968 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			968 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__0 = 0;
 | |
| 
 | |
| /* > \brief \b SLAMTSQR */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*      SUBROUTINE SLAMTSQR( SIDE, TRANS, M, N, K, MB, NB, A, LDA, T, */
 | |
| /*     $                     LDT, C, LDC, WORK, LWORK, INFO ) */
 | |
| 
 | |
| 
 | |
| /*      CHARACTER         SIDE, TRANS */
 | |
| /*      INTEGER           INFO, LDA, M, N, K, MB, NB, LDT, LWORK, LDC */
 | |
| /*      DOUBLE        A( LDA, * ), WORK( * ), C(LDC, * ), */
 | |
| /*     $                  T( LDT, * ) */
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >      SLAMTSQR overwrites the general real M-by-N matrix C with */
 | |
| /* > */
 | |
| /* > */
 | |
| /* >                 SIDE = 'L'     SIDE = 'R' */
 | |
| /* > TRANS = 'N':      Q * C          C * Q */
 | |
| /* > TRANS = 'T':      Q**T * C       C * Q**T */
 | |
| /* >      where Q is a real orthogonal matrix defined as the product */
 | |
| /* >      of blocked elementary reflectors computed by tall skinny */
 | |
| /* >      QR factorization (DLATSQR) */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] SIDE */
 | |
| /* > \verbatim */
 | |
| /* >          SIDE is CHARACTER*1 */
 | |
| /* >          = 'L': apply Q or Q**T from the Left; */
 | |
| /* >          = 'R': apply Q or Q**T from the Right. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >          = 'N':  No transpose, apply Q; */
 | |
| /* >          = 'T':  Transpose, apply Q**T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A.  M >=0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix C. M >= N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >          The number of elementary reflectors whose product defines */
 | |
| /* >          the matrix Q. */
 | |
| /* >          N >= K >= 0; */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] MB */
 | |
| /* > \verbatim */
 | |
| /* >          MB is INTEGER */
 | |
| /* >          The block size to be used in the blocked QR. */
 | |
| /* >          MB > N. (must be the same as DLATSQR) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NB */
 | |
| /* > \verbatim */
 | |
| /* >          NB is INTEGER */
 | |
| /* >          The column block size to be used in the blocked QR. */
 | |
| /* >          N >= NB >= 1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,K) */
 | |
| /* >          The i-th column must contain the vector which defines the */
 | |
| /* >          blockedelementary reflector H(i), for i = 1,2,...,k, as */
 | |
| /* >          returned by DLATSQR in the first k columns of */
 | |
| /* >          its array argument A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A. */
 | |
| /* >          If SIDE = 'L', LDA >= f2cmax(1,M); */
 | |
| /* >          if SIDE = 'R', LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] T */
 | |
| /* > \verbatim */
 | |
| /* >          T is REAL array, dimension */
 | |
| /* >          ( N * Number of blocks(CEIL(M-K/MB-K)), */
 | |
| /* >          The blocked upper triangular block reflectors stored in compact form */
 | |
| /* >          as a sequence of upper triangular blocks.  See below */
 | |
| /* >          for further details. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDT */
 | |
| /* > \verbatim */
 | |
| /* >          LDT is INTEGER */
 | |
| /* >          The leading dimension of the array T.  LDT >= NB. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension (LDC,N) */
 | |
| /* >          On entry, the M-by-N matrix C. */
 | |
| /* >          On exit, C is overwritten by Q*C or Q**T*C or C*Q**T or C*Q. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDC */
 | |
| /* > \verbatim */
 | |
| /* >          LDC is INTEGER */
 | |
| /* >          The leading dimension of the array C. LDC >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >         (workspace) REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. */
 | |
| /* > */
 | |
| /* >          If SIDE = 'L', LWORK >= f2cmax(1,N)*NB; */
 | |
| /* >          if SIDE = 'R', LWORK >= f2cmax(1,MB)*NB. */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > Tall-Skinny QR (TSQR) performs QR by a sequence of orthogonal transformations, */
 | |
| /* > representing Q as a product of other orthogonal matrices */
 | |
| /* >   Q = Q(1) * Q(2) * . . . * Q(k) */
 | |
| /* > where each Q(i) zeros out subdiagonal entries of a block of MB rows of A: */
 | |
| /* >   Q(1) zeros out the subdiagonal entries of rows 1:MB of A */
 | |
| /* >   Q(2) zeros out the bottom MB-N rows of rows [1:N,MB+1:2*MB-N] of A */
 | |
| /* >   Q(3) zeros out the bottom MB-N rows of rows [1:N,2*MB-N+1:3*MB-2*N] of A */
 | |
| /* >   . . . */
 | |
| /* > */
 | |
| /* > Q(1) is computed by GEQRT, which represents Q(1) by Householder vectors */
 | |
| /* > stored under the diagonal of rows 1:MB of A, and by upper triangular */
 | |
| /* > block reflectors, stored in array T(1:LDT,1:N). */
 | |
| /* > For more information see Further Details in GEQRT. */
 | |
| /* > */
 | |
| /* > Q(i) for i>1 is computed by TPQRT, which represents Q(i) by Householder vectors */
 | |
| /* > stored in rows [(i-1)*(MB-N)+N+1:i*(MB-N)+N] of A, and by upper triangular */
 | |
| /* > block reflectors, stored in array T(1:LDT,(i-1)*N+1:i*N). */
 | |
| /* > The last Q(k) may use fewer rows. */
 | |
| /* > For more information see Further Details in TPQRT. */
 | |
| /* > */
 | |
| /* > For more details of the overall algorithm, see the description of */
 | |
| /* > Sequential TSQR in Section 2.2 of [1]. */
 | |
| /* > */
 | |
| /* > [1] “Communication-Optimal Parallel and Sequential QR and LU Factorizations, */
 | |
| /* >     J. Demmel, L. Grigori, M. Hoemmen, J. Langou, */
 | |
| /* >     SIAM J. Sci. Comput, vol. 34, no. 1, 2012 */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slamtsqr_(char *side, char *trans, integer *m, integer *
 | |
| 	n, integer *k, integer *mb, integer *nb, real *a, integer *lda, real *
 | |
| 	t, integer *ldt, real *c__, integer *ldc, real *work, integer *lwork, 
 | |
| 	integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, c_dim1, c_offset, t_dim1, t_offset, i__1, i__2, 
 | |
| 	    i__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical left, tran;
 | |
|     integer i__;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     logical right;
 | |
|     integer ii, kk, lw;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     logical notran, lquery;
 | |
|     integer ctr;
 | |
|     extern /* Subroutine */ void sgemqrt_(char *, char *, integer *, integer *,
 | |
| 	     integer *, integer *, real *, integer *, real *, integer *, real 
 | |
| 	    *, integer *, real *, integer *), stpmqrt_(char *,
 | |
| 	     char *, integer *, integer *, integer *, integer *, integer *, 
 | |
| 	    real *, integer *, real *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, integer *);
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2017 */
 | |
| 
 | |
| 
 | |
| /* ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     t_dim1 = *ldt;
 | |
|     t_offset = 1 + t_dim1 * 1;
 | |
|     t -= t_offset;
 | |
|     c_dim1 = *ldc;
 | |
|     c_offset = 1 + c_dim1 * 1;
 | |
|     c__ -= c_offset;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     lquery = *lwork < 0;
 | |
|     notran = lsame_(trans, "N");
 | |
|     tran = lsame_(trans, "T");
 | |
|     left = lsame_(side, "L");
 | |
|     right = lsame_(side, "R");
 | |
|     if (left) {
 | |
| 	lw = *n * *nb;
 | |
|     } else {
 | |
| 	lw = *mb * *nb;
 | |
|     }
 | |
| 
 | |
|     *info = 0;
 | |
|     if (! left && ! right) {
 | |
| 	*info = -1;
 | |
|     } else if (! tran && ! notran) {
 | |
| 	*info = -2;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*k < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*k)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldt < f2cmax(1,*nb)) {
 | |
| 	*info = -11;
 | |
|     } else if (*ldc < f2cmax(1,*m)) {
 | |
| 	*info = -13;
 | |
|     } else if (*lwork < f2cmax(1,lw) && ! lquery) {
 | |
| 	*info = -15;
 | |
|     }
 | |
| 
 | |
| /*     Determine the block size if it is tall skinny or short and wide */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	work[1] = (real) lw;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLAMTSQR", &i__1, (ftnlen)8);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
| /* Computing MIN */
 | |
|     i__1 = f2cmin(*m,*n);
 | |
|     if (f2cmin(i__1,*k) == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /* Computing MAX */
 | |
|     i__1 = f2cmax(*m,*n);
 | |
|     if (*mb <= *k || *mb >= f2cmax(i__1,*k)) {
 | |
| 	sgemqrt_(side, trans, m, n, k, nb, &a[a_offset], lda, &t[t_offset], 
 | |
| 		ldt, &c__[c_offset], ldc, &work[1], info);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     if (left && notran) {
 | |
| 
 | |
| /*         Multiply Q to the last block of C */
 | |
| 
 | |
| 	kk = (*m - *k) % (*mb - *k);
 | |
| 	ctr = (*m - *k) / (*mb - *k);
 | |
| 	if (kk > 0) {
 | |
| 	    ii = *m - kk + 1;
 | |
| 	    stpmqrt_("L", "N", &kk, n, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
 | |
| 		    (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc, 
 | |
| 		    &c__[ii + c_dim1], ldc, &work[1], info);
 | |
| 	} else {
 | |
| 	    ii = *m + 1;
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *mb + 1;
 | |
| 	i__2 = -(*mb - *k);
 | |
| 	for (i__ = ii - (*mb - *k); i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ 
 | |
| 		+= i__2) {
 | |
| 
 | |
| /*         Multiply Q to the current block of C (I:I+MB,1:N) */
 | |
| 
 | |
| 	    --ctr;
 | |
| 	    i__3 = *mb - *k;
 | |
| 	    stpmqrt_("L", "N", &i__3, n, k, &c__0, nb, &a[i__ + a_dim1], lda, 
 | |
| 		    &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], 
 | |
| 		    ldc, &c__[i__ + c_dim1], ldc, &work[1], info);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /*         Multiply Q to the first block of C (1:MB,1:N) */
 | |
| 
 | |
| 	sgemqrt_("L", "N", mb, n, k, nb, &a[a_dim1 + 1], lda, &t[t_offset], 
 | |
| 		ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
 | |
| 
 | |
|     } else if (left && tran) {
 | |
| 
 | |
| /*         Multiply Q to the first block of C */
 | |
| 
 | |
| 	kk = (*m - *k) % (*mb - *k);
 | |
| 	ii = *m - kk + 1;
 | |
| 	ctr = 1;
 | |
| 	sgemqrt_("L", "T", mb, n, k, nb, &a[a_dim1 + 1], lda, &t[t_offset], 
 | |
| 		ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
 | |
| 
 | |
| 	i__2 = ii - *mb + *k;
 | |
| 	i__1 = *mb - *k;
 | |
| 	for (i__ = *mb + 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1)
 | |
| 		 {
 | |
| 
 | |
| /*         Multiply Q to the current block of C (I:I+MB,1:N) */
 | |
| 
 | |
| 	    i__3 = *mb - *k;
 | |
| 	    stpmqrt_("L", "T", &i__3, n, k, &c__0, nb, &a[i__ + a_dim1], lda, 
 | |
| 		    &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], 
 | |
| 		    ldc, &c__[i__ + c_dim1], ldc, &work[1], info);
 | |
| 	    ++ctr;
 | |
| 
 | |
| 	}
 | |
| 	if (ii <= *m) {
 | |
| 
 | |
| /*         Multiply Q to the last block of C */
 | |
| 
 | |
| 	    stpmqrt_("L", "T", &kk, n, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
 | |
| 		    (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc, 
 | |
| 		    &c__[ii + c_dim1], ldc, &work[1], info);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     } else if (right && tran) {
 | |
| 
 | |
| /*         Multiply Q to the last block of C */
 | |
| 
 | |
| 	kk = (*n - *k) % (*mb - *k);
 | |
| 	ctr = (*n - *k) / (*mb - *k);
 | |
| 	if (kk > 0) {
 | |
| 	    ii = *n - kk + 1;
 | |
| 	    stpmqrt_("R", "T", m, &kk, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
 | |
| 		    (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc, 
 | |
| 		    &c__[ii * c_dim1 + 1], ldc, &work[1], info);
 | |
| 	} else {
 | |
| 	    ii = *n + 1;
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *mb + 1;
 | |
| 	i__2 = -(*mb - *k);
 | |
| 	for (i__ = ii - (*mb - *k); i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ 
 | |
| 		+= i__2) {
 | |
| 
 | |
| /*         Multiply Q to the current block of C (1:M,I:I+MB) */
 | |
| 
 | |
| 	    --ctr;
 | |
| 	    i__3 = *mb - *k;
 | |
| 	    stpmqrt_("R", "T", m, &i__3, k, &c__0, nb, &a[i__ + a_dim1], lda, 
 | |
| 		    &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], 
 | |
| 		    ldc, &c__[i__ * c_dim1 + 1], ldc, &work[1], info);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /*         Multiply Q to the first block of C (1:M,1:MB) */
 | |
| 
 | |
| 	sgemqrt_("R", "T", m, mb, k, nb, &a[a_dim1 + 1], lda, &t[t_offset], 
 | |
| 		ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
 | |
| 
 | |
|     } else if (right && notran) {
 | |
| 
 | |
| /*         Multiply Q to the first block of C */
 | |
| 
 | |
| 	kk = (*n - *k) % (*mb - *k);
 | |
| 	ii = *n - kk + 1;
 | |
| 	ctr = 1;
 | |
| 	sgemqrt_("R", "N", m, mb, k, nb, &a[a_dim1 + 1], lda, &t[t_offset], 
 | |
| 		ldt, &c__[c_dim1 + 1], ldc, &work[1], info);
 | |
| 
 | |
| 	i__2 = ii - *mb + *k;
 | |
| 	i__1 = *mb - *k;
 | |
| 	for (i__ = *mb + 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += i__1)
 | |
| 		 {
 | |
| 
 | |
| /*         Multiply Q to the current block of C (1:M,I:I+MB) */
 | |
| 
 | |
| 	    i__3 = *mb - *k;
 | |
| 	    stpmqrt_("R", "N", m, &i__3, k, &c__0, nb, &a[i__ + a_dim1], lda, 
 | |
| 		    &t[(ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], 
 | |
| 		    ldc, &c__[i__ * c_dim1 + 1], ldc, &work[1], info);
 | |
| 	    ++ctr;
 | |
| 
 | |
| 	}
 | |
| 	if (ii <= *n) {
 | |
| 
 | |
| /*         Multiply Q to the last block of C */
 | |
| 
 | |
| 	    stpmqrt_("R", "N", m, &kk, k, &c__0, nb, &a[ii + a_dim1], lda, &t[
 | |
| 		    (ctr * *k + 1) * t_dim1 + 1], ldt, &c__[c_dim1 + 1], ldc, 
 | |
| 		    &c__[ii * c_dim1 + 1], ldc, &work[1], info);
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
|     work[1] = (real) lw;
 | |
|     return;
 | |
| 
 | |
| /*     End of SLAMTSQR */
 | |
| 
 | |
| } /* slamtsqr_ */
 | |
| 
 |