1119 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1119 lines
		
	
	
		
			30 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static real c_b3 = -1.f;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b SLAED2 used by sstedc. Merges eigenvalues and deflates secular equation. Used when the original
 | |
|  matrix is tridiagonal. */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SLAED2 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/slaed2.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/slaed2.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/slaed2.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SLAED2( K, N, N1, D, Q, LDQ, INDXQ, RHO, Z, DLAMDA, W, */
 | |
| /*                          Q2, INDX, INDXC, INDXP, COLTYP, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, K, LDQ, N, N1 */
 | |
| /*       REAL               RHO */
 | |
| /*       INTEGER            COLTYP( * ), INDX( * ), INDXC( * ), INDXP( * ), */
 | |
| /*      $                   INDXQ( * ) */
 | |
| /*       REAL               D( * ), DLAMDA( * ), Q( LDQ, * ), Q2( * ), */
 | |
| /*      $                   W( * ), Z( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SLAED2 merges the two sets of eigenvalues together into a single */
 | |
| /* > sorted set.  Then it tries to deflate the size of the problem. */
 | |
| /* > There are two ways in which deflation can occur:  when two or more */
 | |
| /* > eigenvalues are close together or if there is a tiny entry in the */
 | |
| /* > Z vector.  For each such occurrence the order of the related secular */
 | |
| /* > equation problem is reduced by one. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[out] K */
 | |
| /* > \verbatim */
 | |
| /* >          K is INTEGER */
 | |
| /* >         The number of non-deflated eigenvalues, and the order of the */
 | |
| /* >         related secular equation. 0 <= K <=N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >         The dimension of the symmetric tridiagonal matrix.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N1 */
 | |
| /* > \verbatim */
 | |
| /* >          N1 is INTEGER */
 | |
| /* >         The location of the last eigenvalue in the leading sub-matrix. */
 | |
| /* >         f2cmin(1,N) <= N1 <= N/2. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] D */
 | |
| /* > \verbatim */
 | |
| /* >          D is REAL array, dimension (N) */
 | |
| /* >         On entry, D contains the eigenvalues of the two submatrices to */
 | |
| /* >         be combined. */
 | |
| /* >         On exit, D contains the trailing (N-K) updated eigenvalues */
 | |
| /* >         (those which were deflated) sorted into increasing order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] Q */
 | |
| /* > \verbatim */
 | |
| /* >          Q is REAL array, dimension (LDQ, N) */
 | |
| /* >         On entry, Q contains the eigenvectors of two submatrices in */
 | |
| /* >         the two square blocks with corners at (1,1), (N1,N1) */
 | |
| /* >         and (N1+1, N1+1), (N,N). */
 | |
| /* >         On exit, Q contains the trailing (N-K) updated eigenvectors */
 | |
| /* >         (those which were deflated) in its last N-K columns. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDQ */
 | |
| /* > \verbatim */
 | |
| /* >          LDQ is INTEGER */
 | |
| /* >         The leading dimension of the array Q.  LDQ >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] INDXQ */
 | |
| /* > \verbatim */
 | |
| /* >          INDXQ is INTEGER array, dimension (N) */
 | |
| /* >         The permutation which separately sorts the two sub-problems */
 | |
| /* >         in D into ascending order.  Note that elements in the second */
 | |
| /* >         half of this permutation must first have N1 added to their */
 | |
| /* >         values. Destroyed on exit. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] RHO */
 | |
| /* > \verbatim */
 | |
| /* >          RHO is REAL */
 | |
| /* >         On entry, the off-diagonal element associated with the rank-1 */
 | |
| /* >         cut which originally split the two submatrices which are now */
 | |
| /* >         being recombined. */
 | |
| /* >         On exit, RHO has been modified to the value required by */
 | |
| /* >         SLAED3. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] Z */
 | |
| /* > \verbatim */
 | |
| /* >          Z is REAL array, dimension (N) */
 | |
| /* >         On entry, Z contains the updating vector (the last */
 | |
| /* >         row of the first sub-eigenvector matrix and the first row of */
 | |
| /* >         the second sub-eigenvector matrix). */
 | |
| /* >         On exit, the contents of Z have been destroyed by the updating */
 | |
| /* >         process. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] DLAMDA */
 | |
| /* > \verbatim */
 | |
| /* >          DLAMDA is REAL array, dimension (N) */
 | |
| /* >         A copy of the first K eigenvalues which will be used by */
 | |
| /* >         SLAED3 to form the secular equation. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] W */
 | |
| /* > \verbatim */
 | |
| /* >          W is REAL array, dimension (N) */
 | |
| /* >         The first k values of the final deflation-altered z-vector */
 | |
| /* >         which will be passed to SLAED3. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] Q2 */
 | |
| /* > \verbatim */
 | |
| /* >          Q2 is REAL array, dimension (N1**2+(N-N1)**2) */
 | |
| /* >         A copy of the first K eigenvectors which will be used by */
 | |
| /* >         SLAED3 in a matrix multiply (SGEMM) to solve for the new */
 | |
| /* >         eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INDX */
 | |
| /* > \verbatim */
 | |
| /* >          INDX is INTEGER array, dimension (N) */
 | |
| /* >         The permutation used to sort the contents of DLAMDA into */
 | |
| /* >         ascending order. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INDXC */
 | |
| /* > \verbatim */
 | |
| /* >          INDXC is INTEGER array, dimension (N) */
 | |
| /* >         The permutation used to arrange the columns of the deflated */
 | |
| /* >         Q matrix into three groups:  the first group contains non-zero */
 | |
| /* >         elements only at and above N1, the second contains */
 | |
| /* >         non-zero elements only below N1, and the third is dense. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INDXP */
 | |
| /* > \verbatim */
 | |
| /* >          INDXP is INTEGER array, dimension (N) */
 | |
| /* >         The permutation used to place deflated values of D at the end */
 | |
| /* >         of the array.  INDXP(1:K) points to the nondeflated D-values */
 | |
| /* >         and INDXP(K+1:N) points to the deflated eigenvalues. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] COLTYP */
 | |
| /* > \verbatim */
 | |
| /* >          COLTYP is INTEGER array, dimension (N) */
 | |
| /* >         During execution, a label which will indicate which of the */
 | |
| /* >         following types a column in the Q2 matrix is: */
 | |
| /* >         1 : non-zero in the upper half only; */
 | |
| /* >         2 : dense; */
 | |
| /* >         3 : non-zero in the lower half only; */
 | |
| /* >         4 : deflated. */
 | |
| /* >         On exit, COLTYP(i) is the number of columns of type i, */
 | |
| /* >         for i=1 to 4 only. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup auxOTHERcomputational */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* > Jeff Rutter, Computer Science Division, University of California */
 | |
| /* > at Berkeley, USA \n */
 | |
| /* >  Modified by Francoise Tisseur, University of Tennessee */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void slaed2_(integer *k, integer *n, integer *n1, real *d__, 
 | |
| 	real *q, integer *ldq, integer *indxq, real *rho, real *z__, real *
 | |
| 	dlamda, real *w, real *q2, integer *indx, integer *indxc, integer *
 | |
| 	indxp, integer *coltyp, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer q_dim1, q_offset, i__1, i__2;
 | |
|     real r__1, r__2, r__3, r__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer imax, jmax, ctot[4];
 | |
|     extern /* Subroutine */ void srot_(integer *, real *, integer *, real *, 
 | |
| 	    integer *, real *, real *);
 | |
|     real c__;
 | |
|     integer i__, j;
 | |
|     real s, t;
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | |
|     integer k2;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer n2;
 | |
|     extern real slapy2_(real *, real *);
 | |
|     integer ct, nj, pj, js;
 | |
|     extern real slamch_(char *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     extern /* Subroutine */ void slamrg_(integer *, integer *, real *, integer 
 | |
| 	    *, integer *, integer *), slacpy_(char *, integer *, integer *, 
 | |
| 	    real *, integer *, real *, integer *);
 | |
|     integer iq1, iq2, n1p1;
 | |
|     real eps, tau, tol;
 | |
|     integer psm[4];
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --d__;
 | |
|     q_dim1 = *ldq;
 | |
|     q_offset = 1 + q_dim1 * 1;
 | |
|     q -= q_offset;
 | |
|     --indxq;
 | |
|     --z__;
 | |
|     --dlamda;
 | |
|     --w;
 | |
|     --q2;
 | |
|     --indx;
 | |
|     --indxc;
 | |
|     --indxp;
 | |
|     --coltyp;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
| 
 | |
|     if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*ldq < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MIN */
 | |
| 	i__1 = 1, i__2 = *n / 2;
 | |
| 	if (f2cmin(i__1,i__2) > *n1 || *n / 2 < *n1) {
 | |
| 	    *info = -3;
 | |
| 	}
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SLAED2", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
|     n2 = *n - *n1;
 | |
|     n1p1 = *n1 + 1;
 | |
| 
 | |
|     if (*rho < 0.f) {
 | |
| 	sscal_(&n2, &c_b3, &z__[n1p1], &c__1);
 | |
|     }
 | |
| 
 | |
| /*     Normalize z so that norm(z) = 1.  Since z is the concatenation of */
 | |
| /*     two normalized vectors, norm2(z) = sqrt(2). */
 | |
| 
 | |
|     t = 1.f / sqrt(2.f);
 | |
|     sscal_(n, &t, &z__[1], &c__1);
 | |
| 
 | |
| /*     RHO = ABS( norm(z)**2 * RHO ) */
 | |
| 
 | |
|     *rho = (r__1 = *rho * 2.f, abs(r__1));
 | |
| 
 | |
| /*     Sort the eigenvalues into increasing order */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (i__ = n1p1; i__ <= i__1; ++i__) {
 | |
| 	indxq[i__] += *n1;
 | |
| /* L10: */
 | |
|     }
 | |
| 
 | |
| /*     re-integrate the deflated parts from the last pass */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	dlamda[i__] = d__[indxq[i__]];
 | |
| /* L20: */
 | |
|     }
 | |
|     slamrg_(n1, &n2, &dlamda[1], &c__1, &c__1, &indxc[1]);
 | |
|     i__1 = *n;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	indx[i__] = indxq[indxc[i__]];
 | |
| /* L30: */
 | |
|     }
 | |
| 
 | |
| /*     Calculate the allowable deflation tolerance */
 | |
| 
 | |
|     imax = isamax_(n, &z__[1], &c__1);
 | |
|     jmax = isamax_(n, &d__[1], &c__1);
 | |
|     eps = slamch_("Epsilon");
 | |
| /* Computing MAX */
 | |
|     r__3 = (r__1 = d__[jmax], abs(r__1)), r__4 = (r__2 = z__[imax], abs(r__2))
 | |
| 	    ;
 | |
|     tol = eps * 8.f * f2cmax(r__3,r__4);
 | |
| 
 | |
| /*     If the rank-1 modifier is small enough, no more needs to be done */
 | |
| /*     except to reorganize Q so that its columns correspond with the */
 | |
| /*     elements in D. */
 | |
| 
 | |
|     if (*rho * (r__1 = z__[imax], abs(r__1)) <= tol) {
 | |
| 	*k = 0;
 | |
| 	iq2 = 1;
 | |
| 	i__1 = *n;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    i__ = indx[j];
 | |
| 	    scopy_(n, &q[i__ * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
 | |
| 	    dlamda[j] = d__[i__];
 | |
| 	    iq2 += *n;
 | |
| /* L40: */
 | |
| 	}
 | |
| 	slacpy_("A", n, n, &q2[1], n, &q[q_offset], ldq);
 | |
| 	scopy_(n, &dlamda[1], &c__1, &d__[1], &c__1);
 | |
| 	goto L190;
 | |
|     }
 | |
| 
 | |
| /*     If there are multiple eigenvalues then the problem deflates.  Here */
 | |
| /*     the number of equal eigenvalues are found.  As each equal */
 | |
| /*     eigenvalue is found, an elementary reflector is computed to rotate */
 | |
| /*     the corresponding eigensubspace so that the corresponding */
 | |
| /*     components of Z are zero in this new basis. */
 | |
| 
 | |
|     i__1 = *n1;
 | |
|     for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	coltyp[i__] = 1;
 | |
| /* L50: */
 | |
|     }
 | |
|     i__1 = *n;
 | |
|     for (i__ = n1p1; i__ <= i__1; ++i__) {
 | |
| 	coltyp[i__] = 3;
 | |
| /* L60: */
 | |
|     }
 | |
| 
 | |
| 
 | |
|     *k = 0;
 | |
|     k2 = *n + 1;
 | |
|     i__1 = *n;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	nj = indx[j];
 | |
| 	if (*rho * (r__1 = z__[nj], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*           Deflate due to small z component. */
 | |
| 
 | |
| 	    --k2;
 | |
| 	    coltyp[nj] = 4;
 | |
| 	    indxp[k2] = nj;
 | |
| 	    if (j == *n) {
 | |
| 		goto L100;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    pj = nj;
 | |
| 	    goto L80;
 | |
| 	}
 | |
| /* L70: */
 | |
|     }
 | |
| L80:
 | |
|     ++j;
 | |
|     nj = indx[j];
 | |
|     if (j > *n) {
 | |
| 	goto L100;
 | |
|     }
 | |
|     if (*rho * (r__1 = z__[nj], abs(r__1)) <= tol) {
 | |
| 
 | |
| /*        Deflate due to small z component. */
 | |
| 
 | |
| 	--k2;
 | |
| 	coltyp[nj] = 4;
 | |
| 	indxp[k2] = nj;
 | |
|     } else {
 | |
| 
 | |
| /*        Check if eigenvalues are close enough to allow deflation. */
 | |
| 
 | |
| 	s = z__[pj];
 | |
| 	c__ = z__[nj];
 | |
| 
 | |
| /*        Find sqrt(a**2+b**2) without overflow or */
 | |
| /*        destructive underflow. */
 | |
| 
 | |
| 	tau = slapy2_(&c__, &s);
 | |
| 	t = d__[nj] - d__[pj];
 | |
| 	c__ /= tau;
 | |
| 	s = -s / tau;
 | |
| 	if ((r__1 = t * c__ * s, abs(r__1)) <= tol) {
 | |
| 
 | |
| /*           Deflation is possible. */
 | |
| 
 | |
| 	    z__[nj] = tau;
 | |
| 	    z__[pj] = 0.f;
 | |
| 	    if (coltyp[nj] != coltyp[pj]) {
 | |
| 		coltyp[nj] = 2;
 | |
| 	    }
 | |
| 	    coltyp[pj] = 4;
 | |
| 	    srot_(n, &q[pj * q_dim1 + 1], &c__1, &q[nj * q_dim1 + 1], &c__1, &
 | |
| 		    c__, &s);
 | |
| /* Computing 2nd power */
 | |
| 	    r__1 = c__;
 | |
| /* Computing 2nd power */
 | |
| 	    r__2 = s;
 | |
| 	    t = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2);
 | |
| /* Computing 2nd power */
 | |
| 	    r__1 = s;
 | |
| /* Computing 2nd power */
 | |
| 	    r__2 = c__;
 | |
| 	    d__[nj] = d__[pj] * (r__1 * r__1) + d__[nj] * (r__2 * r__2);
 | |
| 	    d__[pj] = t;
 | |
| 	    --k2;
 | |
| 	    i__ = 1;
 | |
| L90:
 | |
| 	    if (k2 + i__ <= *n) {
 | |
| 		if (d__[pj] < d__[indxp[k2 + i__]]) {
 | |
| 		    indxp[k2 + i__ - 1] = indxp[k2 + i__];
 | |
| 		    indxp[k2 + i__] = pj;
 | |
| 		    ++i__;
 | |
| 		    goto L90;
 | |
| 		} else {
 | |
| 		    indxp[k2 + i__ - 1] = pj;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		indxp[k2 + i__ - 1] = pj;
 | |
| 	    }
 | |
| 	    pj = nj;
 | |
| 	} else {
 | |
| 	    ++(*k);
 | |
| 	    dlamda[*k] = d__[pj];
 | |
| 	    w[*k] = z__[pj];
 | |
| 	    indxp[*k] = pj;
 | |
| 	    pj = nj;
 | |
| 	}
 | |
|     }
 | |
|     goto L80;
 | |
| L100:
 | |
| 
 | |
| /*     Record the last eigenvalue. */
 | |
| 
 | |
|     ++(*k);
 | |
|     dlamda[*k] = d__[pj];
 | |
|     w[*k] = z__[pj];
 | |
|     indxp[*k] = pj;
 | |
| 
 | |
| /*     Count up the total number of the various types of columns, then */
 | |
| /*     form a permutation which positions the four column types into */
 | |
| /*     four uniform groups (although one or more of these groups may be */
 | |
| /*     empty). */
 | |
| 
 | |
|     for (j = 1; j <= 4; ++j) {
 | |
| 	ctot[j - 1] = 0;
 | |
| /* L110: */
 | |
|     }
 | |
|     i__1 = *n;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	ct = coltyp[j];
 | |
| 	++ctot[ct - 1];
 | |
| /* L120: */
 | |
|     }
 | |
| 
 | |
| /*     PSM(*) = Position in SubMatrix (of types 1 through 4) */
 | |
| 
 | |
|     psm[0] = 1;
 | |
|     psm[1] = ctot[0] + 1;
 | |
|     psm[2] = psm[1] + ctot[1];
 | |
|     psm[3] = psm[2] + ctot[2];
 | |
|     *k = *n - ctot[3];
 | |
| 
 | |
| /*     Fill out the INDXC array so that the permutation which it induces */
 | |
| /*     will place all type-1 columns first, all type-2 columns next, */
 | |
| /*     then all type-3's, and finally all type-4's. */
 | |
| 
 | |
|     i__1 = *n;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	js = indxp[j];
 | |
| 	ct = coltyp[js];
 | |
| 	indx[psm[ct - 1]] = js;
 | |
| 	indxc[psm[ct - 1]] = j;
 | |
| 	++psm[ct - 1];
 | |
| /* L130: */
 | |
|     }
 | |
| 
 | |
| /*     Sort the eigenvalues and corresponding eigenvectors into DLAMDA */
 | |
| /*     and Q2 respectively.  The eigenvalues/vectors which were not */
 | |
| /*     deflated go into the first K slots of DLAMDA and Q2 respectively, */
 | |
| /*     while those which were deflated go into the last N - K slots. */
 | |
| 
 | |
|     i__ = 1;
 | |
|     iq1 = 1;
 | |
|     iq2 = (ctot[0] + ctot[1]) * *n1 + 1;
 | |
|     i__1 = ctot[0];
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	js = indx[i__];
 | |
| 	scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
 | |
| 	z__[i__] = d__[js];
 | |
| 	++i__;
 | |
| 	iq1 += *n1;
 | |
| /* L140: */
 | |
|     }
 | |
| 
 | |
|     i__1 = ctot[1];
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	js = indx[i__];
 | |
| 	scopy_(n1, &q[js * q_dim1 + 1], &c__1, &q2[iq1], &c__1);
 | |
| 	scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
 | |
| 	z__[i__] = d__[js];
 | |
| 	++i__;
 | |
| 	iq1 += *n1;
 | |
| 	iq2 += n2;
 | |
| /* L150: */
 | |
|     }
 | |
| 
 | |
|     i__1 = ctot[2];
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	js = indx[i__];
 | |
| 	scopy_(&n2, &q[*n1 + 1 + js * q_dim1], &c__1, &q2[iq2], &c__1);
 | |
| 	z__[i__] = d__[js];
 | |
| 	++i__;
 | |
| 	iq2 += n2;
 | |
| /* L160: */
 | |
|     }
 | |
| 
 | |
|     iq1 = iq2;
 | |
|     i__1 = ctot[3];
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	js = indx[i__];
 | |
| 	scopy_(n, &q[js * q_dim1 + 1], &c__1, &q2[iq2], &c__1);
 | |
| 	iq2 += *n;
 | |
| 	z__[i__] = d__[js];
 | |
| 	++i__;
 | |
| /* L170: */
 | |
|     }
 | |
| 
 | |
| /*     The deflated eigenvalues and their corresponding vectors go back */
 | |
| /*     into the last N - K slots of D and Q respectively. */
 | |
| 
 | |
|     if (*k < *n) {
 | |
| 	slacpy_("A", n, &ctot[3], &q2[iq1], n, &q[(*k + 1) * q_dim1 + 1], ldq);
 | |
| 	i__1 = *n - *k;
 | |
| 	scopy_(&i__1, &z__[*k + 1], &c__1, &d__[*k + 1], &c__1);
 | |
|     }
 | |
| 
 | |
| /*     Copy CTOT into COLTYP for referencing in SLAED3. */
 | |
| 
 | |
|     for (j = 1; j <= 4; ++j) {
 | |
| 	coltyp[j] = ctot[j - 1];
 | |
| /* L180: */
 | |
|     }
 | |
| 
 | |
| L190:
 | |
|     return;
 | |
| 
 | |
| /*     End of SLAED2 */
 | |
| 
 | |
| } /* slaed2_ */
 | |
| 
 |