1334 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1334 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c_n1 = -1;
 | |
| static logical c_true = TRUE_;
 | |
| static real c_b17 = 0.f;
 | |
| static real c_b18 = 1.f;
 | |
| static integer c__12 = 12;
 | |
| 
 | |
| /* > \brief \b SLAQR3 performs the orthogonal similarity transformation of a Hessenberg matrix to detect and d
 | |
| eflate fully converged eigenvalues from a trailing principal submatrix (aggressive early deflation). 
 | |
| */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLAQR3 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaqr3.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaqr3.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaqr3.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLAQR3( WANTT, WANTZ, N, KTOP, KBOT, NW, H, LDH, ILOZ, */
 | |
| /*                          IHIZ, Z, LDZ, NS, ND, SR, SI, V, LDV, NH, T, */
 | |
| /*                          LDT, NV, WV, LDWV, WORK, LWORK ) */
 | |
| 
 | |
| /*       INTEGER            IHIZ, ILOZ, KBOT, KTOP, LDH, LDT, LDV, LDWV, */
 | |
| /*      $                   LDZ, LWORK, N, ND, NH, NS, NV, NW */
 | |
| /*       LOGICAL            WANTT, WANTZ */
 | |
| /*       REAL               H( LDH, * ), SI( * ), SR( * ), T( LDT, * ), */
 | |
| /*      $                   V( LDV, * ), WORK( * ), WV( LDWV, * ), */
 | |
| /*      $                   Z( LDZ, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    Aggressive early deflation: */
 | |
| /* > */
 | |
| /* >    SLAQR3 accepts as input an upper Hessenberg matrix */
 | |
| /* >    H and performs an orthogonal similarity transformation */
 | |
| /* >    designed to detect and deflate fully converged eigenvalues from */
 | |
| /* >    a trailing principal submatrix.  On output H has been over- */
 | |
| /* >    written by a new Hessenberg matrix that is a perturbation of */
 | |
| /* >    an orthogonal similarity transformation of H.  It is to be */
 | |
| /* >    hoped that the final version of H has many zero subdiagonal */
 | |
| /* >    entries. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] WANTT */
 | |
| /* > \verbatim */
 | |
| /* >          WANTT is LOGICAL */
 | |
| /* >          If .TRUE., then the Hessenberg matrix H is fully updated */
 | |
| /* >          so that the quasi-triangular Schur factor may be */
 | |
| /* >          computed (in cooperation with the calling subroutine). */
 | |
| /* >          If .FALSE., then only enough of H is updated to preserve */
 | |
| /* >          the eigenvalues. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] WANTZ */
 | |
| /* > \verbatim */
 | |
| /* >          WANTZ is LOGICAL */
 | |
| /* >          If .TRUE., then the orthogonal matrix Z is updated so */
 | |
| /* >          so that the orthogonal Schur factor may be computed */
 | |
| /* >          (in cooperation with the calling subroutine). */
 | |
| /* >          If .FALSE., then Z is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrix H and (if WANTZ is .TRUE.) the */
 | |
| /* >          order of the orthogonal matrix Z. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KTOP */
 | |
| /* > \verbatim */
 | |
| /* >          KTOP is INTEGER */
 | |
| /* >          It is assumed that either KTOP = 1 or H(KTOP,KTOP-1)=0. */
 | |
| /* >          KBOT and KTOP together determine an isolated block */
 | |
| /* >          along the diagonal of the Hessenberg matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] KBOT */
 | |
| /* > \verbatim */
 | |
| /* >          KBOT is INTEGER */
 | |
| /* >          It is assumed without a check that either */
 | |
| /* >          KBOT = N or H(KBOT+1,KBOT)=0.  KBOT and KTOP together */
 | |
| /* >          determine an isolated block along the diagonal of the */
 | |
| /* >          Hessenberg matrix. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NW */
 | |
| /* > \verbatim */
 | |
| /* >          NW is INTEGER */
 | |
| /* >          Deflation window size.  1 <= NW <= (KBOT-KTOP+1). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] H */
 | |
| /* > \verbatim */
 | |
| /* >          H is REAL array, dimension (LDH,N) */
 | |
| /* >          On input the initial N-by-N section of H stores the */
 | |
| /* >          Hessenberg matrix undergoing aggressive early deflation. */
 | |
| /* >          On output H has been transformed by an orthogonal */
 | |
| /* >          similarity transformation, perturbed, and the returned */
 | |
| /* >          to Hessenberg form that (it is to be hoped) has some */
 | |
| /* >          zero subdiagonal entries. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDH */
 | |
| /* > \verbatim */
 | |
| /* >          LDH is INTEGER */
 | |
| /* >          Leading dimension of H just as declared in the calling */
 | |
| /* >          subroutine.  N <= LDH */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] ILOZ */
 | |
| /* > \verbatim */
 | |
| /* >          ILOZ is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IHIZ */
 | |
| /* > \verbatim */
 | |
| /* >          IHIZ is INTEGER */
 | |
| /* >          Specify the rows of Z to which transformations must be */
 | |
| /* >          applied if WANTZ is .TRUE.. 1 <= ILOZ <= IHIZ <= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension (LDZ,N) */
 | |
| /* >          IF WANTZ is .TRUE., then on output, the orthogonal */
 | |
| /* >          similarity transformation mentioned above has been */
 | |
| /* >          accumulated into Z(ILOZ:IHIZ,ILOZ:IHIZ) from the right. */
 | |
| /* >          If WANTZ is .FALSE., then Z is unreferenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDZ */
 | |
| /* > \verbatim */
 | |
| /* >          LDZ is INTEGER */
 | |
| /* >          The leading dimension of Z just as declared in the */
 | |
| /* >          calling subroutine.  1 <= LDZ. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] NS */
 | |
| /* > \verbatim */
 | |
| /* >          NS is INTEGER */
 | |
| /* >          The number of unconverged (ie approximate) eigenvalues */
 | |
| /* >          returned in SR and SI that may be used as shifts by the */
 | |
| /* >          calling subroutine. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ND */
 | |
| /* > \verbatim */
 | |
| /* >          ND is INTEGER */
 | |
| /* >          The number of converged eigenvalues uncovered by this */
 | |
| /* >          subroutine. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SR */
 | |
| /* > \verbatim */
 | |
| /* >          SR is REAL array, dimension (KBOT) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SI */
 | |
| /* > \verbatim */
 | |
| /* >          SI is REAL array, dimension (KBOT) */
 | |
| /* >          On output, the real and imaginary parts of approximate */
 | |
| /* >          eigenvalues that may be used for shifts are stored in */
 | |
| /* >          SR(KBOT-ND-NS+1) through SR(KBOT-ND) and */
 | |
| /* >          SI(KBOT-ND-NS+1) through SI(KBOT-ND), respectively. */
 | |
| /* >          The real and imaginary parts of converged eigenvalues */
 | |
| /* >          are stored in SR(KBOT-ND+1) through SR(KBOT) and */
 | |
| /* >          SI(KBOT-ND+1) through SI(KBOT), respectively. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] V */
 | |
| /* > \verbatim */
 | |
| /* >          V is REAL array, dimension (LDV,NW) */
 | |
| /* >          An NW-by-NW work array. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV */
 | |
| /* > \verbatim */
 | |
| /* >          LDV is INTEGER */
 | |
| /* >          The leading dimension of V just as declared in the */
 | |
| /* >          calling subroutine.  NW <= LDV */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NH */
 | |
| /* > \verbatim */
 | |
| /* >          NH is INTEGER */
 | |
| /* >          The number of columns of T.  NH >= NW. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is REAL array, dimension (LDT,NW) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of T just as declared in the */
 | |
| /* >          calling subroutine.  NW <= LDT */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NV */
 | |
| /* > \verbatim */
 | |
| /* >          NV is INTEGER */
 | |
| /* >          The number of rows of work array WV available for */
 | |
| /* >          workspace.  NV >= NW. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WV */
 | |
| /* > \verbatim */
 | |
| /* >          WV is REAL array, dimension (LDWV,NW) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDWV */
 | |
| /* > \verbatim */
 | |
| /* >          LDWV is INTEGER */
 | |
| /* >          The leading dimension of W just as declared in the */
 | |
| /* >          calling subroutine.  NW <= LDV */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (LWORK) */
 | |
| /* >          On exit, WORK(1) is set to an estimate of the optimal value */
 | |
| /* >          of LWORK for the given values of N, NW, KTOP and KBOT. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the work array WORK.  LWORK = 2*NW */
 | |
| /* >          suffices, but greater efficiency may result from larger */
 | |
| /* >          values of LWORK. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; SLAQR3 */
 | |
| /* >          only estimates the optimal workspace size for the given */
 | |
| /* >          values of N, NW, KTOP and KBOT.  The estimate is returned */
 | |
| /* >          in WORK(1).  No error message related to LWORK is issued */
 | |
| /* >          by XERBLA.  Neither H nor Z are accessed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup realOTHERauxiliary */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >       Karen Braman and Ralph Byers, Department of Mathematics, */
 | |
| /* >       University of Kansas, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slaqr3_(logical *wantt, logical *wantz, integer *n, 
 | |
| 	integer *ktop, integer *kbot, integer *nw, real *h__, integer *ldh, 
 | |
| 	integer *iloz, integer *ihiz, real *z__, integer *ldz, integer *ns, 
 | |
| 	integer *nd, real *sr, real *si, real *v, integer *ldv, integer *nh, 
 | |
| 	real *t, integer *ldt, integer *nv, real *wv, integer *ldwv, real *
 | |
| 	work, integer *lwork)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer h_dim1, h_offset, t_dim1, t_offset, v_dim1, v_offset, wv_dim1, 
 | |
| 	    wv_offset, z_dim1, z_offset, i__1, i__2, i__3, i__4;
 | |
|     real r__1, r__2, r__3, r__4, r__5, r__6;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real beta;
 | |
|     integer kend, kcol, info, nmin, ifst, ilst, ltop, krow, i__, j, k;
 | |
|     real s;
 | |
|     logical bulge;
 | |
|     extern /* Subroutine */ void slarf_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, real *, integer *, real *), sgemm_(
 | |
| 	    char *, char *, integer *, integer *, integer *, real *, real *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *);
 | |
|     integer infqr;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer kwtop;
 | |
|     real aa, bb, cc;
 | |
|     extern /* Subroutine */ void slanv2_(real *, real *, real *, real *, real *
 | |
| 	    , real *, real *, real *, real *, real *);
 | |
|     real dd;
 | |
|     extern /* Subroutine */ void slaqr4_(logical *, logical *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, real *, integer *
 | |
| 	    , integer *, real *, integer *, real *, integer *, integer *);
 | |
|     real cs;
 | |
|     extern /* Subroutine */ void slabad_(real *, real *);
 | |
|     real sn;
 | |
|     integer jw;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ void sgehrd_(integer *, integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *);
 | |
|     real safmin, safmax;
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern /* Subroutine */ void slarfg_(integer *, real *, real *, integer *, 
 | |
| 	    real *), slahqr_(logical *, logical *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, integer *
 | |
| 	    , real *, integer *, integer *), slacpy_(char *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, integer *), slaset_(
 | |
| 	    char *, integer *, integer *, real *, real *, real *, integer *);
 | |
|     logical sorted;
 | |
|     extern /* Subroutine */ void strexc_(char *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, integer *, integer *, real *, integer *), sormhr_(char *, char *, integer *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     real smlnum;
 | |
|     integer lwkopt;
 | |
|     real evi, evk, foo;
 | |
|     integer kln;
 | |
|     real tau, ulp;
 | |
|     integer lwk1, lwk2, lwk3;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK auxiliary routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ================================================================ */
 | |
| 
 | |
| /*     ==== Estimate optimal workspace. ==== */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     h_dim1 = *ldh;
 | |
|     h_offset = 1 + h_dim1 * 1;
 | |
|     h__ -= h_offset;
 | |
|     z_dim1 = *ldz;
 | |
|     z_offset = 1 + z_dim1 * 1;
 | |
|     z__ -= z_offset;
 | |
|     --sr;
 | |
|     --si;
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     wv_dim1 = *ldwv;
 | |
|     wv_offset = 1 + wv_dim1 * 1;
 | |
|     wv -= wv_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
| /* Computing MIN */
 | |
|     i__1 = *nw, i__2 = *kbot - *ktop + 1;
 | |
|     jw = f2cmin(i__1,i__2);
 | |
|     if (jw <= 2) {
 | |
| 	lwkopt = 1;
 | |
|     } else {
 | |
| 
 | |
| /*        ==== Workspace query call to SGEHRD ==== */
 | |
| 
 | |
| 	i__1 = jw - 1;
 | |
| 	sgehrd_(&jw, &c__1, &i__1, &t[t_offset], ldt, &work[1], &work[1], &
 | |
| 		c_n1, &info);
 | |
| 	lwk1 = (integer) work[1];
 | |
| 
 | |
| /*        ==== Workspace query call to SORMHR ==== */
 | |
| 
 | |
| 	i__1 = jw - 1;
 | |
| 	sormhr_("R", "N", &jw, &jw, &c__1, &i__1, &t[t_offset], ldt, &work[1],
 | |
| 		 &v[v_offset], ldv, &work[1], &c_n1, &info);
 | |
| 	lwk2 = (integer) work[1];
 | |
| 
 | |
| /*        ==== Workspace query call to SLAQR4 ==== */
 | |
| 
 | |
| 	slaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[1], 
 | |
| 		&si[1], &c__1, &jw, &v[v_offset], ldv, &work[1], &c_n1, &
 | |
| 		infqr);
 | |
| 	lwk3 = (integer) work[1];
 | |
| 
 | |
| /*        ==== Optimal workspace ==== */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	i__1 = jw + f2cmax(lwk1,lwk2);
 | |
| 	lwkopt = f2cmax(i__1,lwk3);
 | |
|     }
 | |
| 
 | |
| /*     ==== Quick return in case of workspace query. ==== */
 | |
| 
 | |
|     if (*lwork == -1) {
 | |
| 	work[1] = (real) lwkopt;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     ==== Nothing to do ... */
 | |
| /*     ... for an empty active block ... ==== */
 | |
|     *ns = 0;
 | |
|     *nd = 0;
 | |
|     work[1] = 1.f;
 | |
|     if (*ktop > *kbot) {
 | |
| 	return;
 | |
|     }
 | |
| /*     ... nor for an empty deflation window. ==== */
 | |
|     if (*nw < 1) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     ==== Machine constants ==== */
 | |
| 
 | |
|     safmin = slamch_("SAFE MINIMUM");
 | |
|     safmax = 1.f / safmin;
 | |
|     slabad_(&safmin, &safmax);
 | |
|     ulp = slamch_("PRECISION");
 | |
|     smlnum = safmin * ((real) (*n) / ulp);
 | |
| 
 | |
| /*     ==== Setup deflation window ==== */
 | |
| 
 | |
| /* Computing MIN */
 | |
|     i__1 = *nw, i__2 = *kbot - *ktop + 1;
 | |
|     jw = f2cmin(i__1,i__2);
 | |
|     kwtop = *kbot - jw + 1;
 | |
|     if (kwtop == *ktop) {
 | |
| 	s = 0.f;
 | |
|     } else {
 | |
| 	s = h__[kwtop + (kwtop - 1) * h_dim1];
 | |
|     }
 | |
| 
 | |
|     if (*kbot == kwtop) {
 | |
| 
 | |
| /*        ==== 1-by-1 deflation window: not much to do ==== */
 | |
| 
 | |
| 	sr[kwtop] = h__[kwtop + kwtop * h_dim1];
 | |
| 	si[kwtop] = 0.f;
 | |
| 	*ns = 1;
 | |
| 	*nd = 0;
 | |
| /* Computing MAX */
 | |
| 	r__2 = smlnum, r__3 = ulp * (r__1 = h__[kwtop + kwtop * h_dim1], abs(
 | |
| 		r__1));
 | |
| 	if (abs(s) <= f2cmax(r__2,r__3)) {
 | |
| 	    *ns = 0;
 | |
| 	    *nd = 1;
 | |
| 	    if (kwtop > *ktop) {
 | |
| 		h__[kwtop + (kwtop - 1) * h_dim1] = 0.f;
 | |
| 	    }
 | |
| 	}
 | |
| 	work[1] = 1.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     ==== Convert to spike-triangular form.  (In case of a */
 | |
| /*     .    rare QR failure, this routine continues to do */
 | |
| /*     .    aggressive early deflation using that part of */
 | |
| /*     .    the deflation window that converged using INFQR */
 | |
| /*     .    here and there to keep track.) ==== */
 | |
| 
 | |
|     slacpy_("U", &jw, &jw, &h__[kwtop + kwtop * h_dim1], ldh, &t[t_offset], 
 | |
| 	    ldt);
 | |
|     i__1 = jw - 1;
 | |
|     i__2 = *ldh + 1;
 | |
|     i__3 = *ldt + 1;
 | |
|     scopy_(&i__1, &h__[kwtop + 1 + kwtop * h_dim1], &i__2, &t[t_dim1 + 2], &
 | |
| 	    i__3);
 | |
| 
 | |
|     slaset_("A", &jw, &jw, &c_b17, &c_b18, &v[v_offset], ldv);
 | |
|     nmin = ilaenv_(&c__12, "SLAQR3", "SV", &jw, &c__1, &jw, lwork, (ftnlen)6, 
 | |
| 	    (ftnlen)2);
 | |
|     if (jw > nmin) {
 | |
| 	slaqr4_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
 | |
| 		kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &work[1], 
 | |
| 		lwork, &infqr);
 | |
|     } else {
 | |
| 	slahqr_(&c_true, &c_true, &jw, &c__1, &jw, &t[t_offset], ldt, &sr[
 | |
| 		kwtop], &si[kwtop], &c__1, &jw, &v[v_offset], ldv, &infqr);
 | |
|     }
 | |
| 
 | |
| /*     ==== STREXC needs a clean margin near the diagonal ==== */
 | |
| 
 | |
|     i__1 = jw - 3;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	t[j + 2 + j * t_dim1] = 0.f;
 | |
| 	t[j + 3 + j * t_dim1] = 0.f;
 | |
| /* L10: */
 | |
|     }
 | |
|     if (jw > 2) {
 | |
| 	t[jw + (jw - 2) * t_dim1] = 0.f;
 | |
|     }
 | |
| 
 | |
| /*     ==== Deflation detection loop ==== */
 | |
| 
 | |
|     *ns = jw;
 | |
|     ilst = infqr + 1;
 | |
| L20:
 | |
|     if (ilst <= *ns) {
 | |
| 	if (*ns == 1) {
 | |
| 	    bulge = FALSE_;
 | |
| 	} else {
 | |
| 	    bulge = t[*ns + (*ns - 1) * t_dim1] != 0.f;
 | |
| 	}
 | |
| 
 | |
| /*        ==== Small spike tip test for deflation ==== */
 | |
| 
 | |
| 	if (! bulge) {
 | |
| 
 | |
| /*           ==== Real eigenvalue ==== */
 | |
| 
 | |
| 	    foo = (r__1 = t[*ns + *ns * t_dim1], abs(r__1));
 | |
| 	    if (foo == 0.f) {
 | |
| 		foo = abs(s);
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    r__2 = smlnum, r__3 = ulp * foo;
 | |
| 	    if ((r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)) <= f2cmax(r__2,r__3))
 | |
| 		     {
 | |
| 
 | |
| /*              ==== Deflatable ==== */
 | |
| 
 | |
| 		--(*ns);
 | |
| 	    } else {
 | |
| 
 | |
| /*              ==== Undeflatable.   Move it up out of the way. */
 | |
| /*              .    (STREXC can not fail in this case.) ==== */
 | |
| 
 | |
| 		ifst = *ns;
 | |
| 		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
 | |
| 			 &ilst, &work[1], &info);
 | |
| 		++ilst;
 | |
| 	    }
 | |
| 	} else {
 | |
| 
 | |
| /*           ==== Complex conjugate pair ==== */
 | |
| 
 | |
| 	    foo = (r__3 = t[*ns + *ns * t_dim1], abs(r__3)) + sqrt((r__1 = t[*
 | |
| 		    ns + (*ns - 1) * t_dim1], abs(r__1))) * sqrt((r__2 = t[*
 | |
| 		    ns - 1 + *ns * t_dim1], abs(r__2)));
 | |
| 	    if (foo == 0.f) {
 | |
| 		foo = abs(s);
 | |
| 	    }
 | |
| /* Computing MAX */
 | |
| 	    r__3 = (r__1 = s * v[*ns * v_dim1 + 1], abs(r__1)), r__4 = (r__2 =
 | |
| 		     s * v[(*ns - 1) * v_dim1 + 1], abs(r__2));
 | |
| /* Computing MAX */
 | |
| 	    r__5 = smlnum, r__6 = ulp * foo;
 | |
| 	    if (f2cmax(r__3,r__4) <= f2cmax(r__5,r__6)) {
 | |
| 
 | |
| /*              ==== Deflatable ==== */
 | |
| 
 | |
| 		*ns += -2;
 | |
| 	    } else {
 | |
| 
 | |
| /*              ==== Undeflatable. Move them up out of the way. */
 | |
| /*              .    Fortunately, STREXC does the right thing with */
 | |
| /*              .    ILST in case of a rare exchange failure. ==== */
 | |
| 
 | |
| 		ifst = *ns;
 | |
| 		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
 | |
| 			 &ilst, &work[1], &info);
 | |
| 		ilst += 2;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        ==== End deflation detection loop ==== */
 | |
| 
 | |
| 	goto L20;
 | |
|     }
 | |
| 
 | |
| /*        ==== Return to Hessenberg form ==== */
 | |
| 
 | |
|     if (*ns == 0) {
 | |
| 	s = 0.f;
 | |
|     }
 | |
| 
 | |
|     if (*ns < jw) {
 | |
| 
 | |
| /*        ==== sorting diagonal blocks of T improves accuracy for */
 | |
| /*        .    graded matrices.  Bubble sort deals well with */
 | |
| /*        .    exchange failures. ==== */
 | |
| 
 | |
| 	sorted = FALSE_;
 | |
| 	i__ = *ns + 1;
 | |
| L30:
 | |
| 	if (sorted) {
 | |
| 	    goto L50;
 | |
| 	}
 | |
| 	sorted = TRUE_;
 | |
| 
 | |
| 	kend = i__ - 1;
 | |
| 	i__ = infqr + 1;
 | |
| 	if (i__ == *ns) {
 | |
| 	    k = i__ + 1;
 | |
| 	} else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
 | |
| 	    k = i__ + 1;
 | |
| 	} else {
 | |
| 	    k = i__ + 2;
 | |
| 	}
 | |
| L40:
 | |
| 	if (k <= kend) {
 | |
| 	    if (k == i__ + 1) {
 | |
| 		evi = (r__1 = t[i__ + i__ * t_dim1], abs(r__1));
 | |
| 	    } else {
 | |
| 		evi = (r__3 = t[i__ + i__ * t_dim1], abs(r__3)) + sqrt((r__1 =
 | |
| 			 t[i__ + 1 + i__ * t_dim1], abs(r__1))) * sqrt((r__2 =
 | |
| 			 t[i__ + (i__ + 1) * t_dim1], abs(r__2)));
 | |
| 	    }
 | |
| 
 | |
| 	    if (k == kend) {
 | |
| 		evk = (r__1 = t[k + k * t_dim1], abs(r__1));
 | |
| 	    } else if (t[k + 1 + k * t_dim1] == 0.f) {
 | |
| 		evk = (r__1 = t[k + k * t_dim1], abs(r__1));
 | |
| 	    } else {
 | |
| 		evk = (r__3 = t[k + k * t_dim1], abs(r__3)) + sqrt((r__1 = t[
 | |
| 			k + 1 + k * t_dim1], abs(r__1))) * sqrt((r__2 = t[k + 
 | |
| 			(k + 1) * t_dim1], abs(r__2)));
 | |
| 	    }
 | |
| 
 | |
| 	    if (evi >= evk) {
 | |
| 		i__ = k;
 | |
| 	    } else {
 | |
| 		sorted = FALSE_;
 | |
| 		ifst = i__;
 | |
| 		ilst = k;
 | |
| 		strexc_("V", &jw, &t[t_offset], ldt, &v[v_offset], ldv, &ifst,
 | |
| 			 &ilst, &work[1], &info);
 | |
| 		if (info == 0) {
 | |
| 		    i__ = ilst;
 | |
| 		} else {
 | |
| 		    i__ = k;
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (i__ == kend) {
 | |
| 		k = i__ + 1;
 | |
| 	    } else if (t[i__ + 1 + i__ * t_dim1] == 0.f) {
 | |
| 		k = i__ + 1;
 | |
| 	    } else {
 | |
| 		k = i__ + 2;
 | |
| 	    }
 | |
| 	    goto L40;
 | |
| 	}
 | |
| 	goto L30;
 | |
| L50:
 | |
| 	;
 | |
|     }
 | |
| 
 | |
| /*     ==== Restore shift/eigenvalue array from T ==== */
 | |
| 
 | |
|     i__ = jw;
 | |
| L60:
 | |
|     if (i__ >= infqr + 1) {
 | |
| 	if (i__ == infqr + 1) {
 | |
| 	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
 | |
| 	    si[kwtop + i__ - 1] = 0.f;
 | |
| 	    --i__;
 | |
| 	} else if (t[i__ + (i__ - 1) * t_dim1] == 0.f) {
 | |
| 	    sr[kwtop + i__ - 1] = t[i__ + i__ * t_dim1];
 | |
| 	    si[kwtop + i__ - 1] = 0.f;
 | |
| 	    --i__;
 | |
| 	} else {
 | |
| 	    aa = t[i__ - 1 + (i__ - 1) * t_dim1];
 | |
| 	    cc = t[i__ + (i__ - 1) * t_dim1];
 | |
| 	    bb = t[i__ - 1 + i__ * t_dim1];
 | |
| 	    dd = t[i__ + i__ * t_dim1];
 | |
| 	    slanv2_(&aa, &bb, &cc, &dd, &sr[kwtop + i__ - 2], &si[kwtop + i__ 
 | |
| 		    - 2], &sr[kwtop + i__ - 1], &si[kwtop + i__ - 1], &cs, &
 | |
| 		    sn);
 | |
| 	    i__ += -2;
 | |
| 	}
 | |
| 	goto L60;
 | |
|     }
 | |
| 
 | |
|     if (*ns < jw || s == 0.f) {
 | |
| 	if (*ns > 1 && s != 0.f) {
 | |
| 
 | |
| /*           ==== Reflect spike back into lower triangle ==== */
 | |
| 
 | |
| 	    scopy_(ns, &v[v_offset], ldv, &work[1], &c__1);
 | |
| 	    beta = work[1];
 | |
| 	    slarfg_(ns, &beta, &work[2], &c__1, &tau);
 | |
| 	    work[1] = 1.f;
 | |
| 
 | |
| 	    i__1 = jw - 2;
 | |
| 	    i__2 = jw - 2;
 | |
| 	    slaset_("L", &i__1, &i__2, &c_b17, &c_b17, &t[t_dim1 + 3], ldt);
 | |
| 
 | |
| 	    slarf_("L", ns, &jw, &work[1], &c__1, &tau, &t[t_offset], ldt, &
 | |
| 		    work[jw + 1]);
 | |
| 	    slarf_("R", ns, ns, &work[1], &c__1, &tau, &t[t_offset], ldt, &
 | |
| 		    work[jw + 1]);
 | |
| 	    slarf_("R", &jw, ns, &work[1], &c__1, &tau, &v[v_offset], ldv, &
 | |
| 		    work[jw + 1]);
 | |
| 
 | |
| 	    i__1 = *lwork - jw;
 | |
| 	    sgehrd_(&jw, &c__1, ns, &t[t_offset], ldt, &work[1], &work[jw + 1]
 | |
| 		    , &i__1, &info);
 | |
| 	}
 | |
| 
 | |
| /*        ==== Copy updated reduced window into place ==== */
 | |
| 
 | |
| 	if (kwtop > 1) {
 | |
| 	    h__[kwtop + (kwtop - 1) * h_dim1] = s * v[v_dim1 + 1];
 | |
| 	}
 | |
| 	slacpy_("U", &jw, &jw, &t[t_offset], ldt, &h__[kwtop + kwtop * h_dim1]
 | |
| 		, ldh);
 | |
| 	i__1 = jw - 1;
 | |
| 	i__2 = *ldt + 1;
 | |
| 	i__3 = *ldh + 1;
 | |
| 	scopy_(&i__1, &t[t_dim1 + 2], &i__2, &h__[kwtop + 1 + kwtop * h_dim1],
 | |
| 		 &i__3);
 | |
| 
 | |
| /*        ==== Accumulate orthogonal matrix in order update */
 | |
| /*        .    H and Z, if requested.  ==== */
 | |
| 
 | |
| 	if (*ns > 1 && s != 0.f) {
 | |
| 	    i__1 = *lwork - jw;
 | |
| 	    sormhr_("R", "N", &jw, ns, &c__1, ns, &t[t_offset], ldt, &work[1],
 | |
| 		     &v[v_offset], ldv, &work[jw + 1], &i__1, &info);
 | |
| 	}
 | |
| 
 | |
| /*        ==== Update vertical slab in H ==== */
 | |
| 
 | |
| 	if (*wantt) {
 | |
| 	    ltop = 1;
 | |
| 	} else {
 | |
| 	    ltop = *ktop;
 | |
| 	}
 | |
| 	i__1 = kwtop - 1;
 | |
| 	i__2 = *nv;
 | |
| 	for (krow = ltop; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow += 
 | |
| 		i__2) {
 | |
| /* Computing MIN */
 | |
| 	    i__3 = *nv, i__4 = kwtop - krow;
 | |
| 	    kln = f2cmin(i__3,i__4);
 | |
| 	    sgemm_("N", "N", &kln, &jw, &jw, &c_b18, &h__[krow + kwtop * 
 | |
| 		    h_dim1], ldh, &v[v_offset], ldv, &c_b17, &wv[wv_offset], 
 | |
| 		    ldwv);
 | |
| 	    slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &h__[krow + kwtop * 
 | |
| 		    h_dim1], ldh);
 | |
| /* L70: */
 | |
| 	}
 | |
| 
 | |
| /*        ==== Update horizontal slab in H ==== */
 | |
| 
 | |
| 	if (*wantt) {
 | |
| 	    i__2 = *n;
 | |
| 	    i__1 = *nh;
 | |
| 	    for (kcol = *kbot + 1; i__1 < 0 ? kcol >= i__2 : kcol <= i__2; 
 | |
| 		    kcol += i__1) {
 | |
| /* Computing MIN */
 | |
| 		i__3 = *nh, i__4 = *n - kcol + 1;
 | |
| 		kln = f2cmin(i__3,i__4);
 | |
| 		sgemm_("C", "N", &jw, &kln, &jw, &c_b18, &v[v_offset], ldv, &
 | |
| 			h__[kwtop + kcol * h_dim1], ldh, &c_b17, &t[t_offset],
 | |
| 			 ldt);
 | |
| 		slacpy_("A", &jw, &kln, &t[t_offset], ldt, &h__[kwtop + kcol *
 | |
| 			 h_dim1], ldh);
 | |
| /* L80: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| /*        ==== Update vertical slab in Z ==== */
 | |
| 
 | |
| 	if (*wantz) {
 | |
| 	    i__1 = *ihiz;
 | |
| 	    i__2 = *nv;
 | |
| 	    for (krow = *iloz; i__2 < 0 ? krow >= i__1 : krow <= i__1; krow +=
 | |
| 		     i__2) {
 | |
| /* Computing MIN */
 | |
| 		i__3 = *nv, i__4 = *ihiz - krow + 1;
 | |
| 		kln = f2cmin(i__3,i__4);
 | |
| 		sgemm_("N", "N", &kln, &jw, &jw, &c_b18, &z__[krow + kwtop * 
 | |
| 			z_dim1], ldz, &v[v_offset], ldv, &c_b17, &wv[
 | |
| 			wv_offset], ldwv);
 | |
| 		slacpy_("A", &kln, &jw, &wv[wv_offset], ldwv, &z__[krow + 
 | |
| 			kwtop * z_dim1], ldz);
 | |
| /* L90: */
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     ==== Return the number of deflations ... ==== */
 | |
| 
 | |
|     *nd = jw - *ns;
 | |
| 
 | |
| /*     ==== ... and the number of shifts. (Subtracting */
 | |
| /*     .    INFQR from the spike length takes care */
 | |
| /*     .    of the case of a rare QR failure while */
 | |
| /*     .    calculating eigenvalues of the deflation */
 | |
| /*     .    window.)  ==== */
 | |
| 
 | |
|     *ns -= infqr;
 | |
| 
 | |
| /*      ==== Return optimal workspace. ==== */
 | |
| 
 | |
|     work[1] = (real) lwkopt;
 | |
| 
 | |
| /*     ==== End of SLAQR3 ==== */
 | |
| 
 | |
|     return;
 | |
| } /* slaqr3_ */
 | |
| 
 |