1511 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1511 lines
		
	
	
		
			45 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static real c_b57 = 0.f;
 | |
| static real c_b58 = 1.f;
 | |
| 
 | |
| /* > \brief <b> SGGEVX computes the eigenvalues and, optionally, the left and/or right eigenvectors for GE mat
 | |
| rices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGGEVX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sggevx.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sggevx.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sggevx.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGGEVX( BALANC, JOBVL, JOBVR, SENSE, N, A, LDA, B, LDB, */
 | |
| /*                          ALPHAR, ALPHAI, BETA, VL, LDVL, VR, LDVR, ILO, */
 | |
| /*                          IHI, LSCALE, RSCALE, ABNRM, BBNRM, RCONDE, */
 | |
| /*                          RCONDV, WORK, LWORK, IWORK, BWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          BALANC, JOBVL, JOBVR, SENSE */
 | |
| /*       INTEGER            IHI, ILO, INFO, LDA, LDB, LDVL, LDVR, LWORK, N */
 | |
| /*       REAL               ABNRM, BBNRM */
 | |
| /*       LOGICAL            BWORK( * ) */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
 | |
| /*      $                   B( LDB, * ), BETA( * ), LSCALE( * ), */
 | |
| /*      $                   RCONDE( * ), RCONDV( * ), RSCALE( * ), */
 | |
| /*      $                   VL( LDVL, * ), VR( LDVR, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SGGEVX computes for a pair of N-by-N real nonsymmetric matrices (A,B) */
 | |
| /* > the generalized eigenvalues, and optionally, the left and/or right */
 | |
| /* > generalized eigenvectors. */
 | |
| /* > */
 | |
| /* > Optionally also, it computes a balancing transformation to improve */
 | |
| /* > the conditioning of the eigenvalues and eigenvectors (ILO, IHI, */
 | |
| /* > LSCALE, RSCALE, ABNRM, and BBNRM), reciprocal condition numbers for */
 | |
| /* > the eigenvalues (RCONDE), and reciprocal condition numbers for the */
 | |
| /* > right eigenvectors (RCONDV). */
 | |
| /* > */
 | |
| /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar */
 | |
| /* > lambda or a ratio alpha/beta = lambda, such that A - lambda*B is */
 | |
| /* > singular. It is usually represented as the pair (alpha,beta), as */
 | |
| /* > there is a reasonable interpretation for beta=0, and even for both */
 | |
| /* > being zero. */
 | |
| /* > */
 | |
| /* > The right eigenvector v(j) corresponding to the eigenvalue lambda(j) */
 | |
| /* > of (A,B) satisfies */
 | |
| /* > */
 | |
| /* >                  A * v(j) = lambda(j) * B * v(j) . */
 | |
| /* > */
 | |
| /* > The left eigenvector u(j) corresponding to the eigenvalue lambda(j) */
 | |
| /* > of (A,B) satisfies */
 | |
| /* > */
 | |
| /* >                  u(j)**H * A  = lambda(j) * u(j)**H * B. */
 | |
| /* > */
 | |
| /* > where u(j)**H is the conjugate-transpose of u(j). */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] BALANC */
 | |
| /* > \verbatim */
 | |
| /* >          BALANC is CHARACTER*1 */
 | |
| /* >          Specifies the balance option to be performed. */
 | |
| /* >          = 'N':  do not diagonally scale or permute; */
 | |
| /* >          = 'P':  permute only; */
 | |
| /* >          = 'S':  scale only; */
 | |
| /* >          = 'B':  both permute and scale. */
 | |
| /* >          Computed reciprocal condition numbers will be for the */
 | |
| /* >          matrices after permuting and/or balancing. Permuting does */
 | |
| /* >          not change condition numbers (in exact arithmetic), but */
 | |
| /* >          balancing does. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVL */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVL is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the left generalized eigenvectors; */
 | |
| /* >          = 'V':  compute the left generalized eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVR */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVR is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the right generalized eigenvectors; */
 | |
| /* >          = 'V':  compute the right generalized eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SENSE */
 | |
| /* > \verbatim */
 | |
| /* >          SENSE is CHARACTER*1 */
 | |
| /* >          Determines which reciprocal condition numbers are computed. */
 | |
| /* >          = 'N': none are computed; */
 | |
| /* >          = 'E': computed for eigenvalues only; */
 | |
| /* >          = 'V': computed for eigenvectors only; */
 | |
| /* >          = 'B': computed for eigenvalues and eigenvectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A, B, VL, and VR.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA, N) */
 | |
| /* >          On entry, the matrix A in the pair (A,B). */
 | |
| /* >          On exit, A has been overwritten. If JOBVL='V' or JOBVR='V' */
 | |
| /* >          or both, then A contains the first part of the real Schur */
 | |
| /* >          form of the "balanced" versions of the input A and B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB, N) */
 | |
| /* >          On entry, the matrix B in the pair (A,B). */
 | |
| /* >          On exit, B has been overwritten. If JOBVL='V' or JOBVR='V' */
 | |
| /* >          or both, then B contains the second part of the real Schur */
 | |
| /* >          form of the "balanced" versions of the input A and B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAR */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAR is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAI */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAI is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL array, dimension (N) */
 | |
| /* >          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
 | |
| /* >          be the generalized eigenvalues.  If ALPHAI(j) is zero, then */
 | |
| /* >          the j-th eigenvalue is real; if positive, then the j-th and */
 | |
| /* >          (j+1)-st eigenvalues are a complex conjugate pair, with */
 | |
| /* >          ALPHAI(j+1) negative. */
 | |
| /* > */
 | |
| /* >          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
 | |
| /* >          may easily over- or underflow, and BETA(j) may even be zero. */
 | |
| /* >          Thus, the user should avoid naively computing the ratio */
 | |
| /* >          ALPHA/BETA. However, ALPHAR and ALPHAI will be always less */
 | |
| /* >          than and usually comparable with norm(A) in magnitude, and */
 | |
| /* >          BETA always less than and usually comparable with norm(B). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VL */
 | |
| /* > \verbatim */
 | |
| /* >          VL is REAL array, dimension (LDVL,N) */
 | |
| /* >          If JOBVL = 'V', the left eigenvectors u(j) are stored one */
 | |
| /* >          after another in the columns of VL, in the same order as */
 | |
| /* >          their eigenvalues. If the j-th eigenvalue is real, then */
 | |
| /* >          u(j) = VL(:,j), the j-th column of VL. If the j-th and */
 | |
| /* >          (j+1)-th eigenvalues form a complex conjugate pair, then */
 | |
| /* >          u(j) = VL(:,j)+i*VL(:,j+1) and u(j+1) = VL(:,j)-i*VL(:,j+1). */
 | |
| /* >          Each eigenvector will be scaled so the largest component have */
 | |
| /* >          abs(real part) + abs(imag. part) = 1. */
 | |
| /* >          Not referenced if JOBVL = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVL is INTEGER */
 | |
| /* >          The leading dimension of the matrix VL. LDVL >= 1, and */
 | |
| /* >          if JOBVL = 'V', LDVL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VR */
 | |
| /* > \verbatim */
 | |
| /* >          VR is REAL array, dimension (LDVR,N) */
 | |
| /* >          If JOBVR = 'V', the right eigenvectors v(j) are stored one */
 | |
| /* >          after another in the columns of VR, in the same order as */
 | |
| /* >          their eigenvalues. If the j-th eigenvalue is real, then */
 | |
| /* >          v(j) = VR(:,j), the j-th column of VR. If the j-th and */
 | |
| /* >          (j+1)-th eigenvalues form a complex conjugate pair, then */
 | |
| /* >          v(j) = VR(:,j)+i*VR(:,j+1) and v(j+1) = VR(:,j)-i*VR(:,j+1). */
 | |
| /* >          Each eigenvector will be scaled so the largest component have */
 | |
| /* >          abs(real part) + abs(imag. part) = 1. */
 | |
| /* >          Not referenced if JOBVR = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVR is INTEGER */
 | |
| /* >          The leading dimension of the matrix VR. LDVR >= 1, and */
 | |
| /* >          if JOBVR = 'V', LDVR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ILO */
 | |
| /* > \verbatim */
 | |
| /* >          ILO is INTEGER */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IHI */
 | |
| /* > \verbatim */
 | |
| /* >          IHI is INTEGER */
 | |
| /* >          ILO and IHI are integer values such that on exit */
 | |
| /* >          A(i,j) = 0 and B(i,j) = 0 if i > j and */
 | |
| /* >          j = 1,...,ILO-1 or i = IHI+1,...,N. */
 | |
| /* >          If BALANC = 'N' or 'S', ILO = 1 and IHI = N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] LSCALE */
 | |
| /* > \verbatim */
 | |
| /* >          LSCALE is REAL array, dimension (N) */
 | |
| /* >          Details of the permutations and scaling factors applied */
 | |
| /* >          to the left side of A and B.  If PL(j) is the index of the */
 | |
| /* >          row interchanged with row j, and DL(j) is the scaling */
 | |
| /* >          factor applied to row j, then */
 | |
| /* >            LSCALE(j) = PL(j)  for j = 1,...,ILO-1 */
 | |
| /* >                      = DL(j)  for j = ILO,...,IHI */
 | |
| /* >                      = PL(j)  for j = IHI+1,...,N. */
 | |
| /* >          The order in which the interchanges are made is N to IHI+1, */
 | |
| /* >          then 1 to ILO-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RSCALE */
 | |
| /* > \verbatim */
 | |
| /* >          RSCALE is REAL array, dimension (N) */
 | |
| /* >          Details of the permutations and scaling factors applied */
 | |
| /* >          to the right side of A and B.  If PR(j) is the index of the */
 | |
| /* >          column interchanged with column j, and DR(j) is the scaling */
 | |
| /* >          factor applied to column j, then */
 | |
| /* >            RSCALE(j) = PR(j)  for j = 1,...,ILO-1 */
 | |
| /* >                      = DR(j)  for j = ILO,...,IHI */
 | |
| /* >                      = PR(j)  for j = IHI+1,...,N */
 | |
| /* >          The order in which the interchanges are made is N to IHI+1, */
 | |
| /* >          then 1 to ILO-1. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ABNRM */
 | |
| /* > \verbatim */
 | |
| /* >          ABNRM is REAL */
 | |
| /* >          The one-norm of the balanced matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BBNRM */
 | |
| /* > \verbatim */
 | |
| /* >          BBNRM is REAL */
 | |
| /* >          The one-norm of the balanced matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCONDE */
 | |
| /* > \verbatim */
 | |
| /* >          RCONDE is REAL array, dimension (N) */
 | |
| /* >          If SENSE = 'E' or 'B', the reciprocal condition numbers of */
 | |
| /* >          the eigenvalues, stored in consecutive elements of the array. */
 | |
| /* >          For a complex conjugate pair of eigenvalues two consecutive */
 | |
| /* >          elements of RCONDE are set to the same value. Thus RCONDE(j), */
 | |
| /* >          RCONDV(j), and the j-th columns of VL and VR all correspond */
 | |
| /* >          to the j-th eigenpair. */
 | |
| /* >          If SENSE = 'N' or 'V', RCONDE is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCONDV */
 | |
| /* > \verbatim */
 | |
| /* >          RCONDV is REAL array, dimension (N) */
 | |
| /* >          If SENSE = 'V' or 'B', the estimated reciprocal condition */
 | |
| /* >          numbers of the eigenvectors, stored in consecutive elements */
 | |
| /* >          of the array. For a complex eigenvector two consecutive */
 | |
| /* >          elements of RCONDV are set to the same value. If the */
 | |
| /* >          eigenvalues cannot be reordered to compute RCONDV(j), */
 | |
| /* >          RCONDV(j) is set to 0; this can only occur when the true */
 | |
| /* >          value would be very small anyway. */
 | |
| /* >          If SENSE = 'N' or 'E', RCONDV is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK >= f2cmax(1,2*N). */
 | |
| /* >          If BALANC = 'S' or 'B', or JOBVL = 'V', or JOBVR = 'V', */
 | |
| /* >          LWORK >= f2cmax(1,6*N). */
 | |
| /* >          If SENSE = 'E', LWORK >= f2cmax(1,10*N). */
 | |
| /* >          If SENSE = 'V' or 'B', LWORK >= 2*N*N+8*N+16. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (N+6) */
 | |
| /* >          If SENSE = 'E', IWORK is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BWORK */
 | |
| /* > \verbatim */
 | |
| /* >          BWORK is LOGICAL array, dimension (N) */
 | |
| /* >          If SENSE = 'N', BWORK is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          = 1,...,N: */
 | |
| /* >                The QZ iteration failed.  No eigenvectors have been */
 | |
| /* >                calculated, but ALPHAR(j), ALPHAI(j), and BETA(j) */
 | |
| /* >                should be correct for j=INFO+1,...,N. */
 | |
| /* >          > N:  =N+1: other than QZ iteration failed in SHGEQZ. */
 | |
| /* >                =N+2: error return from STGEVC. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date April 2012 */
 | |
| 
 | |
| /* > \ingroup realGEeigen */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  Balancing a matrix pair (A,B) includes, first, permuting rows and */
 | |
| /* >  columns to isolate eigenvalues, second, applying diagonal similarity */
 | |
| /* >  transformation to the rows and columns to make the rows and columns */
 | |
| /* >  as close in norm as possible. The computed reciprocal condition */
 | |
| /* >  numbers correspond to the balanced matrix. Permuting rows and columns */
 | |
| /* >  will not change the condition numbers (in exact arithmetic) but */
 | |
| /* >  diagonal scaling will.  For further explanation of balancing, see */
 | |
| /* >  section 4.11.1.2 of LAPACK Users' Guide. */
 | |
| /* > */
 | |
| /* >  An approximate error bound on the chordal distance between the i-th */
 | |
| /* >  computed generalized eigenvalue w and the corresponding exact */
 | |
| /* >  eigenvalue lambda is */
 | |
| /* > */
 | |
| /* >       chord(w, lambda) <= EPS * norm(ABNRM, BBNRM) / RCONDE(I) */
 | |
| /* > */
 | |
| /* >  An approximate error bound for the angle between the i-th computed */
 | |
| /* >  eigenvector VL(i) or VR(i) is given by */
 | |
| /* > */
 | |
| /* >       EPS * norm(ABNRM, BBNRM) / DIF(i). */
 | |
| /* > */
 | |
| /* >  For further explanation of the reciprocal condition numbers RCONDE */
 | |
| /* >  and RCONDV, see section 4.11 of LAPACK User's Guide. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sggevx_(char *balanc, char *jobvl, char *jobvr, char *
 | |
| 	sense, integer *n, real *a, integer *lda, real *b, integer *ldb, real 
 | |
| 	*alphar, real *alphai, real *beta, real *vl, integer *ldvl, real *vr, 
 | |
| 	integer *ldvr, integer *ilo, integer *ihi, real *lscale, real *rscale,
 | |
| 	 real *abnrm, real *bbnrm, real *rconde, real *rcondv, real *work, 
 | |
| 	integer *lwork, integer *iwork, logical *bwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, vl_dim1, vl_offset, vr_dim1, 
 | |
| 	    vr_offset, i__1, i__2;
 | |
|     real r__1, r__2, r__3, r__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical pair;
 | |
|     real anrm, bnrm;
 | |
|     integer ierr, itau;
 | |
|     real temp;
 | |
|     logical ilvl, ilvr;
 | |
|     integer iwrk, iwrk1, i__, j, m;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer icols;
 | |
|     logical noscl;
 | |
|     integer irows, jc;
 | |
|     extern /* Subroutine */ void slabad_(real *, real *);
 | |
|     integer in, mm, jr;
 | |
|     extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, integer *
 | |
| 	    ), sggbal_(char *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, integer *, integer *, real *, real *, real *, 
 | |
| 	    integer *);
 | |
|     logical ilascl, ilbscl;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void sgghrd_(
 | |
| 	    char *, char *, integer *, integer *, integer *, real *, integer *
 | |
| 	    , real *, integer *, real *, integer *, real *, integer *, 
 | |
| 	    integer *);
 | |
|     logical ldumma[1];
 | |
|     char chtemp[1];
 | |
|     real bignum;
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     extern real slamch_(char *);
 | |
|     integer ijobvl;
 | |
|     extern real slange_(char *, integer *, integer *, real *, integer *, real 
 | |
| 	    *);
 | |
|     extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, integer *, integer *);
 | |
|     integer ijobvr;
 | |
|     extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, integer *);
 | |
|     logical wantsb;
 | |
|     extern /* Subroutine */ void slaset_(char *, integer *, integer *, real *, 
 | |
| 	    real *, real *, integer *);
 | |
|     real anrmto;
 | |
|     logical wantse;
 | |
|     real bnrmto;
 | |
|     extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, integer *, real *
 | |
| 	    , real *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, integer *), stgevc_(char *, 
 | |
| 	    char *, logical *, integer *, real *, integer *, real *, integer *
 | |
| 	    , real *, integer *, real *, integer *, integer *, integer *, 
 | |
| 	    real *, integer *), stgsna_(char *, char *, 
 | |
| 	    logical *, integer *, real *, integer *, real *, integer *, real *
 | |
| 	    , integer *, real *, integer *, real *, real *, integer *, 
 | |
| 	    integer *, real *, integer *, integer *, integer *);
 | |
|     integer minwrk, maxwrk;
 | |
|     logical wantsn;
 | |
|     real smlnum;
 | |
|     extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *);
 | |
|     logical lquery, wantsv;
 | |
|     extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     real eps;
 | |
|     logical ilv;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     April 2012 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --alphar;
 | |
|     --alphai;
 | |
|     --beta;
 | |
|     vl_dim1 = *ldvl;
 | |
|     vl_offset = 1 + vl_dim1 * 1;
 | |
|     vl -= vl_offset;
 | |
|     vr_dim1 = *ldvr;
 | |
|     vr_offset = 1 + vr_dim1 * 1;
 | |
|     vr -= vr_offset;
 | |
|     --lscale;
 | |
|     --rscale;
 | |
|     --rconde;
 | |
|     --rcondv;
 | |
|     --work;
 | |
|     --iwork;
 | |
|     --bwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (lsame_(jobvl, "N")) {
 | |
| 	ijobvl = 1;
 | |
| 	ilvl = FALSE_;
 | |
|     } else if (lsame_(jobvl, "V")) {
 | |
| 	ijobvl = 2;
 | |
| 	ilvl = TRUE_;
 | |
|     } else {
 | |
| 	ijobvl = -1;
 | |
| 	ilvl = FALSE_;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(jobvr, "N")) {
 | |
| 	ijobvr = 1;
 | |
| 	ilvr = FALSE_;
 | |
|     } else if (lsame_(jobvr, "V")) {
 | |
| 	ijobvr = 2;
 | |
| 	ilvr = TRUE_;
 | |
|     } else {
 | |
| 	ijobvr = -1;
 | |
| 	ilvr = FALSE_;
 | |
|     }
 | |
|     ilv = ilvl || ilvr;
 | |
| 
 | |
|     noscl = lsame_(balanc, "N") || lsame_(balanc, "P");
 | |
|     wantsn = lsame_(sense, "N");
 | |
|     wantse = lsame_(sense, "E");
 | |
|     wantsv = lsame_(sense, "V");
 | |
|     wantsb = lsame_(sense, "B");
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1;
 | |
|     if (! (noscl || lsame_(balanc, "S") || lsame_(
 | |
| 	    balanc, "B"))) {
 | |
| 	*info = -1;
 | |
|     } else if (ijobvl <= 0) {
 | |
| 	*info = -2;
 | |
|     } else if (ijobvr <= 0) {
 | |
| 	*info = -3;
 | |
|     } else if (! (wantsn || wantse || wantsb || wantsv)) {
 | |
| 	*info = -4;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldvl < 1 || ilvl && *ldvl < *n) {
 | |
| 	*info = -14;
 | |
|     } else if (*ldvr < 1 || ilvr && *ldvr < *n) {
 | |
| 	*info = -16;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| /*      (Note: Comments in the code beginning "Workspace:" describe the */
 | |
| /*       minimal amount of workspace needed at that point in the code, */
 | |
| /*       as well as the preferred amount for good performance. */
 | |
| /*       NB refers to the optimal block size for the immediately */
 | |
| /*       following subroutine, as returned by ILAENV. The workspace is */
 | |
| /*       computed assuming ILO = 1 and IHI = N, the worst case.) */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	if (*n == 0) {
 | |
| 	    minwrk = 1;
 | |
| 	    maxwrk = 1;
 | |
| 	} else {
 | |
| 	    if (noscl && ! ilv) {
 | |
| 		minwrk = *n << 1;
 | |
| 	    } else {
 | |
| 		minwrk = *n * 6;
 | |
| 	    }
 | |
| 	    if (wantse) {
 | |
| 		minwrk = *n * 10;
 | |
| 	    } else if (wantsv || wantsb) {
 | |
| 		minwrk = (*n << 1) * (*n + 4) + 16;
 | |
| 	    }
 | |
| 	    maxwrk = minwrk;
 | |
| /* Computing MAX */
 | |
| 	    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SGEQRF", " ", n, &
 | |
| 		    c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
 | |
| 	    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORMQR", " ", n, &
 | |
| 		    c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
 | |
| 	    maxwrk = f2cmax(i__1,i__2);
 | |
| 	    if (ilvl) {
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n + *n * ilaenv_(&c__1, "SORGQR", 
 | |
| 			" ", n, &c__1, n, &c__0, (ftnlen)6, (ftnlen)1);
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	}
 | |
| 	work[1] = (real) maxwrk;
 | |
| 
 | |
| 	if (*lwork < minwrk && ! lquery) {
 | |
| 	    *info = -26;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGGEVX", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     smlnum = slamch_("S");
 | |
|     bignum = 1.f / smlnum;
 | |
|     slabad_(&smlnum, &bignum);
 | |
|     smlnum = sqrt(smlnum) / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
 | |
|     ilascl = FALSE_;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 	anrmto = smlnum;
 | |
| 	ilascl = TRUE_;
 | |
|     } else if (anrm > bignum) {
 | |
| 	anrmto = bignum;
 | |
| 	ilascl = TRUE_;
 | |
|     }
 | |
|     if (ilascl) {
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
| /*     Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
 | |
|     ilbscl = FALSE_;
 | |
|     if (bnrm > 0.f && bnrm < smlnum) {
 | |
| 	bnrmto = smlnum;
 | |
| 	ilbscl = TRUE_;
 | |
|     } else if (bnrm > bignum) {
 | |
| 	bnrmto = bignum;
 | |
| 	ilbscl = TRUE_;
 | |
|     }
 | |
|     if (ilbscl) {
 | |
| 	slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
| /*     Permute and/or balance the matrix pair (A,B) */
 | |
| /*     (Workspace: need 6*N if BALANC = 'S' or 'B', 1 otherwise) */
 | |
| 
 | |
|     sggbal_(balanc, n, &a[a_offset], lda, &b[b_offset], ldb, ilo, ihi, &
 | |
| 	    lscale[1], &rscale[1], &work[1], &ierr);
 | |
| 
 | |
| /*     Compute ABNRM and BBNRM */
 | |
| 
 | |
|     *abnrm = slange_("1", n, n, &a[a_offset], lda, &work[1]);
 | |
|     if (ilascl) {
 | |
| 	work[1] = *abnrm;
 | |
| 	slascl_("G", &c__0, &c__0, &anrmto, &anrm, &c__1, &c__1, &work[1], &
 | |
| 		c__1, &ierr);
 | |
| 	*abnrm = work[1];
 | |
|     }
 | |
| 
 | |
|     *bbnrm = slange_("1", n, n, &b[b_offset], ldb, &work[1]);
 | |
|     if (ilbscl) {
 | |
| 	work[1] = *bbnrm;
 | |
| 	slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, &c__1, &c__1, &work[1], &
 | |
| 		c__1, &ierr);
 | |
| 	*bbnrm = work[1];
 | |
|     }
 | |
| 
 | |
| /*     Reduce B to triangular form (QR decomposition of B) */
 | |
| /*     (Workspace: need N, prefer N*NB ) */
 | |
| 
 | |
|     irows = *ihi + 1 - *ilo;
 | |
|     if (ilv || ! wantsn) {
 | |
| 	icols = *n + 1 - *ilo;
 | |
|     } else {
 | |
| 	icols = irows;
 | |
|     }
 | |
|     itau = 1;
 | |
|     iwrk = itau + irows;
 | |
|     i__1 = *lwork + 1 - iwrk;
 | |
|     sgeqrf_(&irows, &icols, &b[*ilo + *ilo * b_dim1], ldb, &work[itau], &work[
 | |
| 	    iwrk], &i__1, &ierr);
 | |
| 
 | |
| /*     Apply the orthogonal transformation to A */
 | |
| /*     (Workspace: need N, prefer N*NB) */
 | |
| 
 | |
|     i__1 = *lwork + 1 - iwrk;
 | |
|     sormqr_("L", "T", &irows, &icols, &irows, &b[*ilo + *ilo * b_dim1], ldb, &
 | |
| 	    work[itau], &a[*ilo + *ilo * a_dim1], lda, &work[iwrk], &i__1, &
 | |
| 	    ierr);
 | |
| 
 | |
| /*     Initialize VL and/or VR */
 | |
| /*     (Workspace: need N, prefer N*NB) */
 | |
| 
 | |
|     if (ilvl) {
 | |
| 	slaset_("Full", n, n, &c_b57, &c_b58, &vl[vl_offset], ldvl)
 | |
| 		;
 | |
| 	if (irows > 1) {
 | |
| 	    i__1 = irows - 1;
 | |
| 	    i__2 = irows - 1;
 | |
| 	    slacpy_("L", &i__1, &i__2, &b[*ilo + 1 + *ilo * b_dim1], ldb, &vl[
 | |
| 		    *ilo + 1 + *ilo * vl_dim1], ldvl);
 | |
| 	}
 | |
| 	i__1 = *lwork + 1 - iwrk;
 | |
| 	sorgqr_(&irows, &irows, &irows, &vl[*ilo + *ilo * vl_dim1], ldvl, &
 | |
| 		work[itau], &work[iwrk], &i__1, &ierr);
 | |
|     }
 | |
| 
 | |
|     if (ilvr) {
 | |
| 	slaset_("Full", n, n, &c_b57, &c_b58, &vr[vr_offset], ldvr)
 | |
| 		;
 | |
|     }
 | |
| 
 | |
| /*     Reduce to generalized Hessenberg form */
 | |
| /*     (Workspace: none needed) */
 | |
| 
 | |
|     if (ilv || ! wantsn) {
 | |
| 
 | |
| /*        Eigenvectors requested -- work on whole matrix. */
 | |
| 
 | |
| 	sgghrd_(jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset], 
 | |
| 		ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, &ierr);
 | |
|     } else {
 | |
| 	sgghrd_("N", "N", &irows, &c__1, &irows, &a[*ilo + *ilo * a_dim1], 
 | |
| 		lda, &b[*ilo + *ilo * b_dim1], ldb, &vl[vl_offset], ldvl, &vr[
 | |
| 		vr_offset], ldvr, &ierr);
 | |
|     }
 | |
| 
 | |
| /*     Perform QZ algorithm (Compute eigenvalues, and optionally, the */
 | |
| /*     Schur forms and Schur vectors) */
 | |
| /*     (Workspace: need N) */
 | |
| 
 | |
|     if (ilv || ! wantsn) {
 | |
| 	*(unsigned char *)chtemp = 'S';
 | |
|     } else {
 | |
| 	*(unsigned char *)chtemp = 'E';
 | |
|     }
 | |
| 
 | |
|     shgeqz_(chtemp, jobvl, jobvr, n, ilo, ihi, &a[a_offset], lda, &b[b_offset]
 | |
| 	    , ldb, &alphar[1], &alphai[1], &beta[1], &vl[vl_offset], ldvl, &
 | |
| 	    vr[vr_offset], ldvr, &work[1], lwork, &ierr);
 | |
|     if (ierr != 0) {
 | |
| 	if (ierr > 0 && ierr <= *n) {
 | |
| 	    *info = ierr;
 | |
| 	} else if (ierr > *n && ierr <= *n << 1) {
 | |
| 	    *info = ierr - *n;
 | |
| 	} else {
 | |
| 	    *info = *n + 1;
 | |
| 	}
 | |
| 	goto L130;
 | |
|     }
 | |
| 
 | |
| /*     Compute Eigenvectors and estimate condition numbers if desired */
 | |
| /*     (Workspace: STGEVC: need 6*N */
 | |
| /*                 STGSNA: need 2*N*(N+2)+16 if SENSE = 'V' or 'B', */
 | |
| /*                         need N otherwise ) */
 | |
| 
 | |
|     if (ilv || ! wantsn) {
 | |
| 	if (ilv) {
 | |
| 	    if (ilvl) {
 | |
| 		if (ilvr) {
 | |
| 		    *(unsigned char *)chtemp = 'B';
 | |
| 		} else {
 | |
| 		    *(unsigned char *)chtemp = 'L';
 | |
| 		}
 | |
| 	    } else {
 | |
| 		*(unsigned char *)chtemp = 'R';
 | |
| 	    }
 | |
| 
 | |
| 	    stgevc_(chtemp, "B", ldumma, n, &a[a_offset], lda, &b[b_offset], 
 | |
| 		    ldb, &vl[vl_offset], ldvl, &vr[vr_offset], ldvr, n, &in, &
 | |
| 		    work[1], &ierr);
 | |
| 	    if (ierr != 0) {
 | |
| 		*info = *n + 2;
 | |
| 		goto L130;
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	if (! wantsn) {
 | |
| 
 | |
| /*           compute eigenvectors (STGEVC) and estimate condition */
 | |
| /*           numbers (STGSNA). Note that the definition of the condition */
 | |
| /*           number is not invariant under transformation (u,v) to */
 | |
| /*           (Q*u, Z*v), where (u,v) are eigenvectors of the generalized */
 | |
| /*           Schur form (S,T), Q and Z are orthogonal matrices. In order */
 | |
| /*           to avoid using extra 2*N*N workspace, we have to recalculate */
 | |
| /*           eigenvectors and estimate one condition numbers at a time. */
 | |
| 
 | |
| 	    pair = FALSE_;
 | |
| 	    i__1 = *n;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 
 | |
| 		if (pair) {
 | |
| 		    pair = FALSE_;
 | |
| 		    goto L20;
 | |
| 		}
 | |
| 		mm = 1;
 | |
| 		if (i__ < *n) {
 | |
| 		    if (a[i__ + 1 + i__ * a_dim1] != 0.f) {
 | |
| 			pair = TRUE_;
 | |
| 			mm = 2;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		i__2 = *n;
 | |
| 		for (j = 1; j <= i__2; ++j) {
 | |
| 		    bwork[j] = FALSE_;
 | |
| /* L10: */
 | |
| 		}
 | |
| 		if (mm == 1) {
 | |
| 		    bwork[i__] = TRUE_;
 | |
| 		} else if (mm == 2) {
 | |
| 		    bwork[i__] = TRUE_;
 | |
| 		    bwork[i__ + 1] = TRUE_;
 | |
| 		}
 | |
| 
 | |
| 		iwrk = mm * *n + 1;
 | |
| 		iwrk1 = iwrk + mm * *n;
 | |
| 
 | |
| /*              Compute a pair of left and right eigenvectors. */
 | |
| /*              (compute workspace: need up to 4*N + 6*N) */
 | |
| 
 | |
| 		if (wantse || wantsb) {
 | |
| 		    stgevc_("B", "S", &bwork[1], n, &a[a_offset], lda, &b[
 | |
| 			    b_offset], ldb, &work[1], n, &work[iwrk], n, &mm, 
 | |
| 			    &m, &work[iwrk1], &ierr);
 | |
| 		    if (ierr != 0) {
 | |
| 			*info = *n + 2;
 | |
| 			goto L130;
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 		i__2 = *lwork - iwrk1 + 1;
 | |
| 		stgsna_(sense, "S", &bwork[1], n, &a[a_offset], lda, &b[
 | |
| 			b_offset], ldb, &work[1], n, &work[iwrk], n, &rconde[
 | |
| 			i__], &rcondv[i__], &mm, &m, &work[iwrk1], &i__2, &
 | |
| 			iwork[1], &ierr);
 | |
| 
 | |
| L20:
 | |
| 		;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo balancing on VL and VR and normalization */
 | |
| /*     (Workspace: none needed) */
 | |
| 
 | |
|     if (ilvl) {
 | |
| 	sggbak_(balanc, "L", n, ilo, ihi, &lscale[1], &rscale[1], n, &vl[
 | |
| 		vl_offset], ldvl, &ierr);
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (jc = 1; jc <= i__1; ++jc) {
 | |
| 	    if (alphai[jc] < 0.f) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 	    temp = 0.f;
 | |
| 	    if (alphai[jc] == 0.f) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 		    r__2 = temp, r__3 = (r__1 = vl[jr + jc * vl_dim1], abs(
 | |
| 			    r__1));
 | |
| 		    temp = f2cmax(r__2,r__3);
 | |
| /* L30: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 		    r__3 = temp, r__4 = (r__1 = vl[jr + jc * vl_dim1], abs(
 | |
| 			    r__1)) + (r__2 = vl[jr + (jc + 1) * vl_dim1], abs(
 | |
| 			    r__2));
 | |
| 		    temp = f2cmax(r__3,r__4);
 | |
| /* L40: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (temp < smlnum) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 	    temp = 1.f / temp;
 | |
| 	    if (alphai[jc] == 0.f) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    vl[jr + jc * vl_dim1] *= temp;
 | |
| /* L50: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    vl[jr + jc * vl_dim1] *= temp;
 | |
| 		    vl[jr + (jc + 1) * vl_dim1] *= temp;
 | |
| /* L60: */
 | |
| 		}
 | |
| 	    }
 | |
| L70:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
|     if (ilvr) {
 | |
| 	sggbak_(balanc, "R", n, ilo, ihi, &lscale[1], &rscale[1], n, &vr[
 | |
| 		vr_offset], ldvr, &ierr);
 | |
| 	i__1 = *n;
 | |
| 	for (jc = 1; jc <= i__1; ++jc) {
 | |
| 	    if (alphai[jc] < 0.f) {
 | |
| 		goto L120;
 | |
| 	    }
 | |
| 	    temp = 0.f;
 | |
| 	    if (alphai[jc] == 0.f) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 		    r__2 = temp, r__3 = (r__1 = vr[jr + jc * vr_dim1], abs(
 | |
| 			    r__1));
 | |
| 		    temp = f2cmax(r__2,r__3);
 | |
| /* L80: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| /* Computing MAX */
 | |
| 		    r__3 = temp, r__4 = (r__1 = vr[jr + jc * vr_dim1], abs(
 | |
| 			    r__1)) + (r__2 = vr[jr + (jc + 1) * vr_dim1], abs(
 | |
| 			    r__2));
 | |
| 		    temp = f2cmax(r__3,r__4);
 | |
| /* L90: */
 | |
| 		}
 | |
| 	    }
 | |
| 	    if (temp < smlnum) {
 | |
| 		goto L120;
 | |
| 	    }
 | |
| 	    temp = 1.f / temp;
 | |
| 	    if (alphai[jc] == 0.f) {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    vr[jr + jc * vr_dim1] *= temp;
 | |
| /* L100: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__2 = *n;
 | |
| 		for (jr = 1; jr <= i__2; ++jr) {
 | |
| 		    vr[jr + jc * vr_dim1] *= temp;
 | |
| 		    vr[jr + (jc + 1) * vr_dim1] *= temp;
 | |
| /* L110: */
 | |
| 		}
 | |
| 	    }
 | |
| L120:
 | |
| 	    ;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling if necessary */
 | |
| 
 | |
| L130:
 | |
| 
 | |
|     if (ilascl) {
 | |
| 	slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
 | |
| 		ierr);
 | |
| 	slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
|     if (ilbscl) {
 | |
| 	slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
|     work[1] = (real) maxwrk;
 | |
|     return;
 | |
| 
 | |
| /*     End of SGGEVX */
 | |
| 
 | |
| } /* sggevx_ */
 | |
| 
 |