941 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			941 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* > \brief \b SLARRB provides limited bisection to locate eigenvalues for more accuracy. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLARRB + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slarrb.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slarrb.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slarrb.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLARRB( N, D, LLD, IFIRST, ILAST, RTOL1, */
 | |
| /*                          RTOL2, OFFSET, W, WGAP, WERR, WORK, IWORK, */
 | |
| /*                          PIVMIN, SPDIAM, TWIST, INFO ) */
 | |
| 
 | |
| /*       INTEGER            IFIRST, ILAST, INFO, N, OFFSET, TWIST */
 | |
| /*       REAL               PIVMIN, RTOL1, RTOL2, SPDIAM */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       REAL               D( * ), LLD( * ), W( * ), */
 | |
| /*      $                   WERR( * ), WGAP( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > Given the relatively robust representation(RRR) L D L^T, SLARRB */
 | |
| /* > does "limited" bisection to refine the eigenvalues of L D L^T, */
 | |
| /* > W( IFIRST-OFFSET ) through W( ILAST-OFFSET ), to more accuracy. Initial */
 | |
| /* > guesses for these eigenvalues are input in W, the corresponding estimate */
 | |
| /* > of the error in these guesses and their gaps are input in WERR */
 | |
| /* > and WGAP, respectively. During bisection, intervals */
 | |
| /* > [left, right] are maintained by storing their mid-points and */
 | |
| /* > semi-widths in the arrays W and WERR respectively. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >          The N diagonal elements of the diagonal matrix D. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LLD */
 | |
| /* > \verbatim */
 | |
| /* >          LLD is REAL array, dimension (N-1) */
 | |
| /* >          The (N-1) elements L(i)*L(i)*D(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IFIRST */
 | |
| /* > \verbatim */
 | |
| /* >          IFIRST is INTEGER */
 | |
| /* >          The index of the first eigenvalue to be computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILAST */
 | |
| /* > \verbatim */
 | |
| /* >          ILAST is INTEGER */
 | |
| /* >          The index of the last eigenvalue to be computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RTOL1 */
 | |
| /* > \verbatim */
 | |
| /* >          RTOL1 is REAL */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RTOL2 */
 | |
| /* > \verbatim */
 | |
| /* >          RTOL2 is REAL */
 | |
| /* >          Tolerance for the convergence of the bisection intervals. */
 | |
| /* >          An interval [LEFT,RIGHT] has converged if */
 | |
| /* >          RIGHT-LEFT < MAX( RTOL1*GAP, RTOL2*MAX(|LEFT|,|RIGHT|) ) */
 | |
| /* >          where GAP is the (estimated) distance to the nearest */
 | |
| /* >          eigenvalue. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] OFFSET */
 | |
| /* > \verbatim */
 | |
| /* >          OFFSET is INTEGER */
 | |
| /* >          Offset for the arrays W, WGAP and WERR, i.e., the IFIRST-OFFSET */
 | |
| /* >          through ILAST-OFFSET elements of these arrays are to be used. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is REAL array, dimension (N) */
 | |
| /* >          On input, W( IFIRST-OFFSET ) through W( ILAST-OFFSET ) are */
 | |
| /* >          estimates of the eigenvalues of L D L^T indexed IFIRST through */
 | |
| /* >          ILAST. */
 | |
| /* >          On output, these estimates are refined. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] WGAP */
 | |
| /* > \verbatim */
 | |
| /* >          WGAP is REAL array, dimension (N-1) */
 | |
| /* >          On input, the (estimated) gaps between consecutive */
 | |
| /* >          eigenvalues of L D L^T, i.e., WGAP(I-OFFSET) is the gap between */
 | |
| /* >          eigenvalues I and I+1. Note that if IFIRST = ILAST */
 | |
| /* >          then WGAP(IFIRST-OFFSET) must be set to ZERO. */
 | |
| /* >          On output, these gaps are refined. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] WERR */
 | |
| /* > \verbatim */
 | |
| /* >          WERR is REAL array, dimension (N) */
 | |
| /* >          On input, WERR( IFIRST-OFFSET ) through WERR( ILAST-OFFSET ) are */
 | |
| /* >          the errors in the estimates of the corresponding elements in W. */
 | |
| /* >          On output, these errors are refined. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (2*N) */
 | |
| /* >          Workspace. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (2*N) */
 | |
| /* >          Workspace. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] PIVMIN */
 | |
| /* > \verbatim */
 | |
| /* >          PIVMIN is REAL */
 | |
| /* >          The minimum pivot in the Sturm sequence. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SPDIAM */
 | |
| /* > \verbatim */
 | |
| /* >          SPDIAM is REAL */
 | |
| /* >          The spectral diameter of the matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TWIST */
 | |
| /* > \verbatim */
 | |
| /* >          TWIST is INTEGER */
 | |
| /* >          The twist index for the twisted factorization that is used */
 | |
| /* >          for the negcount. */
 | |
| /* >          TWIST = N: Compute negcount from L D L^T - LAMBDA I = L+ D+ L+^T */
 | |
| /* >          TWIST = 1: Compute negcount from L D L^T - LAMBDA I = U- D- U-^T */
 | |
| /* >          TWIST = R: Compute negcount from L D L^T - LAMBDA I = N(r) D(r) N(r) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          Error flag. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2017 */
 | |
| 
 | |
| /* > \ingroup OTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Beresford Parlett, University of California, Berkeley, USA \n */
 | |
| /* > Jim Demmel, University of California, Berkeley, USA \n */
 | |
| /* > Inderjit Dhillon, University of Texas, Austin, USA \n */
 | |
| /* > Osni Marques, LBNL/NERSC, USA \n */
 | |
| /* > Christof Voemel, University of California, Berkeley, USA */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slarrb_(integer *n, real *d__, real *lld, integer *
 | |
| 	ifirst, integer *ilast, real *rtol1, real *rtol2, integer *offset, 
 | |
| 	real *w, real *wgap, real *werr, real *work, integer *iwork, real *
 | |
| 	pivmin, real *spdiam, integer *twist, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real back, lgap, rgap, left;
 | |
|     integer iter, nint, prev, next, i__, k, r__;
 | |
|     real cvrgd, right, width;
 | |
|     integer i1, ii, ip;
 | |
|     extern integer slaneg_(integer *, real *, real *, real *, real *, integer 
 | |
| 	    *);
 | |
|     integer negcnt;
 | |
|     real mnwdth;
 | |
|     integer olnint, maxitr;
 | |
|     real gap, mid, tmp;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --iwork;
 | |
|     --work;
 | |
|     --werr;
 | |
|     --wgap;
 | |
|     --w;
 | |
|     --lld;
 | |
|     --d__;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n <= 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     maxitr = (integer) ((log(*spdiam + *pivmin) - log(*pivmin)) / log(2.f)) + 
 | |
| 	    2;
 | |
|     mnwdth = *pivmin * 2.f;
 | |
| 
 | |
|     r__ = *twist;
 | |
|     if (r__ < 1 || r__ > *n) {
 | |
| 	r__ = *n;
 | |
|     }
 | |
| 
 | |
| /*     Initialize unconverged intervals in [ WORK(2*I-1), WORK(2*I) ]. */
 | |
| /*     The Sturm Count, Count( WORK(2*I-1) ) is arranged to be I-1, while */
 | |
| /*     Count( WORK(2*I) ) is stored in IWORK( 2*I ). The integer IWORK( 2*I-1 ) */
 | |
| /*     for an unconverged interval is set to the index of the next unconverged */
 | |
| /*     interval, and is -1 or 0 for a converged interval. Thus a linked */
 | |
| /*     list of unconverged intervals is set up. */
 | |
| 
 | |
|     i1 = *ifirst;
 | |
| /*     The number of unconverged intervals */
 | |
|     nint = 0;
 | |
| /*     The last unconverged interval found */
 | |
|     prev = 0;
 | |
|     rgap = wgap[i1 - *offset];
 | |
|     i__1 = *ilast;
 | |
|     for (i__ = i1; i__ <= i__1; ++i__) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| 	left = w[ii] - werr[ii];
 | |
| 	right = w[ii] + werr[ii];
 | |
| 	lgap = rgap;
 | |
| 	rgap = wgap[ii];
 | |
| 	gap = f2cmin(lgap,rgap);
 | |
| /*        Make sure that [LEFT,RIGHT] contains the desired eigenvalue */
 | |
| /*        Compute negcount from dstqds facto L+D+L+^T = L D L^T - LEFT */
 | |
| 
 | |
| /*        Do while( NEGCNT(LEFT).GT.I-1 ) */
 | |
| 
 | |
| 	back = werr[ii];
 | |
| L20:
 | |
| 	negcnt = slaneg_(n, &d__[1], &lld[1], &left, pivmin, &r__);
 | |
| 	if (negcnt > i__ - 1) {
 | |
| 	    left -= back;
 | |
| 	    back *= 2.f;
 | |
| 	    goto L20;
 | |
| 	}
 | |
| 
 | |
| /*        Do while( NEGCNT(RIGHT).LT.I ) */
 | |
| /*        Compute negcount from dstqds facto L+D+L+^T = L D L^T - RIGHT */
 | |
| 
 | |
| 	back = werr[ii];
 | |
| L50:
 | |
| 	negcnt = slaneg_(n, &d__[1], &lld[1], &right, pivmin, &r__);
 | |
| 	if (negcnt < i__) {
 | |
| 	    right += back;
 | |
| 	    back *= 2.f;
 | |
| 	    goto L50;
 | |
| 	}
 | |
| 	width = (r__1 = left - right, abs(r__1)) * .5f;
 | |
| /* Computing MAX */
 | |
| 	r__1 = abs(left), r__2 = abs(right);
 | |
| 	tmp = f2cmax(r__1,r__2);
 | |
| /* Computing MAX */
 | |
| 	r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp;
 | |
| 	cvrgd = f2cmax(r__1,r__2);
 | |
| 	if (width <= cvrgd || width <= mnwdth) {
 | |
| /*           This interval has already converged and does not need refinement. */
 | |
| /*           (Note that the gaps might change through refining the */
 | |
| /*            eigenvalues, however, they can only get bigger.) */
 | |
| /*           Remove it from the list. */
 | |
| 	    iwork[k - 1] = -1;
 | |
| /*           Make sure that I1 always points to the first unconverged interval */
 | |
| 	    if (i__ == i1 && i__ < *ilast) {
 | |
| 		i1 = i__ + 1;
 | |
| 	    }
 | |
| 	    if (prev >= i1 && i__ <= *ilast) {
 | |
| 		iwork[(prev << 1) - 1] = i__ + 1;
 | |
| 	    }
 | |
| 	} else {
 | |
| /*           unconverged interval found */
 | |
| 	    prev = i__;
 | |
| 	    ++nint;
 | |
| 	    iwork[k - 1] = i__ + 1;
 | |
| 	    iwork[k] = negcnt;
 | |
| 	}
 | |
| 	work[k - 1] = left;
 | |
| 	work[k] = right;
 | |
| /* L75: */
 | |
|     }
 | |
| 
 | |
| /*     Do while( NINT.GT.0 ), i.e. there are still unconverged intervals */
 | |
| /*     and while (ITER.LT.MAXITR) */
 | |
| 
 | |
|     iter = 0;
 | |
| L80:
 | |
|     prev = i1 - 1;
 | |
|     i__ = i1;
 | |
|     olnint = nint;
 | |
|     i__1 = olnint;
 | |
|     for (ip = 1; ip <= i__1; ++ip) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| 	rgap = wgap[ii];
 | |
| 	lgap = rgap;
 | |
| 	if (ii > 1) {
 | |
| 	    lgap = wgap[ii - 1];
 | |
| 	}
 | |
| 	gap = f2cmin(lgap,rgap);
 | |
| 	next = iwork[k - 1];
 | |
| 	left = work[k - 1];
 | |
| 	right = work[k];
 | |
| 	mid = (left + right) * .5f;
 | |
| /*        semiwidth of interval */
 | |
| 	width = right - mid;
 | |
| /* Computing MAX */
 | |
| 	r__1 = abs(left), r__2 = abs(right);
 | |
| 	tmp = f2cmax(r__1,r__2);
 | |
| /* Computing MAX */
 | |
| 	r__1 = *rtol1 * gap, r__2 = *rtol2 * tmp;
 | |
| 	cvrgd = f2cmax(r__1,r__2);
 | |
| 	if (width <= cvrgd || width <= mnwdth || iter == maxitr) {
 | |
| /*           reduce number of unconverged intervals */
 | |
| 	    --nint;
 | |
| /*           Mark interval as converged. */
 | |
| 	    iwork[k - 1] = 0;
 | |
| 	    if (i1 == i__) {
 | |
| 		i1 = next;
 | |
| 	    } else {
 | |
| /*              Prev holds the last unconverged interval previously examined */
 | |
| 		if (prev >= i1) {
 | |
| 		    iwork[(prev << 1) - 1] = next;
 | |
| 		}
 | |
| 	    }
 | |
| 	    i__ = next;
 | |
| 	    goto L100;
 | |
| 	}
 | |
| 	prev = i__;
 | |
| 
 | |
| /*        Perform one bisection step */
 | |
| 
 | |
| 	negcnt = slaneg_(n, &d__[1], &lld[1], &mid, pivmin, &r__);
 | |
| 	if (negcnt <= i__ - 1) {
 | |
| 	    work[k - 1] = mid;
 | |
| 	} else {
 | |
| 	    work[k] = mid;
 | |
| 	}
 | |
| 	i__ = next;
 | |
| L100:
 | |
| 	;
 | |
|     }
 | |
|     ++iter;
 | |
| /*     do another loop if there are still unconverged intervals */
 | |
| /*     However, in the last iteration, all intervals are accepted */
 | |
| /*     since this is the best we can do. */
 | |
|     if (nint > 0 && iter <= maxitr) {
 | |
| 	goto L80;
 | |
|     }
 | |
| 
 | |
| 
 | |
| /*     At this point, all the intervals have converged */
 | |
|     i__1 = *ilast;
 | |
|     for (i__ = *ifirst; i__ <= i__1; ++i__) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| /*        All intervals marked by '0' have been refined. */
 | |
| 	if (iwork[k - 1] == 0) {
 | |
| 	    w[ii] = (work[k - 1] + work[k]) * .5f;
 | |
| 	    werr[ii] = work[k] - w[ii];
 | |
| 	}
 | |
| /* L110: */
 | |
|     }
 | |
| 
 | |
|     i__1 = *ilast;
 | |
|     for (i__ = *ifirst + 1; i__ <= i__1; ++i__) {
 | |
| 	k = i__ << 1;
 | |
| 	ii = i__ - *offset;
 | |
| /* Computing MAX */
 | |
| 	r__1 = 0.f, r__2 = w[ii] - werr[ii] - w[ii - 1] - werr[ii - 1];
 | |
| 	wgap[ii - 1] = f2cmax(r__1,r__2);
 | |
| /* L111: */
 | |
|     }
 | |
|     return;
 | |
| 
 | |
| /*     End of SLARRB */
 | |
| 
 | |
| } /* slarrb_ */
 | |
| 
 |