472 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			472 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief \b SGTRFS
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGTRFS + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgtrfs.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgtrfs.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgtrfs.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
 | |
| *                          IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
 | |
| *                          INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       CHARACTER          TRANS
 | |
| *       INTEGER            INFO, LDB, LDX, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * ), IWORK( * )
 | |
| *       REAL               B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | |
| *      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
 | |
| *      $                   FERR( * ), WORK( * ), X( LDX, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGTRFS improves the computed solution to a system of linear
 | |
| *> equations when the coefficient matrix is tridiagonal, and provides
 | |
| *> error bounds and backward error estimates for the solution.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] TRANS
 | |
| *> \verbatim
 | |
| *>          TRANS is CHARACTER*1
 | |
| *>          Specifies the form of the system of equations:
 | |
| *>          = 'N':  A * X = B     (No transpose)
 | |
| *>          = 'T':  A**T * X = B  (Transpose)
 | |
| *>          = 'C':  A**H * X = B  (Conjugate transpose = Transpose)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The order of the matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DL
 | |
| *> \verbatim
 | |
| *>          DL is REAL array, dimension (N-1)
 | |
| *>          The (n-1) subdiagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] D
 | |
| *> \verbatim
 | |
| *>          D is REAL array, dimension (N)
 | |
| *>          The diagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU
 | |
| *> \verbatim
 | |
| *>          DU is REAL array, dimension (N-1)
 | |
| *>          The (n-1) superdiagonal elements of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DLF
 | |
| *> \verbatim
 | |
| *>          DLF is REAL array, dimension (N-1)
 | |
| *>          The (n-1) multipliers that define the matrix L from the
 | |
| *>          LU factorization of A as computed by SGTTRF.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DF
 | |
| *> \verbatim
 | |
| *>          DF is REAL array, dimension (N)
 | |
| *>          The n diagonal elements of the upper triangular matrix U from
 | |
| *>          the LU factorization of A.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DUF
 | |
| *> \verbatim
 | |
| *>          DUF is REAL array, dimension (N-1)
 | |
| *>          The (n-1) elements of the first superdiagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] DU2
 | |
| *> \verbatim
 | |
| *>          DU2 is REAL array, dimension (N-2)
 | |
| *>          The (n-2) elements of the second superdiagonal of U.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices; for 1 <= i <= n, row i of the matrix was
 | |
| *>          interchanged with row IPIV(i).  IPIV(i) will always be either
 | |
| *>          i or i+1; IPIV(i) = i indicates a row interchange was not
 | |
| *>          required.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          The right hand side matrix B.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] X
 | |
| *> \verbatim
 | |
| *>          X is REAL array, dimension (LDX,NRHS)
 | |
| *>          On entry, the solution matrix X, as computed by SGTTRS.
 | |
| *>          On exit, the improved solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDX
 | |
| *> \verbatim
 | |
| *>          LDX is INTEGER
 | |
| *>          The leading dimension of the array X.  LDX >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] FERR
 | |
| *> \verbatim
 | |
| *>          FERR is REAL array, dimension (NRHS)
 | |
| *>          The estimated forward error bound for each solution vector
 | |
| *>          X(j) (the j-th column of the solution matrix X).
 | |
| *>          If XTRUE is the true solution corresponding to X(j), FERR(j)
 | |
| *>          is an estimated upper bound for the magnitude of the largest
 | |
| *>          element in (X(j) - XTRUE) divided by the magnitude of the
 | |
| *>          largest element in X(j).  The estimate is as reliable as
 | |
| *>          the estimate for RCOND, and is almost always a slight
 | |
| *>          overestimate of the true error.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] BERR
 | |
| *> \verbatim
 | |
| *>          BERR is REAL array, dimension (NRHS)
 | |
| *>          The componentwise relative backward error of each solution
 | |
| *>          vector X(j) (i.e., the smallest relative change in
 | |
| *>          any element of A or B that makes X(j) an exact solution).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] WORK
 | |
| *> \verbatim
 | |
| *>          WORK is REAL array, dimension (3*N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IWORK
 | |
| *> \verbatim
 | |
| *>          IWORK is INTEGER array, dimension (N)
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *> \endverbatim
 | |
| *
 | |
| *> \par Internal Parameters:
 | |
| *  =========================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>  ITMAX is the maximum number of steps of iterative refinement.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realGTcomputational
 | |
| *
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGTRFS( TRANS, N, NRHS, DL, D, DU, DLF, DF, DUF, DU2,
 | |
|      $                   IPIV, B, LDB, X, LDX, FERR, BERR, WORK, IWORK,
 | |
|      $                   INFO )
 | |
| *
 | |
| *  -- LAPACK computational routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       CHARACTER          TRANS
 | |
|       INTEGER            INFO, LDB, LDX, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * ), IWORK( * )
 | |
|       REAL               B( LDB, * ), BERR( * ), D( * ), DF( * ),
 | |
|      $                   DL( * ), DLF( * ), DU( * ), DU2( * ), DUF( * ),
 | |
|      $                   FERR( * ), WORK( * ), X( LDX, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       INTEGER            ITMAX
 | |
|       PARAMETER          ( ITMAX = 5 )
 | |
|       REAL               ZERO, ONE
 | |
|       PARAMETER          ( ZERO = 0.0E+0, ONE = 1.0E+0 )
 | |
|       REAL               TWO
 | |
|       PARAMETER          ( TWO = 2.0E+0 )
 | |
|       REAL               THREE
 | |
|       PARAMETER          ( THREE = 3.0E+0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       LOGICAL            NOTRAN
 | |
|       CHARACTER          TRANSN, TRANST
 | |
|       INTEGER            COUNT, I, J, KASE, NZ
 | |
|       REAL               EPS, LSTRES, S, SAFE1, SAFE2, SAFMIN
 | |
| *     ..
 | |
| *     .. Local Arrays ..
 | |
|       INTEGER            ISAVE( 3 )
 | |
| *     ..
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SAXPY, SCOPY, SGTTRS, SLACN2, SLAGTM, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS, MAX
 | |
| *     ..
 | |
| *     .. External Functions ..
 | |
|       LOGICAL            LSAME
 | |
|       REAL               SLAMCH
 | |
|       EXTERNAL           LSAME, SLAMCH
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       NOTRAN = LSAME( TRANS, 'N' )
 | |
|       IF( .NOT.NOTRAN .AND. .NOT.LSAME( TRANS, 'T' ) .AND. .NOT.
 | |
|      $    LSAME( TRANS, 'C' ) ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( N.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( LDB.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -13
 | |
|       ELSE IF( LDX.LT.MAX( 1, N ) ) THEN
 | |
|          INFO = -15
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGTRFS', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Quick return if possible
 | |
| *
 | |
|       IF( N.EQ.0 .OR. NRHS.EQ.0 ) THEN
 | |
|          DO 10 J = 1, NRHS
 | |
|             FERR( J ) = ZERO
 | |
|             BERR( J ) = ZERO
 | |
|    10    CONTINUE
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
|       IF( NOTRAN ) THEN
 | |
|          TRANSN = 'N'
 | |
|          TRANST = 'T'
 | |
|       ELSE
 | |
|          TRANSN = 'T'
 | |
|          TRANST = 'N'
 | |
|       END IF
 | |
| *
 | |
| *     NZ = maximum number of nonzero elements in each row of A, plus 1
 | |
| *
 | |
|       NZ = 4
 | |
|       EPS = SLAMCH( 'Epsilon' )
 | |
|       SAFMIN = SLAMCH( 'Safe minimum' )
 | |
|       SAFE1 = NZ*SAFMIN
 | |
|       SAFE2 = SAFE1 / EPS
 | |
| *
 | |
| *     Do for each right hand side
 | |
| *
 | |
|       DO 110 J = 1, NRHS
 | |
| *
 | |
|          COUNT = 1
 | |
|          LSTRES = THREE
 | |
|    20    CONTINUE
 | |
| *
 | |
| *        Loop until stopping criterion is satisfied.
 | |
| *
 | |
| *        Compute residual R = B - op(A) * X,
 | |
| *        where op(A) = A, A**T, or A**H, depending on TRANS.
 | |
| *
 | |
|          CALL SCOPY( N, B( 1, J ), 1, WORK( N+1 ), 1 )
 | |
|          CALL SLAGTM( TRANS, N, 1, -ONE, DL, D, DU, X( 1, J ), LDX, ONE,
 | |
|      $                WORK( N+1 ), N )
 | |
| *
 | |
| *        Compute abs(op(A))*abs(x) + abs(b) for use in the backward
 | |
| *        error bound.
 | |
| *
 | |
|          IF( NOTRAN ) THEN
 | |
|             IF( N.EQ.1 ) THEN
 | |
|                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
 | |
|             ELSE
 | |
|                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
 | |
|      $                     ABS( DU( 1 )*X( 2, J ) )
 | |
|                DO 30 I = 2, N - 1
 | |
|                   WORK( I ) = ABS( B( I, J ) ) +
 | |
|      $                        ABS( DL( I-1 )*X( I-1, J ) ) +
 | |
|      $                        ABS( D( I )*X( I, J ) ) +
 | |
|      $                        ABS( DU( I )*X( I+1, J ) )
 | |
|    30          CONTINUE
 | |
|                WORK( N ) = ABS( B( N, J ) ) +
 | |
|      $                     ABS( DL( N-1 )*X( N-1, J ) ) +
 | |
|      $                     ABS( D( N )*X( N, J ) )
 | |
|             END IF
 | |
|          ELSE
 | |
|             IF( N.EQ.1 ) THEN
 | |
|                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) )
 | |
|             ELSE
 | |
|                WORK( 1 ) = ABS( B( 1, J ) ) + ABS( D( 1 )*X( 1, J ) ) +
 | |
|      $                     ABS( DL( 1 )*X( 2, J ) )
 | |
|                DO 40 I = 2, N - 1
 | |
|                   WORK( I ) = ABS( B( I, J ) ) +
 | |
|      $                        ABS( DU( I-1 )*X( I-1, J ) ) +
 | |
|      $                        ABS( D( I )*X( I, J ) ) +
 | |
|      $                        ABS( DL( I )*X( I+1, J ) )
 | |
|    40          CONTINUE
 | |
|                WORK( N ) = ABS( B( N, J ) ) +
 | |
|      $                     ABS( DU( N-1 )*X( N-1, J ) ) +
 | |
|      $                     ABS( D( N )*X( N, J ) )
 | |
|             END IF
 | |
|          END IF
 | |
| *
 | |
| *        Compute componentwise relative backward error from formula
 | |
| *
 | |
| *        max(i) ( abs(R(i)) / ( abs(op(A))*abs(X) + abs(B) )(i) )
 | |
| *
 | |
| *        where abs(Z) is the componentwise absolute value of the matrix
 | |
| *        or vector Z.  If the i-th component of the denominator is less
 | |
| *        than SAFE2, then SAFE1 is added to the i-th components of the
 | |
| *        numerator and denominator before dividing.
 | |
| *
 | |
|          S = ZERO
 | |
|          DO 50 I = 1, N
 | |
|             IF( WORK( I ).GT.SAFE2 ) THEN
 | |
|                S = MAX( S, ABS( WORK( N+I ) ) / WORK( I ) )
 | |
|             ELSE
 | |
|                S = MAX( S, ( ABS( WORK( N+I ) )+SAFE1 ) /
 | |
|      $             ( WORK( I )+SAFE1 ) )
 | |
|             END IF
 | |
|    50    CONTINUE
 | |
|          BERR( J ) = S
 | |
| *
 | |
| *        Test stopping criterion. Continue iterating if
 | |
| *           1) The residual BERR(J) is larger than machine epsilon, and
 | |
| *           2) BERR(J) decreased by at least a factor of 2 during the
 | |
| *              last iteration, and
 | |
| *           3) At most ITMAX iterations tried.
 | |
| *
 | |
|          IF( BERR( J ).GT.EPS .AND. TWO*BERR( J ).LE.LSTRES .AND.
 | |
|      $       COUNT.LE.ITMAX ) THEN
 | |
| *
 | |
| *           Update solution and try again.
 | |
| *
 | |
|             CALL SGTTRS( TRANS, N, 1, DLF, DF, DUF, DU2, IPIV,
 | |
|      $                   WORK( N+1 ), N, INFO )
 | |
|             CALL SAXPY( N, ONE, WORK( N+1 ), 1, X( 1, J ), 1 )
 | |
|             LSTRES = BERR( J )
 | |
|             COUNT = COUNT + 1
 | |
|             GO TO 20
 | |
|          END IF
 | |
| *
 | |
| *        Bound error from formula
 | |
| *
 | |
| *        norm(X - XTRUE) / norm(X) .le. FERR =
 | |
| *        norm( abs(inv(op(A)))*
 | |
| *           ( abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) ))) / norm(X)
 | |
| *
 | |
| *        where
 | |
| *          norm(Z) is the magnitude of the largest component of Z
 | |
| *          inv(op(A)) is the inverse of op(A)
 | |
| *          abs(Z) is the componentwise absolute value of the matrix or
 | |
| *             vector Z
 | |
| *          NZ is the maximum number of nonzeros in any row of A, plus 1
 | |
| *          EPS is machine epsilon
 | |
| *
 | |
| *        The i-th component of abs(R)+NZ*EPS*(abs(op(A))*abs(X)+abs(B))
 | |
| *        is incremented by SAFE1 if the i-th component of
 | |
| *        abs(op(A))*abs(X) + abs(B) is less than SAFE2.
 | |
| *
 | |
| *        Use SLACN2 to estimate the infinity-norm of the matrix
 | |
| *           inv(op(A)) * diag(W),
 | |
| *        where W = abs(R) + NZ*EPS*( abs(op(A))*abs(X)+abs(B) )))
 | |
| *
 | |
|          DO 60 I = 1, N
 | |
|             IF( WORK( I ).GT.SAFE2 ) THEN
 | |
|                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I )
 | |
|             ELSE
 | |
|                WORK( I ) = ABS( WORK( N+I ) ) + NZ*EPS*WORK( I ) + SAFE1
 | |
|             END IF
 | |
|    60    CONTINUE
 | |
| *
 | |
|          KASE = 0
 | |
|    70    CONTINUE
 | |
|          CALL SLACN2( N, WORK( 2*N+1 ), WORK( N+1 ), IWORK, FERR( J ),
 | |
|      $                KASE, ISAVE )
 | |
|          IF( KASE.NE.0 ) THEN
 | |
|             IF( KASE.EQ.1 ) THEN
 | |
| *
 | |
| *              Multiply by diag(W)*inv(op(A)**T).
 | |
| *
 | |
|                CALL SGTTRS( TRANST, N, 1, DLF, DF, DUF, DU2, IPIV,
 | |
|      $                      WORK( N+1 ), N, INFO )
 | |
|                DO 80 I = 1, N
 | |
|                   WORK( N+I ) = WORK( I )*WORK( N+I )
 | |
|    80          CONTINUE
 | |
|             ELSE
 | |
| *
 | |
| *              Multiply by inv(op(A))*diag(W).
 | |
| *
 | |
|                DO 90 I = 1, N
 | |
|                   WORK( N+I ) = WORK( I )*WORK( N+I )
 | |
|    90          CONTINUE
 | |
|                CALL SGTTRS( TRANSN, N, 1, DLF, DF, DUF, DU2, IPIV,
 | |
|      $                      WORK( N+1 ), N, INFO )
 | |
|             END IF
 | |
|             GO TO 70
 | |
|          END IF
 | |
| *
 | |
| *        Normalize error.
 | |
| *
 | |
|          LSTRES = ZERO
 | |
|          DO 100 I = 1, N
 | |
|             LSTRES = MAX( LSTRES, ABS( X( I, J ) ) )
 | |
|   100    CONTINUE
 | |
|          IF( LSTRES.NE.ZERO )
 | |
|      $      FERR( J ) = FERR( J ) / LSTRES
 | |
| *
 | |
|   110 CONTINUE
 | |
| *
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGTRFS
 | |
| *
 | |
|       END
 |