 | |
| 
 | |
|     slamrg_(nl, nr, &dsigma[2], &c__1, &c__1, &idx[2]);
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (i__ = 2; i__ <= i__1; ++i__) {
 | |
| 	idxi = idx[i__] + 1;
 | |
| 	d__[i__] = dsigma[idxi];
 | |
| 	z__[i__] = u2[idxi + u2_dim1];
 | |
| 	coltyp[i__] = idxc[idxi];
 | |
| /* L70: */
 | |
|     }
 | |
| 
 | |
| /*     Calculate the allowable deflation tolerance */
 | |
| 
 | |
|     eps = slamch_("Epsilon");
 | |
| /* Computing MAX */
 | |
|     r__1 = abs(*alpha), r__2 = abs(*beta);
 | |
|     tol = f2cmax(r__1,r__2);
 | |
| /* Computing MAX */
 | |
|     r__2 = (r__1 = d__[n], abs(r__1));
 | |
|     tol = eps * 8.f * f2cmax(r__2,tol);
 | |
| 
 | |
| /*     There are 2 kinds of deflation -- first a value in the z-vector */
 | |
| /*     is small, second two (or more) singular values are very close */
 | |
| /*     together (their difference is small). */
 | |
| 
 | |
| /*     If the value in the z-vector is small, we simply permute the */
 | |
| /*     array so that the corresponding singular value is moved to the */
 | |
| /*     end. */
 | |
| 
 | |
| /*     If two values in the D-vector are close, we perform a two-sided */
 | |
| /*     rotation designed to make one of the corresponding z-vector */
 | |
| /*     entries zero, and then permute the array so that the deflated */
 | |
| /*     singular value is moved to the end. */
 | |
| 
 | |
| /*     If there are multiple singular values then the problem deflates. */
 | |
| /*     Here the number of equal singular values are found.  As each equal */
 | |
| /*     singular value is found, an elementary reflector is computed to */
 | |
| /*     rotate the corresponding singular subspace so that the */
 | |
| /*     corresponding components of Z are zero in this new basis. */
 | |
| 
 | |
|     *k = 1;
 | |
|     k2 = n + 1;
 | |
|     i__1 = n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	if ((r__1 = z__[j], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*           Deflate due to small z component. */
 | |
| 
 | |
| 	    --k2;
 | |
| 	    idxp[k2] = j;
 | |
| 	    coltyp[j] = 4;
 | |
| 	    if (j == n) {
 | |
| 		goto L120;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    jprev = j;
 | |
| 	    goto L90;
 | |
| 	}
 | |
| /* L80: */
 | |
|     }
 | |
| L90:
 | |
|     j = jprev;
 | |
| L100:
 | |
|     ++j;
 | |
|     if (j > n) {
 | |
| 	goto L110;
 | |
|     }
 | |
|     if ((r__1 = z__[j], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*        Deflate due to small z component. */
 | |
| 
 | |
| 	--k2;
 | |
| 	idxp[k2] = j;
 | |
| 	coltyp[j] = 4;
 | |
|     } else {
 | |
| 
 | |
| /*        Check if singular values are close enough to allow deflation. */
 | |
| 
 | |
| 	if ((r__1 = d__[j] - d__[jprev], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*           Deflation is possible. */
 | |
| 
 | |
| 	    s = z__[jprev];
 | |
| 	    c__ = z__[j];
 | |
| 
 | |
| /*           Find sqrt(a**2+b**2) without overflow or */
 | |
| /*           destructive underflow. */
 | |
| 
 | |
| 	    tau = slapy2_(&c__, &s);
 | |
| 	    c__ /= tau;
 | |
| 	    s = -s / tau;
 | |
| 	    z__[j] = tau;
 | |
| 	    z__[jprev] = 0.f;
 | |
| 
 | |
| /*           Apply back the Givens rotation to the left and right */
 | |
| /*           singular vector matrices. */
 | |
| 
 | |
| 	    idxjp = idxq[idx[jprev] + 1];
 | |
| 	    idxj = idxq[idx[j] + 1];
 | |
| 	    if (idxjp <= nlp1) {
 | |
| 		--idxjp;
 | |
| 	    }
 | |
| 	    if (idxj <= nlp1) {
 | |
| 		--idxj;
 | |
| 	    }
 | |
| 	    srot_(&n, &u[idxjp * u_dim1 + 1], &c__1, &u[idxj * u_dim1 + 1], &
 | |
| 		    c__1, &c__, &s);
 | |
| 	    srot_(&m, &vt[idxjp + vt_dim1], ldvt, &vt[idxj + vt_dim1], ldvt, &
 | |
| 		    c__, &s);
 | |
| 	    if (coltyp[j] != coltyp[jprev]) {
 | |
| 		coltyp[j] = 3;
 | |
| 	    }
 | |
| 	    coltyp[jprev] = 4;
 | |
| 	    --k2;
 | |
| 	    idxp[k2] = jprev;
 | |
| 	    jprev = j;
 | |
| 	} else {
 | |
| 	    ++(*k);
 | |
| 	    u2[*k + u2_dim1] = z__[jprev];
 | |
| 	    dsigma[*k] = d__[jprev];
 | |
| 	    idxp[*k] = jprev;
 | |
| 	    jprev = j;
 | |
| 	}
 | |
|     }
 | |
|     goto L100;
 | |
| L110:
 | |
| 
 | |
| /*     Record the last singular value. */
 | |
| 
 | |
|     ++(*k);
 | |
|     u2[*k + u2_dim1] = z__[jprev];
 | |
|     dsigma[*k] = d__[jprev];
 | |
|     idxp[*k] = jprev;
 | |
| 
 | |
| L120:
 | |
| 
 | |
| /*     Count up the total number of the various types of columns, then */
 | |
| /*     form a permutation which positions the four column types into */
 | |
| /*     four groups of uniform structure (although one or more of these */
 | |
| /*     groups may be empty). */
 | |
| 
 | |
|     for (j = 1; j <= 4; ++j) {
 | |
| 	ctot[j - 1] = 0;
 | |
| /* L130: */
 | |
|     }
 | |
|     i__1 = n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	ct = coltyp[j];
 | |
| 	++ctot[ct - 1];
 | |
| /* L140: */
 | |
|     }
 | |
| 
 | |
| /*     PSM(*) = Position in SubMatrix (of types 1 through 4) */
 | |
| 
 | |
|     psm[0] = 2;
 | |
|     psm[1] = ctot[0] + 2;
 | |
|     psm[2] = psm[1] + ctot[1];
 | |
|     psm[3] = psm[2] + ctot[2];
 | |
| 
 | |
| /*     Fill out the IDXC array so that the permutation which it induces */
 | |
| /*     will place all type-1 columns first, all type-2 columns next, */
 | |
| /*     then all type-3's, and finally all type-4's, starting from the */
 | |
| /*     second column. This applies similarly to the rows of VT. */
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	jp = idxp[j];
 | |
| 	ct = coltyp[jp];
 | |
| 	idxc[psm[ct - 1]] = j;
 | |
| 	++psm[ct - 1];
 | |
| /* L150: */
 | |
|     }
 | |
| 
 | |
| /*     Sort the singular values and corresponding singular vectors into */
 | |
| /*     DSIGMA, U2, and VT2 respectively.  The singular values/vectors */
 | |
| /*     which were not deflated go into the first K slots of DSIGMA, U2, */
 | |
| /*     and VT2 respectively, while those which were deflated go into the */
 | |
| /*     last N - K slots, except that the first column/row will be treated */
 | |
| /*     separately. */
 | |
| 
 | |
|     i__1 = n;
 | |
|     for (j = 2; j <= i__1; ++j) {
 | |
| 	jp = idxp[j];
 | |
| 	dsigma[j] = d__[jp];
 | |
| 	idxj = idxq[idx[idxp[idxc[j]]] + 1];
 | |
| 	if (idxj <= nlp1) {
 | |
| 	    --idxj;
 | |
| 	}
 | |
| 	scopy_(&n, &u[idxj * u_dim1 + 1], &c__1, &u2[j * u2_dim1 + 1], &c__1);
 | |
| 	scopy_(&m, &vt[idxj + vt_dim1], ldvt, &vt2[j + vt2_dim1], ldvt2);
 | |
| /* L160: */
 | |
|     }
 | |
| 
 | |
| /*     Determine DSIGMA(1), DSIGMA(2) and Z(1) */
 | |
| 
 | |
|     dsigma[1] = 0.f;
 | |
|     hlftol = tol / 2.f;
 | |
|     if (abs(dsigma[2]) <= hlftol) {
 | |
| 	dsigma[2] = hlftol;
 | |
|     }
 | |
|     if (m > n) {
 | |
| 	z__[1] = slapy2_(&z1, &z__[m]);
 | |
| 	if (z__[1] <= tol) {
 | |
| 	    c__ = 1.f;
 | |
| 	    s = 0.f;
 | |
| 	    z__[1] = tol;
 | |
| 	} else {
 | |
| 	    c__ = z1 / z__[1];
 | |
| 	    s = z__[m] / z__[1];
 | |
| 	}
 | |
|     } else {
 | |
| 	if (abs(z1) <= tol) {
 | |
| 	    z__[1] = tol;
 | |
| 	} else {
 | |
| 	    z__[1] = z1;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Move the rest of the updating row to Z. */
 | |
| 
 | |
|     i__1 = *k - 1;
 | |
|     scopy_(&i__1, &u2[u2_dim1 + 2], &c__1, &z__[2], &c__1);
 | |
| 
 | |
| /*     Determine the first column of U2, the first row of VT2 and the */
 | |
| /*     last row of VT. */
 | |
| 
 | |
|     slaset_("A", &n, &c__1, &c_b30, &c_b30, &u2[u2_offset], ldu2);
 | |
|     u2[nlp1 + u2_dim1] = 1.f;
 | |
|     if (m > n) {
 | |
| 	i__1 = nlp1;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    vt[m + i__ * vt_dim1] = -s * vt[nlp1 + i__ * vt_dim1];
 | |
| 	    vt2[i__ * vt2_dim1 + 1] = c__ * vt[nlp1 + i__ * vt_dim1];
 | |
| /* L170: */
 | |
| 	}
 | |
| 	i__1 = m;
 | |
| 	for (i__ = nlp2; i__ <= i__1; ++i__) {
 | |
| 	    vt2[i__ * vt2_dim1 + 1] = s * vt[m + i__ * vt_dim1];
 | |
| 	    vt[m + i__ * vt_dim1] = c__ * vt[m + i__ * vt_dim1];
 | |
| /* L180: */
 | |
| 	}
 | |
|     } else {
 | |
| 	scopy_(&m, &vt[nlp1 + vt_dim1], ldvt, &vt2[vt2_dim1 + 1], ldvt2);
 | |
|     }
 | |
|     if (m > n) {
 | |
| 	scopy_(&m, &vt[m + vt_dim1], ldvt, &vt2[m + vt2_dim1], ldvt2);
 | |
|     }
 | |
| 
 | |
| /*     The deflated singular values and their corresponding vectors go */
 | |
| /*     into the back of D, U, and V respectively. */
 | |
| 
 | |
|     if (n > *k) {
 | |
| 	i__1 = n - *k;
 | |
| 	scopy_(&i__1, &dsigma[*k + 1], &c__1, &d__[*k + 1], &c__1);
 | |
| 	i__1 = n - *k;
 | |
| 	slacpy_("A", &n, &i__1, &u2[(*k + 1) * u2_dim1 + 1], ldu2, &u[(*k + 1)
 | |
| 		 * u_dim1 + 1], ldu);
 | |
| 	i__1 = n - *k;
 | |
| 	slacpy_("A", &i__1, &m, &vt2[*k + 1 + vt2_dim1], ldvt2, &vt[*k + 1 + 
 | |
| 		vt_dim1], ldvt);
 | |
|     }
 | |
| 
 | |
| /*     Copy CTOT into COLTYP for referencing in SLASD3. */
 | |
| 
 | |
|     for (j = 1; j <= 4; ++j) {
 | |
| 	coltyp[j] = ctot[j - 1];
 | |
| /* L190: */
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SLASD2 */
 | |
| 
 | |
| } /* slasd2_ */
 | |
| 
 |