1493 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1493 lines
		
	
	
		
			46 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__2 = 2;
 | |
| 
 | |
| /* > \brief \b SLARRE given the tridiagonal matrix T, sets small off-diagonal elements to zero and for each un
 | |
| reduced block Ti, finds base representations and eigenvalues. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLARRE + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarre.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarre.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarre.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLARRE( RANGE, N, VL, VU, IL, IU, D, E, E2, */
 | |
| /*                           RTOL1, RTOL2, SPLTOL, NSPLIT, ISPLIT, M, */
 | |
| /*                           W, WERR, WGAP, IBLOCK, INDEXW, GERS, PIVMIN, */
 | |
| /*                           WORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          RANGE */
 | |
| /*       INTEGER            IL, INFO, IU, M, N, NSPLIT */
 | |
| /*       REAL               PIVMIN, RTOL1, RTOL2, SPLTOL, VL, VU */
 | |
| /*       INTEGER            IBLOCK( * ), ISPLIT( * ), IWORK( * ), */
 | |
| /*      $                   INDEXW( * ) */
 | |
| /*       REAL               D( * ), E( * ), E2( * ), GERS( * ), */
 | |
| /*      $                   W( * ),WERR( * ), WGAP( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > To find the desired eigenvalues of a given real symmetric */
 | |
| /* > tridiagonal matrix T, SLARRE sets any "small" off-diagonal */
 | |
| /* > elements to zero, and for each unreduced block T_i, it finds */
 | |
| /* > (a) a suitable shift at one end of the block's spectrum, */
 | |
| /* > (b) the base representation, T_i - sigma_i I = L_i D_i L_i^T, and */
 | |
| /* > (c) eigenvalues of each L_i D_i L_i^T. */
 | |
| /* > The representations and eigenvalues found are then used by */
 | |
| /* > SSTEMR to compute the eigenvectors of T. */
 | |
| /* > The accuracy varies depending on whether bisection is used to */
 | |
| /* > find a few eigenvalues or the dqds algorithm (subroutine SLASQ2) to */
 | |
| /* > conpute all and then discard any unwanted one. */
 | |
| /* > As an added benefit, SLARRE also outputs the n */
 | |
| /* > Gerschgorin intervals for the matrices L_i D_i L_i^T. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] RANGE */
 | |
| /* > \verbatim */
 | |
| /* >          RANGE is CHARACTER*1 */
 | |
| /* >          = 'A': ("All")   all eigenvalues will be found. */
 | |
| /* >          = 'V': ("Value") all eigenvalues in the half-open interval */
 | |
| /* >                           (VL, VU] will be found. */
 | |
| /* >          = 'I': ("Index") the IL-th through IU-th eigenvalues (of the */
 | |
| /* >                           entire matrix) will be found. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix. N > 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is REAL */
 | |
| /* >          If RANGE='V', the lower bound for the eigenvalues. */
 | |
| /* >          Eigenvalues less than or equal to VL, or greater than VU, */
 | |
| /* >          will not be returned.  VL < VU. */
 | |
| /* >          If RANGE='I' or ='A', SLARRE computes bounds on the desired */
 | |
| /* >          part of the spectrum. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] VU */
 | |
| /* > \verbatim */
 | |
| /* >          VU is REAL */
 | |
| /* >          If RANGE='V', the upper bound for the eigenvalues. */
 | |
| /* >          Eigenvalues less than or equal to VL, or greater than VU, */
 | |
| /* >          will not be returned.  VL < VU. */
 | |
| /* >          If RANGE='I' or ='A', SLARRE computes bounds on the desired */
 | |
| /* >          part of the spectrum. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IL */
 | |
| /* > \verbatim */
 | |
| /* >          IL is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          smallest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IU */
 | |
| /* > \verbatim */
 | |
| /* >          IU is INTEGER */
 | |
| /* >          If RANGE='I', the index of the */
 | |
| /* >          largest eigenvalue to be returned. */
 | |
| /* >          1 <= IL <= IU <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >          On entry, the N diagonal elements of the tridiagonal */
 | |
| /* >          matrix T. */
 | |
| /* >          On exit, the N diagonal elements of the diagonal */
 | |
| /* >          matrices D_i. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] E */
 | |
| /* > \verbatim */
 | |
| /* >          E is REAL array, dimension (N) */
 | |
| /* >          On entry, the first (N-1) entries contain the subdiagonal */
 | |
| /* >          elements of the tridiagonal matrix T; E(N) need not be set. */
 | |
| /* >          On exit, E contains the subdiagonal elements of the unit */
 | |
| /* >          bidiagonal matrices L_i. The entries E( ISPLIT( I ) ), */
 | |
| /* >          1 <= I <= NSPLIT, contain the base points sigma_i on output. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] E2 */
 | |
| /* > \verbatim */
 | |
| /* >          E2 is REAL array, dimension (N) */
 | |
| /* >          On entry, the first (N-1) entries contain the SQUARES of the */
 | |
| /* >          subdiagonal elements of the tridiagonal matrix T; */
 | |
| /* >          E2(N) need not be set. */
 | |
| /* >          On exit, the entries E2( ISPLIT( I ) ), */
 | |
| /* >          1 <= I <= NSPLIT, have been set to zero */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RTOL1 */
 | |
| /* > \verbatim */
 | |
| /* >          RTOL1 is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RTOL2 */
 | |
| /* > \verbatim */
 | |
| /* >          RTOL2 is REAL */
 | |
| /* >           Parameters for bisection. */
 | |
| /* >           An interval [LEFT,RIGHT] has converged if */
 | |
| /* >           RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SPLTOL */
 | |
| /* > \verbatim */
 | |
| /* >          SPLTOL is REAL */
 | |
| /* >          The threshold for splitting. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] NSPLIT */
 | |
| /* > \verbatim */
 | |
| /* >          NSPLIT is INTEGER */
 | |
| /* >          The number of blocks T splits into. 1 <= NSPLIT <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ISPLIT */
 | |
| /* > \verbatim */
 | |
| /* >          ISPLIT is INTEGER array, dimension (N) */
 | |
| /* >          The splitting points, at which T breaks up into blocks. */
 | |
| /* >          The first block consists of rows/columns 1 to ISPLIT(1), */
 | |
| /* >          the second of rows/columns ISPLIT(1)+1 through ISPLIT(2), */
 | |
| /* >          etc., and the NSPLIT-th consists of rows/columns */
 | |
| /* >          ISPLIT(NSPLIT-1)+1 through ISPLIT(NSPLIT)=N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The total number of eigenvalues (of all L_i D_i L_i^T) */
 | |
| /* >          found. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is REAL array, dimension (N) */
 | |
| /* >          The first M elements contain the eigenvalues. The */
 | |
| /* >          eigenvalues of each of the blocks, L_i D_i L_i^T, are */
 | |
| /* >          sorted in ascending order ( SLARRE may use the */
 | |
| /* >          remaining N-M elements as workspace). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WERR */
 | |
| /* > \verbatim */
 | |
| /* >          WERR is REAL array, dimension (N) */
 | |
| /* >          The error bound on the corresponding eigenvalue in W. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WGAP */
 | |
| /* > \verbatim */
 | |
| /* >          WGAP is REAL array, dimension (N) */
 | |
| /* >          The separation from the right neighbor eigenvalue in W. */
 | |
| /* >          The gap is only with respect to the eigenvalues of the same block */
 | |
| /* >          as each block has its own representation tree. */
 | |
| /* >          Exception: at the right end of a block we store the left gap */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IBLOCK */
 | |
| /* > \verbatim */
 | |
| /* >          IBLOCK is INTEGER array, dimension (N) */
 | |
| /* >          The indices of the blocks (submatrices) associated with the */
 | |
| /* >          corresponding eigenvalues in W; IBLOCK(i)=1 if eigenvalue */
 | |
| /* >          W(i) belongs to the first block from the top, =2 if W(i) */
 | |
| /* >          belongs to the second block, etc. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INDEXW */
 | |
| /* > \verbatim */
 | |
| /* >          INDEXW is INTEGER array, dimension (N) */
 | |
| /* >          The indices of the eigenvalues within each block (submatrix); */
 | |
| /* >          for example, INDEXW(i)= 10 and IBLOCK(i)=2 imply that the */
 | |
| /* >          i-th eigenvalue W(i) is the 10-th eigenvalue in block 2 */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] GERS */
 | |
| /* > \verbatim */
 | |
| /* >          GERS is REAL array, dimension (2*N) */
 | |
| /* >          The N Gerschgorin intervals (the i-th Gerschgorin interval */
 | |
| /* >          is (GERS(2*i-1), GERS(2*i)). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] PIVMIN */
 | |
| /* > \verbatim */
 | |
| /* >          PIVMIN is REAL */
 | |
| /* >          The minimum pivot in the Sturm sequence for T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (6*N) */
 | |
| /* >          Workspace. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (5*N) */
 | |
| /* >          Workspace. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          > 0:  A problem occurred in SLARRE. */
 | |
| /* >          < 0:  One of the called subroutines signaled an internal problem. */
 | |
| /* >                Needs inspection of the corresponding parameter IINFO */
 | |
| /* >                for further information. */
 | |
| /* > */
 | |
| /* >          =-1:  Problem in SLARRD. */
 | |
| /* >          = 2:  No base representation could be found in MAXTRY iterations. */
 | |
| /* >                Increasing MAXTRY and recompilation might be a remedy. */
 | |
| /* >          =-3:  Problem in SLARRB when computing the refined root */
 | |
| /* >                representation for SLASQ2. */
 | |
| /* >          =-4:  Problem in SLARRB when preforming bisection on the */
 | |
| /* >                desired part of the spectrum. */
 | |
| /* >          =-5:  Problem in SLASQ2. */
 | |
| /* >          =-6:  Problem in SLASQ2. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  The base representations are required to suffer very little */
 | |
| /* >  element growth and consequently define all their eigenvalues to */
 | |
| /* >  high relative accuracy. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Beresford Parlett, University of California, Berkeley, USA \n */
 | |
| /* >     Jim Demmel, University of California, Berkeley, USA \n */
 | |
| /* >     Inderjit Dhillon, University of Texas, Austin, USA \n */
 | |
| /* >     Osni Marques, LBNL/NERSC, USA \n */
 | |
| /* >     Christof Voemel, University of California, Berkeley, USA \n */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slarre_(char *range, integer *n, real *vl, real *vu, 
 | |
| 	integer *il, integer *iu, real *d__, real *e, real *e2, real *rtol1, 
 | |
| 	real *rtol2, real *spltol, integer *nsplit, integer *isplit, integer *
 | |
| 	m, real *w, real *werr, real *wgap, integer *iblock, integer *indexw, 
 | |
| 	real *gers, real *pivmin, real *work, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1, i__2;
 | |
|     real r__1, r__2, r__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real eabs;
 | |
|     integer iend, jblk;
 | |
|     real eold;
 | |
|     integer indl;
 | |
|     real dmax__, emax;
 | |
|     integer wend, idum, indu;
 | |
|     real rtol;
 | |
|     integer i__, j, iseed[4];
 | |
|     real avgap, sigma;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer iinfo;
 | |
|     logical norep;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     real s1, s2;
 | |
|     extern /* Subroutine */ void slasq2_(integer *, real *, integer *);
 | |
|     integer mb;
 | |
|     real gl;
 | |
|     integer in, mm;
 | |
|     real gu;
 | |
|     integer ibegin;
 | |
|     logical forceb;
 | |
|     integer irange;
 | |
|     real sgndef;
 | |
|     extern real slamch_(char *);
 | |
|     integer wbegin;
 | |
|     real safmin, spdiam;
 | |
|     extern /* Subroutine */ void slarra_(integer *, real *, real *, real *, 
 | |
| 	    real *, real *, integer *, integer *, integer *);
 | |
|     logical usedqd;
 | |
|     real clwdth, isleft;
 | |
|     extern /* Subroutine */ void slarrb_(integer *, real *, real *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, real *, real *, 
 | |
| 	    real *, integer *, real *, real *, integer *, integer *), slarrc_(
 | |
| 	    char *, integer *, real *, real *, real *, real *, real *, 
 | |
| 	    integer *, integer *, integer *, integer *), slarrd_(char 
 | |
| 	    *, char *, integer *, real *, real *, integer *, integer *, real *
 | |
| 	    , real *, real *, real *, real *, real *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, real *, real *, integer *, integer *, 
 | |
| 	    real *, integer *, integer *), slarrk_(integer *, 
 | |
| 	    integer *, real *, real *, real *, real *, real *, real *, real *,
 | |
| 	     real *, integer *);
 | |
|     real isrght, bsrtol, dpivot;
 | |
|     extern /* Subroutine */ void slarnv_(integer *, integer *, integer *, real 
 | |
| 	    *);
 | |
|     integer cnt;
 | |
|     real eps, tau, tmp, rtl;
 | |
|     integer cnt1, cnt2;
 | |
|     real tmp1;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.8.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iwork;
 | |
|     --work;
 | |
|     --gers;
 | |
|     --indexw;
 | |
|     --iblock;
 | |
|     --wgap;
 | |
|     --werr;
 | |
|     --w;
 | |
|     --isplit;
 | |
|     --e2;
 | |
|     --e;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n <= 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Decode RANGE */
 | |
| 
 | |
|     if (lsame_(range, "A")) {
 | |
| 	irange = 1;
 | |
|     } else if (lsame_(range, "V")) {
 | |
| 	irange = 3;
 | |
|     } else if (lsame_(range, "I")) {
 | |
| 	irange = 2;
 | |
|     }
 | |
|     *m = 0;
 | |
| /*     Get machine constants */
 | |
|     safmin = slamch_("S");
 | |
|     eps = slamch_("P");
 | |
| /*     Set parameters */
 | |
|     rtl = eps * 100.f;
 | |
| /*     If one were ever to ask for less initial precision in BSRTOL, */
 | |
| /*     one should keep in mind that for the subset case, the extremal */
 | |
| /*     eigenvalues must be at least as accurate as the current setting */
 | |
| /*     (eigenvalues in the middle need not as much accuracy) */
 | |
|     bsrtol = sqrt(eps) * 5e-4f;
 | |
| /*     Treat case of 1x1 matrix for quick return */
 | |
|     if (*n == 1) {
 | |
| 	if (irange == 1 || irange == 3 && d__[1] > *vl && d__[1] <= *vu || 
 | |
| 		irange == 2 && *il == 1 && *iu == 1) {
 | |
| 	    *m = 1;
 | |
| 	    w[1] = d__[1];
 | |
| /*           The computation error of the eigenvalue is zero */
 | |
| 	    werr[1] = 0.f;
 | |
| 	    wgap[1] = 0.f;
 | |
| 	    iblock[1] = 1;
 | |
| 	    indexw[1] = 1;
 | |
| 	    gers[1] = d__[1];
 | |
| 	    gers[2] = d__[1];
 | |
| 	}
 | |
| /*        store the shift for the initial RRR, which is zero in this case */
 | |
| 	e[1] = 0.f;
 | |
| 	return;
 | |
|     }
 | |
| /*     General case: tridiagonal matrix of order > 1 */
 | |
| 
 | |
| /*     Init WERR, WGAP. Compute Gerschgorin intervals and spectral diameter. */
 | |
| /*     Compute maximum off-diagonal entry and pivmin. */
 | |
|     gl = d__[1];
 | |
|     gu = d__[1];
 | |
|     eold = 0.f;
 | |
|     emax = 0.f;
 | |
|     e[*n] = 0.f;
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	werr[i__] = 0.f;
 | |
| 	wgap[i__] = 0.f;
 | |
| 	eabs = (r__1 = e[i__], abs(r__1));
 | |
| 	if (eabs >= emax) {
 | |
| 	    emax = eabs;
 | |
| 	}
 | |
| 	tmp1 = eabs + eold;
 | |
| 	gers[(i__ << 1) - 1] = d__[i__] - tmp1;
 | |
| /* Computing MIN */
 | |
| 	r__1 = gl, r__2 = gers[(i__ << 1) - 1];
 | |
| 	gl = f2cmin(r__1,r__2);
 | |
| 	gers[i__ * 2] = d__[i__] + tmp1;
 | |
| /* Computing MAX */
 | |
| 	r__1 = gu, r__2 = gers[i__ * 2];
 | |
| 	gu = f2cmax(r__1,r__2);
 | |
| 	eold = eabs;
 | |
| /* L5: */
 | |
|     }
 | |
| /*     The minimum pivot allowed in the Sturm sequence for T */
 | |
| /* Computing MAX */
 | |
| /* Computing 2nd power */
 | |
|     r__3 = emax;
 | |
|     r__1 = 1.f, r__2 = r__3 * r__3;
 | |
|     *pivmin = safmin * f2cmax(r__1,r__2);
 | |
| /*     Compute spectral diameter. The Gerschgorin bounds give an */
 | |
| /*     estimate that is wrong by at most a factor of SQRT(2) */
 | |
|     spdiam = gu - gl;
 | |
| /*     Compute splitting points */
 | |
|     slarra_(n, &d__[1], &e[1], &e2[1], spltol, &spdiam, nsplit, &isplit[1], &
 | |
| 	    iinfo);
 | |
| /*     Can force use of bisection instead of faster DQDS. */
 | |
| /*     Option left in the code for future multisection work. */
 | |
|     forceb = FALSE_;
 | |
| /*     Initialize USEDQD, DQDS should be used for ALLRNG unless someone */
 | |
| /*     explicitly wants bisection. */
 | |
|     usedqd = irange == 1 && ! forceb;
 | |
|     if (irange == 1 && ! forceb) {
 | |
| /*        Set interval [VL,VU] that contains all eigenvalues */
 | |
| 	*vl = gl;
 | |
| 	*vu = gu;
 | |
|     } else {
 | |
| /*        We call SLARRD to find crude approximations to the eigenvalues */
 | |
| /*        in the desired range. In case IRANGE = INDRNG, we also obtain the */
 | |
| /*        interval (VL,VU] that contains all the wanted eigenvalues. */
 | |
| /*        An interval [LEFT,RIGHT] has converged if */
 | |
| /*        RIGHT-LEFT.LT.RTOL*MAX(ABS(LEFT),ABS(RIGHT)) */
 | |
| /*        SLARRD needs a WORK of size 4*N, IWORK of size 3*N */
 | |
| 	slarrd_(range, "B", n, vl, vu, il, iu, &gers[1], &bsrtol, &d__[1], &e[
 | |
| 		1], &e2[1], pivmin, nsplit, &isplit[1], &mm, &w[1], &werr[1], 
 | |
| 		vl, vu, &iblock[1], &indexw[1], &work[1], &iwork[1], &iinfo);
 | |
| 	if (iinfo != 0) {
 | |
| 	    *info = -1;
 | |
| 	    return;
 | |
| 	}
 | |
| /*        Make sure that the entries M+1 to N in W, WERR, IBLOCK, INDEXW are 0 */
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = mm + 1; i__ <= i__1; ++i__) {
 | |
| 	    w[i__] = 0.f;
 | |
| 	    werr[i__] = 0.f;
 | |
| 	    iblock[i__] = 0;
 | |
| 	    indexw[i__] = 0;
 | |
| /* L14: */
 | |
| 	}
 | |
|     }
 | |
| /* ** */
 | |
| /*     Loop over unreduced blocks */
 | |
|     ibegin = 1;
 | |
|     wbegin = 1;
 | |
|     i__1 = *nsplit;
 | |
|     for (jblk = 1; jblk <= i__1; ++jblk) {
 | |
| 	iend = isplit[jblk];
 | |
| 	in = iend - ibegin + 1;
 | |
| /*        1 X 1 block */
 | |
| 	if (in == 1) {
 | |
| 	    if (irange == 1 || irange == 3 && d__[ibegin] > *vl && d__[ibegin]
 | |
| 		     <= *vu || irange == 2 && iblock[wbegin] == jblk) {
 | |
| 		++(*m);
 | |
| 		w[*m] = d__[ibegin];
 | |
| 		werr[*m] = 0.f;
 | |
| /*              The gap for a single block doesn't matter for the later */
 | |
| /*              algorithm and is assigned an arbitrary large value */
 | |
| 		wgap[*m] = 0.f;
 | |
| 		iblock[*m] = jblk;
 | |
| 		indexw[*m] = 1;
 | |
| 		++wbegin;
 | |
| 	    }
 | |
| /*           E( IEND ) holds the shift for the initial RRR */
 | |
| 	    e[iend] = 0.f;
 | |
| 	    ibegin = iend + 1;
 | |
| 	    goto L170;
 | |
| 	}
 | |
| 
 | |
| /*        Blocks of size larger than 1x1 */
 | |
| 
 | |
| /*        E( IEND ) will hold the shift for the initial RRR, for now set it =0 */
 | |
| 	e[iend] = 0.f;
 | |
| 
 | |
| /*        Find local outer bounds GL,GU for the block */
 | |
| 	gl = d__[ibegin];
 | |
| 	gu = d__[ibegin];
 | |
| 	i__2 = iend;
 | |
| 	for (i__ = ibegin; i__ <= i__2; ++i__) {
 | |
| /* Computing MIN */
 | |
| 	    r__1 = gers[(i__ << 1) - 1];
 | |
| 	    gl = f2cmin(r__1,gl);
 | |
| /* Computing MAX */
 | |
| 	    r__1 = gers[i__ * 2];
 | |
| 	    gu = f2cmax(r__1,gu);
 | |
| /* L15: */
 | |
| 	}
 | |
| 	spdiam = gu - gl;
 | |
| 	if (! (irange == 1 && ! forceb)) {
 | |
| /*           Count the number of eigenvalues in the current block. */
 | |
| 	    mb = 0;
 | |
| 	    i__2 = mm;
 | |
| 	    for (i__ = wbegin; i__ <= i__2; ++i__) {
 | |
| 		if (iblock[i__] == jblk) {
 | |
| 		    ++mb;
 | |
| 		} else {
 | |
| 		    goto L21;
 | |
| 		}
 | |
| /* L20: */
 | |
| 	    }
 | |
| L21:
 | |
| 	    if (mb == 0) {
 | |
| /*              No eigenvalue in the current block lies in the desired range */
 | |
| /*              E( IEND ) holds the shift for the initial RRR */
 | |
| 		e[iend] = 0.f;
 | |
| 		ibegin = iend + 1;
 | |
| 		goto L170;
 | |
| 	    } else {
 | |
| /*              Decide whether dqds or bisection is more efficient */
 | |
| 		usedqd = (real) mb > in * .5f && ! forceb;
 | |
| 		wend = wbegin + mb - 1;
 | |
| /*              Calculate gaps for the current block */
 | |
| /*              In later stages, when representations for individual */
 | |
| /*              eigenvalues are different, we use SIGMA = E( IEND ). */
 | |
| 		sigma = 0.f;
 | |
| 		i__2 = wend - 1;
 | |
| 		for (i__ = wbegin; i__ <= i__2; ++i__) {
 | |
| /* Computing MAX */
 | |
| 		    r__1 = 0.f, r__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + 
 | |
| 			    werr[i__]);
 | |
| 		    wgap[i__] = f2cmax(r__1,r__2);
 | |
| /* L30: */
 | |
| 		}
 | |
| /* Computing MAX */
 | |
| 		r__1 = 0.f, r__2 = *vu - sigma - (w[wend] + werr[wend]);
 | |
| 		wgap[wend] = f2cmax(r__1,r__2);
 | |
| /*              Find local index of the first and last desired evalue. */
 | |
| 		indl = indexw[wbegin];
 | |
| 		indu = indexw[wend];
 | |
| 	    }
 | |
| 	}
 | |
| 	if (irange == 1 && ! forceb || usedqd) {
 | |
| /*           Case of DQDS */
 | |
| /*           Find approximations to the extremal eigenvalues of the block */
 | |
| 	    slarrk_(&in, &c__1, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
 | |
| 		    rtl, &tmp, &tmp1, &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = -1;
 | |
| 		return;
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    r__2 = gl, r__3 = tmp - tmp1 - eps * 100.f * (r__1 = tmp - tmp1, 
 | |
| 		    abs(r__1));
 | |
| 	    isleft = f2cmax(r__2,r__3);
 | |
| 	    slarrk_(&in, &in, &gl, &gu, &d__[ibegin], &e2[ibegin], pivmin, &
 | |
| 		    rtl, &tmp, &tmp1, &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = -1;
 | |
| 		return;
 | |
| 	    }
 | |
| /* Computing MIN */
 | |
| 	    r__2 = gu, r__3 = tmp + tmp1 + eps * 100.f * (r__1 = tmp + tmp1, 
 | |
| 		    abs(r__1));
 | |
| 	    isrght = f2cmin(r__2,r__3);
 | |
| /*           Improve the estimate of the spectral diameter */
 | |
| 	    spdiam = isrght - isleft;
 | |
| 	} else {
 | |
| /*           Case of bisection */
 | |
| /*           Find approximations to the wanted extremal eigenvalues */
 | |
| /* Computing MAX */
 | |
| 	    r__2 = gl, r__3 = w[wbegin] - werr[wbegin] - eps * 100.f * (r__1 =
 | |
| 		     w[wbegin] - werr[wbegin], abs(r__1));
 | |
| 	    isleft = f2cmax(r__2,r__3);
 | |
| /* Computing MIN */
 | |
| 	    r__2 = gu, r__3 = w[wend] + werr[wend] + eps * 100.f * (r__1 = w[
 | |
| 		    wend] + werr[wend], abs(r__1));
 | |
| 	    isrght = f2cmin(r__2,r__3);
 | |
| 	}
 | |
| /*        Decide whether the base representation for the current block */
 | |
| /*        L_JBLK D_JBLK L_JBLK^T = T_JBLK - sigma_JBLK I */
 | |
| /*        should be on the left or the right end of the current block. */
 | |
| /*        The strategy is to shift to the end which is "more populated" */
 | |
| /*        Furthermore, decide whether to use DQDS for the computation of */
 | |
| /*        the eigenvalue approximations at the end of SLARRE or bisection. */
 | |
| /*        dqds is chosen if all eigenvalues are desired or the number of */
 | |
| /*        eigenvalues to be computed is large compared to the blocksize. */
 | |
| 	if (irange == 1 && ! forceb) {
 | |
| /*           If all the eigenvalues have to be computed, we use dqd */
 | |
| 	    usedqd = TRUE_;
 | |
| /*           INDL is the local index of the first eigenvalue to compute */
 | |
| 	    indl = 1;
 | |
| 	    indu = in;
 | |
| /*           MB =  number of eigenvalues to compute */
 | |
| 	    mb = in;
 | |
| 	    wend = wbegin + mb - 1;
 | |
| /*           Define 1/4 and 3/4 points of the spectrum */
 | |
| 	    s1 = isleft + spdiam * .25f;
 | |
| 	    s2 = isrght - spdiam * .25f;
 | |
| 	} else {
 | |
| /*           SLARRD has computed IBLOCK and INDEXW for each eigenvalue */
 | |
| /*           approximation. */
 | |
| /*           choose sigma */
 | |
| 	    if (usedqd) {
 | |
| 		s1 = isleft + spdiam * .25f;
 | |
| 		s2 = isrght - spdiam * .25f;
 | |
| 	    } else {
 | |
| 		tmp = f2cmin(isrght,*vu) - f2cmax(isleft,*vl);
 | |
| 		s1 = f2cmax(isleft,*vl) + tmp * .25f;
 | |
| 		s2 = f2cmin(isrght,*vu) - tmp * .25f;
 | |
| 	    }
 | |
| 	}
 | |
| /*        Compute the negcount at the 1/4 and 3/4 points */
 | |
| 	if (mb > 1) {
 | |
| 	    slarrc_("T", &in, &s1, &s2, &d__[ibegin], &e[ibegin], pivmin, &
 | |
| 		    cnt, &cnt1, &cnt2, &iinfo);
 | |
| 	}
 | |
| 	if (mb == 1) {
 | |
| 	    sigma = gl;
 | |
| 	    sgndef = 1.f;
 | |
| 	} else if (cnt1 - indl >= indu - cnt2) {
 | |
| 	    if (irange == 1 && ! forceb) {
 | |
| 		sigma = f2cmax(isleft,gl);
 | |
| 	    } else if (usedqd) {
 | |
| /*              use Gerschgorin bound as shift to get pos def matrix */
 | |
| /*              for dqds */
 | |
| 		sigma = isleft;
 | |
| 	    } else {
 | |
| /*              use approximation of the first desired eigenvalue of the */
 | |
| /*              block as shift */
 | |
| 		sigma = f2cmax(isleft,*vl);
 | |
| 	    }
 | |
| 	    sgndef = 1.f;
 | |
| 	} else {
 | |
| 	    if (irange == 1 && ! forceb) {
 | |
| 		sigma = f2cmin(isrght,gu);
 | |
| 	    } else if (usedqd) {
 | |
| /*              use Gerschgorin bound as shift to get neg def matrix */
 | |
| /*              for dqds */
 | |
| 		sigma = isrght;
 | |
| 	    } else {
 | |
| /*              use approximation of the first desired eigenvalue of the */
 | |
| /*              block as shift */
 | |
| 		sigma = f2cmin(isrght,*vu);
 | |
| 	    }
 | |
| 	    sgndef = -1.f;
 | |
| 	}
 | |
| /*        An initial SIGMA has been chosen that will be used for computing */
 | |
| /*        T - SIGMA I = L D L^T */
 | |
| /*        Define the increment TAU of the shift in case the initial shift */
 | |
| /*        needs to be refined to obtain a factorization with not too much */
 | |
| /*        element growth. */
 | |
| 	if (usedqd) {
 | |
| /*           The initial SIGMA was to the outer end of the spectrum */
 | |
| /*           the matrix is definite and we need not retreat. */
 | |
| 	    tau = spdiam * eps * *n + *pivmin * 2.f;
 | |
| /* Computing MAX */
 | |
| 	    r__1 = tau, r__2 = eps * 2.f * abs(sigma);
 | |
| 	    tau = f2cmax(r__1,r__2);
 | |
| 	} else {
 | |
| 	    if (mb > 1) {
 | |
| 		clwdth = w[wend] + werr[wend] - w[wbegin] - werr[wbegin];
 | |
| 		avgap = (r__1 = clwdth / (real) (wend - wbegin), abs(r__1));
 | |
| 		if (sgndef == 1.f) {
 | |
| /* Computing MAX */
 | |
| 		    r__1 = wgap[wbegin];
 | |
| 		    tau = f2cmax(r__1,avgap) * .5f;
 | |
| /* Computing MAX */
 | |
| 		    r__1 = tau, r__2 = werr[wbegin];
 | |
| 		    tau = f2cmax(r__1,r__2);
 | |
| 		} else {
 | |
| /* Computing MAX */
 | |
| 		    r__1 = wgap[wend - 1];
 | |
| 		    tau = f2cmax(r__1,avgap) * .5f;
 | |
| /* Computing MAX */
 | |
| 		    r__1 = tau, r__2 = werr[wend];
 | |
| 		    tau = f2cmax(r__1,r__2);
 | |
| 		}
 | |
| 	    } else {
 | |
| 		tau = werr[wbegin];
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	for (idum = 1; idum <= 6; ++idum) {
 | |
| /*           Compute L D L^T factorization of tridiagonal matrix T - sigma I. */
 | |
| /*           Store D in WORK(1:IN), L in WORK(IN+1:2*IN), and reciprocals of */
 | |
| /*           pivots in WORK(2*IN+1:3*IN) */
 | |
| 	    dpivot = d__[ibegin] - sigma;
 | |
| 	    work[1] = dpivot;
 | |
| 	    dmax__ = abs(work[1]);
 | |
| 	    j = ibegin;
 | |
| 	    i__2 = in - 1;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		work[(in << 1) + i__] = 1.f / work[i__];
 | |
| 		tmp = e[j] * work[(in << 1) + i__];
 | |
| 		work[in + i__] = tmp;
 | |
| 		dpivot = d__[j + 1] - sigma - tmp * e[j];
 | |
| 		work[i__ + 1] = dpivot;
 | |
| /* Computing MAX */
 | |
| 		r__1 = dmax__, r__2 = abs(dpivot);
 | |
| 		dmax__ = f2cmax(r__1,r__2);
 | |
| 		++j;
 | |
| /* L70: */
 | |
| 	    }
 | |
| /*           check for element growth */
 | |
| 	    if (dmax__ > spdiam * 64.f) {
 | |
| 		norep = TRUE_;
 | |
| 	    } else {
 | |
| 		norep = FALSE_;
 | |
| 	    }
 | |
| 	    if (usedqd && ! norep) {
 | |
| /*              Ensure the definiteness of the representation */
 | |
| /*              All entries of D (of L D L^T) must have the same sign */
 | |
| 		i__2 = in;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    tmp = sgndef * work[i__];
 | |
| 		    if (tmp < 0.f) {
 | |
| 			norep = TRUE_;
 | |
| 		    }
 | |
| /* L71: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (norep) {
 | |
| /*              Note that in the case of IRANGE=ALLRNG, we use the Gerschgorin */
 | |
| /*              shift which makes the matrix definite. So we should end up */
 | |
| /*              here really only in the case of IRANGE = VALRNG or INDRNG. */
 | |
| 		if (idum == 5) {
 | |
| 		    if (sgndef == 1.f) {
 | |
| /*                    The fudged Gerschgorin shift should succeed */
 | |
| 			sigma = gl - spdiam * 2.f * eps * *n - *pivmin * 4.f;
 | |
| 		    } else {
 | |
| 			sigma = gu + spdiam * 2.f * eps * *n + *pivmin * 4.f;
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    sigma -= sgndef * tau;
 | |
| 		    tau *= 2.f;
 | |
| 		}
 | |
| 	    } else {
 | |
| /*              an initial RRR is found */
 | |
| 		goto L83;
 | |
| 	    }
 | |
| /* L80: */
 | |
| 	}
 | |
| /*        if the program reaches this point, no base representation could be */
 | |
| /*        found in MAXTRY iterations. */
 | |
| 	*info = 2;
 | |
| 	return;
 | |
| L83:
 | |
| /*        At this point, we have found an initial base representation */
 | |
| /*        T - SIGMA I = L D L^T with not too much element growth. */
 | |
| /*        Store the shift. */
 | |
| 	e[iend] = sigma;
 | |
| /*        Store D and L. */
 | |
| 	scopy_(&in, &work[1], &c__1, &d__[ibegin], &c__1);
 | |
| 	i__2 = in - 1;
 | |
| 	scopy_(&i__2, &work[in + 1], &c__1, &e[ibegin], &c__1);
 | |
| 	if (mb > 1) {
 | |
| 
 | |
| /*           Perturb each entry of the base representation by a small */
 | |
| /*           (but random) relative amount to overcome difficulties with */
 | |
| /*           glued matrices. */
 | |
| 
 | |
| 	    for (i__ = 1; i__ <= 4; ++i__) {
 | |
| 		iseed[i__ - 1] = 1;
 | |
| /* L122: */
 | |
| 	    }
 | |
| 	    i__2 = (in << 1) - 1;
 | |
| 	    slarnv_(&c__2, iseed, &i__2, &work[1]);
 | |
| 	    i__2 = in - 1;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		d__[ibegin + i__ - 1] *= eps * 4.f * work[i__] + 1.f;
 | |
| 		e[ibegin + i__ - 1] *= eps * 4.f * work[in + i__] + 1.f;
 | |
| /* L125: */
 | |
| 	    }
 | |
| 	    d__[iend] *= eps * 4.f * work[in] + 1.f;
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /*        Don't update the Gerschgorin intervals because keeping track */
 | |
| /*        of the updates would be too much work in SLARRV. */
 | |
| /*        We update W instead and use it to locate the proper Gerschgorin */
 | |
| /*        intervals. */
 | |
| /*        Compute the required eigenvalues of L D L' by bisection or dqds */
 | |
| 	if (! usedqd) {
 | |
| /*           If SLARRD has been used, shift the eigenvalue approximations */
 | |
| /*           according to their representation. This is necessary for */
 | |
| /*           a uniform SLARRV since dqds computes eigenvalues of the */
 | |
| /*           shifted representation. In SLARRV, W will always hold the */
 | |
| /*           UNshifted eigenvalue approximation. */
 | |
| 	    i__2 = wend;
 | |
| 	    for (j = wbegin; j <= i__2; ++j) {
 | |
| 		w[j] -= sigma;
 | |
| 		werr[j] += (r__1 = w[j], abs(r__1)) * eps;
 | |
| /* L134: */
 | |
| 	    }
 | |
| /*           call SLARRB to reduce eigenvalue error of the approximations */
 | |
| /*           from SLARRD */
 | |
| 	    i__2 = iend - 1;
 | |
| 	    for (i__ = ibegin; i__ <= i__2; ++i__) {
 | |
| /* Computing 2nd power */
 | |
| 		r__1 = e[i__];
 | |
| 		work[i__] = d__[i__] * (r__1 * r__1);
 | |
| /* L135: */
 | |
| 	    }
 | |
| /*           use bisection to find EV from INDL to INDU */
 | |
| 	    i__2 = indl - 1;
 | |
| 	    slarrb_(&in, &d__[ibegin], &work[ibegin], &indl, &indu, rtol1, 
 | |
| 		    rtol2, &i__2, &w[wbegin], &wgap[wbegin], &werr[wbegin], &
 | |
| 		    work[(*n << 1) + 1], &iwork[1], pivmin, &spdiam, &in, &
 | |
| 		    iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| 		*info = -4;
 | |
| 		return;
 | |
| 	    }
 | |
| /*           SLARRB computes all gaps correctly except for the last one */
 | |
| /*           Record distance to VU/GU */
 | |
| /* Computing MAX */
 | |
| 	    r__1 = 0.f, r__2 = *vu - sigma - (w[wend] + werr[wend]);
 | |
| 	    wgap[wend] = f2cmax(r__1,r__2);
 | |
| 	    i__2 = indu;
 | |
| 	    for (i__ = indl; i__ <= i__2; ++i__) {
 | |
| 		++(*m);
 | |
| 		iblock[*m] = jblk;
 | |
| 		indexw[*m] = i__;
 | |
| /* L138: */
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           Call dqds to get all eigs (and then possibly delete unwanted */
 | |
| /*           eigenvalues). */
 | |
| /*           Note that dqds finds the eigenvalues of the L D L^T representation */
 | |
| /*           of T to high relative accuracy. High relative accuracy */
 | |
| /*           might be lost when the shift of the RRR is subtracted to obtain */
 | |
| /*           the eigenvalues of T. However, T is not guaranteed to define its */
 | |
| /*           eigenvalues to high relative accuracy anyway. */
 | |
| /*           Set RTOL to the order of the tolerance used in SLASQ2 */
 | |
| /*           This is an ESTIMATED error, the worst case bound is 4*N*EPS */
 | |
| /*           which is usually too large and requires unnecessary work to be */
 | |
| /*           done by bisection when computing the eigenvectors */
 | |
| 	    rtol = log((real) in) * 4.f * eps;
 | |
| 	    j = ibegin;
 | |
| 	    i__2 = in - 1;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		work[(i__ << 1) - 1] = (r__1 = d__[j], abs(r__1));
 | |
| 		work[i__ * 2] = e[j] * e[j] * work[(i__ << 1) - 1];
 | |
| 		++j;
 | |
| /* L140: */
 | |
| 	    }
 | |
| 	    work[(in << 1) - 1] = (r__1 = d__[iend], abs(r__1));
 | |
| 	    work[in * 2] = 0.f;
 | |
| 	    slasq2_(&in, &work[1], &iinfo);
 | |
| 	    if (iinfo != 0) {
 | |
| /*              If IINFO = -5 then an index is part of a tight cluster */
 | |
| /*              and should be changed. The index is in IWORK(1) and the */
 | |
| /*              gap is in WORK(N+1) */
 | |
| 		*info = -5;
 | |
| 		return;
 | |
| 	    } else {
 | |
| /*              Test that all eigenvalues are positive as expected */
 | |
| 		i__2 = in;
 | |
| 		for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		    if (work[i__] < 0.f) {
 | |
| 			*info = -6;
 | |
| 			return;
 | |
| 		    }
 | |
| /* L149: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (sgndef > 0.f) {
 | |
| 		i__2 = indu;
 | |
| 		for (i__ = indl; i__ <= i__2; ++i__) {
 | |
| 		    ++(*m);
 | |
| 		    w[*m] = work[in - i__ + 1];
 | |
| 		    iblock[*m] = jblk;
 | |
| 		    indexw[*m] = i__;
 | |
| /* L150: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__2 = indu;
 | |
| 		for (i__ = indl; i__ <= i__2; ++i__) {
 | |
| 		    ++(*m);
 | |
| 		    w[*m] = -work[i__];
 | |
| 		    iblock[*m] = jblk;
 | |
| 		    indexw[*m] = i__;
 | |
| /* L160: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    i__2 = *m;
 | |
| 	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
 | |
| /*              the value of RTOL below should be the tolerance in SLASQ2 */
 | |
| 		werr[i__] = rtol * (r__1 = w[i__], abs(r__1));
 | |
| /* L165: */
 | |
| 	    }
 | |
| 	    i__2 = *m - 1;
 | |
| 	    for (i__ = *m - mb + 1; i__ <= i__2; ++i__) {
 | |
| /*              compute the right gap between the intervals */
 | |
| /* Computing MAX */
 | |
| 		r__1 = 0.f, r__2 = w[i__ + 1] - werr[i__ + 1] - (w[i__] + 
 | |
| 			werr[i__]);
 | |
| 		wgap[i__] = f2cmax(r__1,r__2);
 | |
| /* L166: */
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    r__1 = 0.f, r__2 = *vu - sigma - (w[*m] + werr[*m]);
 | |
| 	    wgap[*m] = f2cmax(r__1,r__2);
 | |
| 	}
 | |
| /*        proceed with next block */
 | |
| 	ibegin = iend + 1;
 | |
| 	wbegin = wend + 1;
 | |
| L170:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     end of SLARRE */
 | |
| 
 | |
| } /* slarre_ */
 | |
| 
 |