514 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			514 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SHSEQR
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SHSEQR + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/shseqr.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/shseqr.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/shseqr.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
 | |
| *                          LDZ, WORK, LWORK, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
 | |
| *       CHARACTER          COMPZ, JOB
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       REAL               H( LDH, * ), WI( * ), WORK( * ), WR( * ),
 | |
| *      $                   Z( LDZ, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>    SHSEQR computes the eigenvalues of a Hessenberg matrix H
 | |
| *>    and, optionally, the matrices T and Z from the Schur decomposition
 | |
| *>    H = Z T Z**T, where T is an upper quasi-triangular matrix (the
 | |
| *>    Schur form), and Z is the orthogonal matrix of Schur vectors.
 | |
| *>
 | |
| *>    Optionally Z may be postmultiplied into an input orthogonal
 | |
| *>    matrix Q so that this routine can give the Schur factorization
 | |
| *>    of a matrix A which has been reduced to the Hessenberg form H
 | |
| *>    by the orthogonal matrix Q:  A = Q*H*Q**T = (QZ)*T*(QZ)**T.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] JOB
 | |
| *> \verbatim
 | |
| *>          JOB is CHARACTER*1
 | |
| *>           = 'E':  compute eigenvalues only;
 | |
| *>           = 'S':  compute eigenvalues and the Schur form T.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] COMPZ
 | |
| *> \verbatim
 | |
| *>          COMPZ is CHARACTER*1
 | |
| *>           = 'N':  no Schur vectors are computed;
 | |
| *>           = 'I':  Z is initialized to the unit matrix and the matrix Z
 | |
| *>                   of Schur vectors of H is returned;
 | |
| *>           = 'V':  Z must contain an orthogonal matrix Q on entry, and
 | |
| *>                   the product Q*Z is returned.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>           The order of the matrix H.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] ILO
 | |
| *> \verbatim
 | |
| *>          ILO is INTEGER
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IHI
 | |
| *> \verbatim
 | |
| *>          IHI is INTEGER
 | |
| *>
 | |
| *>           It is assumed that H is already upper triangular in rows
 | |
| *>           and columns 1:ILO-1 and IHI+1:N. ILO and IHI are normally
 | |
| *>           set by a previous call to SGEBAL, and then passed to ZGEHRD
 | |
| *>           when the matrix output by SGEBAL is reduced to Hessenberg
 | |
| *>           form. Otherwise ILO and IHI should be set to 1 and N
 | |
| *>           respectively.  If N > 0, then 1 <= ILO <= IHI <= N.
 | |
| *>           If N = 0, then ILO = 1 and IHI = 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] H
 | |
| *> \verbatim
 | |
| *>          H is REAL array, dimension (LDH,N)
 | |
| *>           On entry, the upper Hessenberg matrix H.
 | |
| *>           On exit, if INFO = 0 and JOB = 'S', then H contains the
 | |
| *>           upper quasi-triangular matrix T from the Schur decomposition
 | |
| *>           (the Schur form); 2-by-2 diagonal blocks (corresponding to
 | |
| *>           complex conjugate pairs of eigenvalues) are returned in
 | |
| *>           standard form, with H(i,i) = H(i+1,i+1) and
 | |
| *>           H(i+1,i)*H(i,i+1) < 0. If INFO = 0 and JOB = 'E', the
 | |
| *>           contents of H are unspecified on exit.  (The output value of
 | |
| *>           H when INFO > 0 is given under the description of INFO
 | |
| *>           below.)
 | |
| *>
 | |
| *>           Unlike earlier versions of SHSEQR, this subroutine may
 | |
| *>           explicitly H(i,j) = 0 for i > j and j = 1, 2, ... ILO-1
 | |
| *>           or j = IHI+1, IHI+2, ... N.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is INTEGER
 | |
| *>           The leading dimension of the array H. LDH >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WR
 | |
| *> \verbatim
 | |
| *>          WR is REAL array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WI
 | |
| *> \verbatim
 | |
| *>          WI is REAL array, dimension (N)
 | |
| *>
 | |
| *>           The real and imaginary parts, respectively, of the computed
 | |
| *>           eigenvalues. If two eigenvalues are computed as a complex
 | |
| *>           conjugate pair, they are stored in consecutive elements of
 | |
| *>           WR and WI, say the i-th and (i+1)th, with WI(i) > 0 and
 | |
| *>           WI(i+1) < 0. If JOB = 'S', the eigenvalues are stored in
 | |
| *>           the same order as on the diagonal of the Schur form returned
 | |
| *>           in H, with WR(i) = H(i,i) and, if H(i:i+1,i:i+1) is a 2-by-2
 | |
| *>           diagonal block, WI(i) = sqrt(-H(i+1,i)*H(i,i+1)) and
 | |
| *>           WI(i+1) = -WI(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] Z
 | |
| *> \verbatim
 | |
| *>          Z is REAL array, dimension (LDZ,N)
 | |
| *>           If COMPZ = 'N', Z is not referenced.
 | |
| *>           If COMPZ = 'I', on entry Z need not be set and on exit,
 | |
| *>           if INFO = 0, Z contains the orthogonal matrix Z of the Schur
 | |
| *>           vectors of H.  If COMPZ = 'V', on entry Z must contain an
 | |
| *>           N-by-N matrix Q, which is assumed to be equal to the unit
 | |
| *>           matrix except for the submatrix Z(ILO:IHI,ILO:IHI). On exit,
 | |
| *>           if INFO = 0, Z contains Q*Z.
 | |
| *>           Normally Q is the orthogonal matrix generated by SORGHR
 | |
| *>           after the call to SGEHRD which formed the Hessenberg matrix
 | |
| *>           H. (The output value of Z when INFO > 0 is given under
 | |
| *>           the description of INFO below.)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDZ
 | |
| *> \verbatim
 | |
| *>          LDZ is INTEGER
 | |
| *>           The leading dimension of the array Z.  if COMPZ = 'I' or
 | |
| *>           COMPZ = 'V', then LDZ >= MAX(1,N).  Otherwise, LDZ >= 1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (LWORK)
 | |
| *>           On exit, if INFO = 0, WORK(1) returns an estimate of
 | |
| *>           the optimal value for LWORK.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LWORK
 | |
| *> \verbatim
 | |
| *>          LWORK is INTEGER
 | |
| *>           The dimension of the array WORK.  LWORK >= max(1,N)
 | |
| *>           is sufficient and delivers very good and sometimes
 | |
| *>           optimal performance.  However, LWORK as large as 11*N
 | |
| *>           may be required for optimal performance.  A workspace
 | |
| *>           query is recommended to determine the optimal workspace
 | |
| *>           size.
 | |
| *>
 | |
| *>           If LWORK = -1, then SHSEQR does a workspace query.
 | |
| *>           In this case, SHSEQR checks the input parameters and
 | |
| *>           estimates the optimal workspace size for the given
 | |
| *>           values of N, ILO and IHI.  The estimate is returned
 | |
| *>           in WORK(1).  No error message related to LWORK is
 | |
| *>           issued by XERBLA.  Neither H nor Z are accessed.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>             = 0:  successful exit
 | |
| *>             < 0:  if INFO = -i, the i-th argument had an illegal
 | |
| *>                    value
 | |
| *>             > 0:  if INFO = i, SHSEQR failed to compute all of
 | |
| *>                the eigenvalues.  Elements 1:ilo-1 and i+1:n of WR
 | |
| *>                and WI contain those eigenvalues which have been
 | |
| *>                successfully computed.  (Failures are rare.)
 | |
| *>
 | |
| *>                If INFO > 0 and JOB = 'E', then on exit, the
 | |
| *>                remaining unconverged eigenvalues are the eigen-
 | |
| *>                values of the upper Hessenberg matrix rows and
 | |
| *>                columns ILO through INFO of the final, output
 | |
| *>                value of H.
 | |
| *>
 | |
| *>                If INFO > 0 and JOB   = 'S', then on exit
 | |
| *>
 | |
| *>           (*)  (initial value of H)*U  = U*(final value of H)
 | |
| *>
 | |
| *>                where U is an orthogonal matrix.  The final
 | |
| *>                value of H is upper Hessenberg and quasi-triangular
 | |
| *>                in rows and columns INFO+1 through IHI.
 | |
| *>
 | |
| *>                If INFO > 0 and COMPZ = 'V', then on exit
 | |
| *>
 | |
| *>                  (final value of Z)  =  (initial value of Z)*U
 | |
| *>
 | |
| *>                where U is the orthogonal matrix in (*) (regard-
 | |
| *>                less of the value of JOB.)
 | |
| *>
 | |
| *>                If INFO > 0 and COMPZ = 'I', then on exit
 | |
| *>                      (final value of Z)  = U
 | |
| *>                where U is the orthogonal matrix in (*) (regard-
 | |
| *>                less of the value of JOB.)
 | |
| *>
 | |
| *>                If INFO > 0 and COMPZ = 'N', then Z is not
 | |
| *>                accessed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realOTHERcomputational
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>       Karen Braman and Ralph Byers, Department of Mathematics,
 | |
| *>       University of Kansas, USA
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>             Default values supplied by
 | |
| *>             ILAENV(ISPEC,'SHSEQR',JOB(:1)//COMPZ(:1),N,ILO,IHI,LWORK).
 | |
| *>             It is suggested that these defaults be adjusted in order
 | |
| *>             to attain best performance in each particular
 | |
| *>             computational environment.
 | |
| *>
 | |
| *>            ISPEC=12: The SLAHQR vs SLAQR0 crossover point.
 | |
| *>                      Default: 75. (Must be at least 11.)
 | |
| *>
 | |
| *>            ISPEC=13: Recommended deflation window size.
 | |
| *>                      This depends on ILO, IHI and NS.  NS is the
 | |
| *>                      number of simultaneous shifts returned
 | |
| *>                      by ILAENV(ISPEC=15).  (See ISPEC=15 below.)
 | |
| *>                      The default for (IHI-ILO+1) <= 500 is NS.
 | |
| *>                      The default for (IHI-ILO+1) >  500 is 3*NS/2.
 | |
| *>
 | |
| *>            ISPEC=14: Nibble crossover point. (See IPARMQ for
 | |
| *>                      details.)  Default: 14% of deflation window
 | |
| *>                      size.
 | |
| *>
 | |
| *>            ISPEC=15: Number of simultaneous shifts in a multishift
 | |
| *>                      QR iteration.
 | |
| *>
 | |
| *>                      If IHI-ILO+1 is ...
 | |
| *>
 | |
| *>                      greater than      ...but less    ... the
 | |
| *>                      or equal to ...      than        default is
 | |
| *>
 | |
| *>                           1               30          NS =   2(+)
 | |
| *>                          30               60          NS =   4(+)
 | |
| *>                          60              150          NS =  10(+)
 | |
| *>                         150              590          NS =  **
 | |
| *>                         590             3000          NS =  64
 | |
| *>                        3000             6000          NS = 128
 | |
| *>                        6000             infinity      NS = 256
 | |
| *>
 | |
| *>                  (+)  By default some or all matrices of this order
 | |
| *>                       are passed to the implicit double shift routine
 | |
| *>                       SLAHQR and this parameter is ignored.  See
 | |
| *>                       ISPEC=12 above and comments in IPARMQ for
 | |
| *>                       details.
 | |
| *>
 | |
| *>                 (**)  The asterisks (**) indicate an ad-hoc
 | |
| *>                       function of N increasing from 10 to 64.
 | |
| *>
 | |
| *>            ISPEC=16: Select structured matrix multiply.
 | |
| *>                      If the number of simultaneous shifts (specified
 | |
| *>                      by ISPEC=15) is less than 14, then the default
 | |
| *>                      for ISPEC=16 is 0.  Otherwise the default for
 | |
| *>                      ISPEC=16 is 2.
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par References:
 | |
| *  ================
 | |
| *>
 | |
| *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | |
| *>       Algorithm Part I: Maintaining Well Focused Shifts, and Level 3
 | |
| *>       Performance, SIAM Journal of Matrix Analysis, volume 23, pages
 | |
| *>       929--947, 2002.
 | |
| *> \n
 | |
| *>       K. Braman, R. Byers and R. Mathias, The Multi-Shift QR
 | |
| *>       Algorithm Part II: Aggressive Early Deflation, SIAM Journal
 | |
| *>       of Matrix Analysis, volume 23, pages 948--973, 2002.
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SHSEQR( JOB, COMPZ, N, ILO, IHI, H, LDH, WR, WI, Z,
 | |
|      $                   LDZ, WORK, LWORK, INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            IHI, ILO, INFO, LDH, LDZ, LWORK, N
 | |
|       CHARACTER          COMPZ, JOB
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       REAL               H( LDH, * ), WI( * ), WORK( * ), WR( * ),
 | |
|      $                   Z( LDZ, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
| *
 | |
| *     ==== Matrices of order NTINY or smaller must be processed by
 | |
| *     .    SLAHQR because of insufficient subdiagonal scratch space.
 | |
| *     .    (This is a hard limit.) ====
 | |
|       INTEGER            NTINY
 | |
|       PARAMETER          ( NTINY = 15 )
 | |
| *
 | |
| *     ==== NL allocates some local workspace to help small matrices
 | |
| *     .    through a rare SLAHQR failure.  NL > NTINY = 15 is
 | |
| *     .    required and NL <= NMIN = ILAENV(ISPEC=12,...) is recom-
 | |
| *     .    mended.  (The default value of NMIN is 75.)  Using NL = 49
 | |
| *     .    allows up to six simultaneous shifts and a 16-by-16
 | |
| *     .    deflation window.  ====
 | |
|       INTEGER            NL
 | |
|       PARAMETER          ( NL = 49 )
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0e0, ONE = 1.0e0 )
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       REAL               HL( NL, NL ), WORKL( NL )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       INTEGER            I, KBOT, NMIN
 | |
|       LOGICAL            INITZ, LQUERY, WANTT, WANTZ
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       INTEGER            ILAENV
 | |
|       LOGICAL            LSAME
 | |
|       EXTERNAL           ILAENV, LSAME
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SLACPY, SLAHQR, SLAQR0, SLASET, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX, MIN, REAL
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     ==== Decode and check the input parameters. ====
 | |
| *
 | |
|       WANTT = LSAME( JOB, 'S' )
 | |
|       INITZ = LSAME( COMPZ, 'I' )
 | |
|       WANTZ = INITZ .OR. LSAME( COMPZ, 'V' )
 | |
|       WORK( 1 ) = REAL( MAX( 1, N ) )
 | |
|       LQUERY = LWORK.EQ.-1
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( .NOT.LSAME( JOB, 'E' ) .AND. .NOT.WANTT ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( .NOT.LSAME( COMPZ, 'N' ) .AND. .NOT.WANTZ ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( ILO.LT.1 .OR. ILO.GT.MAX( 1, N ) ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( IHI.LT.MIN( ILO, N ) .OR. IHI.GT.N ) THEN
 | |
|          INFO = -5
 | |
|       ELSE IF( LDH.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -7
 | |
|       ELSE IF( LDZ.LT.1 .OR. ( WANTZ .AND. LDZ.LT.MAX( 1, N ) ) ) THEN
 | |
|          INFO = -11
 | |
|       ELSE IF( LWORK.LT.MAX( 1, N ) .AND. .NOT.LQUERY ) THEN
 | |
|          INFO = -13
 | |
|       END IF
 | |
| *
 | |
|       IF( INFO.NE.0 ) THEN
 | |
| *
 | |
| *        ==== Quick return in case of invalid argument. ====
 | |
| *
 | |
|          CALL XERBLA( 'SHSEQR', -INFO )
 | |
|          RETURN
 | |
| *
 | |
|       ELSE IF( N.EQ.0 ) THEN
 | |
| *
 | |
| *        ==== Quick return in case N = 0; nothing to do. ====
 | |
| *
 | |
|          RETURN
 | |
| *
 | |
|       ELSE IF( LQUERY ) THEN
 | |
| *
 | |
| *        ==== Quick return in case of a workspace query ====
 | |
| *
 | |
|          CALL SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
 | |
|      $                IHI, Z, LDZ, WORK, LWORK, INFO )
 | |
| *        ==== Ensure reported workspace size is backward-compatible with
 | |
| *        .    previous LAPACK versions. ====
 | |
|          WORK( 1 ) = MAX( REAL( MAX( 1, N ) ), WORK( 1 ) )
 | |
|          RETURN
 | |
| *
 | |
|       ELSE
 | |
| *
 | |
| *        ==== copy eigenvalues isolated by SGEBAL ====
 | |
| *
 | |
|          DO 10 I = 1, ILO - 1
 | |
|             WR( I ) = H( I, I )
 | |
|             WI( I ) = ZERO
 | |
|    10    CONTINUE
 | |
|          DO 20 I = IHI + 1, N
 | |
|             WR( I ) = H( I, I )
 | |
|             WI( I ) = ZERO
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        ==== Initialize Z, if requested ====
 | |
| *
 | |
|          IF( INITZ )
 | |
|      $      CALL SLASET( 'A', N, N, ZERO, ONE, Z, LDZ )
 | |
| *
 | |
| *        ==== Quick return if possible ====
 | |
| *
 | |
|          IF( ILO.EQ.IHI ) THEN
 | |
|             WR( ILO ) = H( ILO, ILO )
 | |
|             WI( ILO ) = ZERO
 | |
|             RETURN
 | |
|          END IF
 | |
| *
 | |
| *        ==== SLAHQR/SLAQR0 crossover point ====
 | |
| *
 | |
|          NMIN = ILAENV( 12, 'SHSEQR', JOB( : 1 ) // COMPZ( : 1 ), N,
 | |
|      $          ILO, IHI, LWORK )
 | |
|          NMIN = MAX( NTINY, NMIN )
 | |
| *
 | |
| *        ==== SLAQR0 for big matrices; SLAHQR for small ones ====
 | |
| *
 | |
|          IF( N.GT.NMIN ) THEN
 | |
|             CALL SLAQR0( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
 | |
|      $                   IHI, Z, LDZ, WORK, LWORK, INFO )
 | |
|          ELSE
 | |
| *
 | |
| *           ==== Small matrix ====
 | |
| *
 | |
|             CALL SLAHQR( WANTT, WANTZ, N, ILO, IHI, H, LDH, WR, WI, ILO,
 | |
|      $                   IHI, Z, LDZ, INFO )
 | |
| *
 | |
|             IF( INFO.GT.0 ) THEN
 | |
| *
 | |
| *              ==== A rare SLAHQR failure!  SLAQR0 sometimes succeeds
 | |
| *              .    when SLAHQR fails. ====
 | |
| *
 | |
|                KBOT = INFO
 | |
| *
 | |
|                IF( N.GE.NL ) THEN
 | |
| *
 | |
| *                 ==== Larger matrices have enough subdiagonal scratch
 | |
| *                 .    space to call SLAQR0 directly. ====
 | |
| *
 | |
|                   CALL SLAQR0( WANTT, WANTZ, N, ILO, KBOT, H, LDH, WR,
 | |
|      $                         WI, ILO, IHI, Z, LDZ, WORK, LWORK, INFO )
 | |
| *
 | |
|                ELSE
 | |
| *
 | |
| *                 ==== Tiny matrices don't have enough subdiagonal
 | |
| *                 .    scratch space to benefit from SLAQR0.  Hence,
 | |
| *                 .    tiny matrices must be copied into a larger
 | |
| *                 .    array before calling SLAQR0. ====
 | |
| *
 | |
|                   CALL SLACPY( 'A', N, N, H, LDH, HL, NL )
 | |
|                   HL( N+1, N ) = ZERO
 | |
|                   CALL SLASET( 'A', NL, NL-N, ZERO, ZERO, HL( 1, N+1 ),
 | |
|      $                         NL )
 | |
|                   CALL SLAQR0( WANTT, WANTZ, NL, ILO, KBOT, HL, NL, WR,
 | |
|      $                         WI, ILO, IHI, Z, LDZ, WORKL, NL, INFO )
 | |
|                   IF( WANTT .OR. INFO.NE.0 )
 | |
|      $               CALL SLACPY( 'A', N, N, HL, NL, H, LDH )
 | |
|                END IF
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        ==== Clear out the trash, if necessary. ====
 | |
| *
 | |
|          IF( ( WANTT .OR. INFO.NE.0 ) .AND. N.GT.2 )
 | |
|      $      CALL SLASET( 'L', N-2, N-2, ZERO, ZERO, H( 3, 1 ), LDH )
 | |
| *
 | |
| *        ==== Ensure reported workspace size is backward-compatible with
 | |
| *        .    previous LAPACK versions. ====
 | |
| *
 | |
|          WORK( 1 ) = MAX( REAL( MAX( 1, N ) ), WORK( 1 ) )
 | |
|       END IF
 | |
| *
 | |
| *     ==== End of SHSEQR ====
 | |
| *
 | |
|       END
 |