1288 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1288 lines
		
	
	
		
			38 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c_n1 = -1;
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static real c_b36 = 0.f;
 | |
| static real c_b37 = 1.f;
 | |
| 
 | |
| /* > \brief <b> SGGES3 computes the eigenvalues, the Schur form, and, optionally, the matrix of Schur vectors 
 | |
| for GE matrices (blocked algorithm)</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGGES3 + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgges3.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgges3.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgges3.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGGES3( JOBVSL, JOBVSR, SORT, SELCTG, N, A, LDA, B, */
 | |
| /*      $                   LDB, SDIM, ALPHAR, ALPHAI, BETA, VSL, LDVSL, */
 | |
| /*      $                   VSR, LDVSR, WORK, LWORK, BWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBVSL, JOBVSR, SORT */
 | |
| /*       INTEGER            INFO, LDA, LDB, LDVSL, LDVSR, LWORK, N, SDIM */
 | |
| /*       LOGICAL            BWORK( * ) */
 | |
| /*       REAL               A( LDA, * ), ALPHAI( * ), ALPHAR( * ), */
 | |
| /*      $                   B( LDB, * ), BETA( * ), VSL( LDVSL, * ), */
 | |
| /*      $                   VSR( LDVSR, * ), WORK( * ) */
 | |
| /*       LOGICAL            SELCTG */
 | |
| /*       EXTERNAL           SELCTG */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SGGES3 computes for a pair of N-by-N real nonsymmetric matrices (A,B), */
 | |
| /* > the generalized eigenvalues, the generalized real Schur form (S,T), */
 | |
| /* > optionally, the left and/or right matrices of Schur vectors (VSL and */
 | |
| /* > VSR). This gives the generalized Schur factorization */
 | |
| /* > */
 | |
| /* >          (A,B) = ( (VSL)*S*(VSR)**T, (VSL)*T*(VSR)**T ) */
 | |
| /* > */
 | |
| /* > Optionally, it also orders the eigenvalues so that a selected cluster */
 | |
| /* > of eigenvalues appears in the leading diagonal blocks of the upper */
 | |
| /* > quasi-triangular matrix S and the upper triangular matrix T.The */
 | |
| /* > leading columns of VSL and VSR then form an orthonormal basis for the */
 | |
| /* > corresponding left and right eigenspaces (deflating subspaces). */
 | |
| /* > */
 | |
| /* > (If only the generalized eigenvalues are needed, use the driver */
 | |
| /* > SGGEV instead, which is faster.) */
 | |
| /* > */
 | |
| /* > A generalized eigenvalue for a pair of matrices (A,B) is a scalar w */
 | |
| /* > or a ratio alpha/beta = w, such that  A - w*B is singular.  It is */
 | |
| /* > usually represented as the pair (alpha,beta), as there is a */
 | |
| /* > reasonable interpretation for beta=0 or both being zero. */
 | |
| /* > */
 | |
| /* > A pair of matrices (S,T) is in generalized real Schur form if T is */
 | |
| /* > upper triangular with non-negative diagonal and S is block upper */
 | |
| /* > triangular with 1-by-1 and 2-by-2 blocks.  1-by-1 blocks correspond */
 | |
| /* > to real generalized eigenvalues, while 2-by-2 blocks of S will be */
 | |
| /* > "standardized" by making the corresponding elements of T have the */
 | |
| /* > form: */
 | |
| /* >         [  a  0  ] */
 | |
| /* >         [  0  b  ] */
 | |
| /* > */
 | |
| /* > and the pair of corresponding 2-by-2 blocks in S and T will have a */
 | |
| /* > complex conjugate pair of generalized eigenvalues. */
 | |
| /* > */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBVSL */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVSL is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the left Schur vectors; */
 | |
| /* >          = 'V':  compute the left Schur vectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBVSR */
 | |
| /* > \verbatim */
 | |
| /* >          JOBVSR is CHARACTER*1 */
 | |
| /* >          = 'N':  do not compute the right Schur vectors; */
 | |
| /* >          = 'V':  compute the right Schur vectors. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SORT */
 | |
| /* > \verbatim */
 | |
| /* >          SORT is CHARACTER*1 */
 | |
| /* >          Specifies whether or not to order the eigenvalues on the */
 | |
| /* >          diagonal of the generalized Schur form. */
 | |
| /* >          = 'N':  Eigenvalues are not ordered; */
 | |
| /* >          = 'S':  Eigenvalues are ordered (see SELCTG); */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] SELCTG */
 | |
| /* > \verbatim */
 | |
| /* >          SELCTG is a LOGICAL FUNCTION of three REAL arguments */
 | |
| /* >          SELCTG must be declared EXTERNAL in the calling subroutine. */
 | |
| /* >          If SORT = 'N', SELCTG is not referenced. */
 | |
| /* >          If SORT = 'S', SELCTG is used to select eigenvalues to sort */
 | |
| /* >          to the top left of the Schur form. */
 | |
| /* >          An eigenvalue (ALPHAR(j)+ALPHAI(j))/BETA(j) is selected if */
 | |
| /* >          SELCTG(ALPHAR(j),ALPHAI(j),BETA(j)) is true; i.e. if either */
 | |
| /* >          one of a complex conjugate pair of eigenvalues is selected, */
 | |
| /* >          then both complex eigenvalues are selected. */
 | |
| /* > */
 | |
| /* >          Note that in the ill-conditioned case, a selected complex */
 | |
| /* >          eigenvalue may no longer satisfy SELCTG(ALPHAR(j),ALPHAI(j), */
 | |
| /* >          BETA(j)) = .TRUE. after ordering. INFO is to be set to N+2 */
 | |
| /* >          in this case. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The order of the matrices A, B, VSL, and VSR.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA, N) */
 | |
| /* >          On entry, the first of the pair of matrices. */
 | |
| /* >          On exit, A has been overwritten by its generalized Schur */
 | |
| /* >          form S. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB, N) */
 | |
| /* >          On entry, the second of the pair of matrices. */
 | |
| /* >          On exit, B has been overwritten by its generalized Schur */
 | |
| /* >          form T. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SDIM */
 | |
| /* > \verbatim */
 | |
| /* >          SDIM is INTEGER */
 | |
| /* >          If SORT = 'N', SDIM = 0. */
 | |
| /* >          If SORT = 'S', SDIM = number of eigenvalues (after sorting) */
 | |
| /* >          for which SELCTG is true.  (Complex conjugate pairs for which */
 | |
| /* >          SELCTG is true for either eigenvalue count as 2.) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAR */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAR is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ALPHAI */
 | |
| /* > \verbatim */
 | |
| /* >          ALPHAI is REAL array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BETA */
 | |
| /* > \verbatim */
 | |
| /* >          BETA is REAL array, dimension (N) */
 | |
| /* >          On exit, (ALPHAR(j) + ALPHAI(j)*i)/BETA(j), j=1,...,N, will */
 | |
| /* >          be the generalized eigenvalues.  ALPHAR(j) + ALPHAI(j)*i, */
 | |
| /* >          and  BETA(j),j=1,...,N are the diagonals of the complex Schur */
 | |
| /* >          form (S,T) that would result if the 2-by-2 diagonal blocks of */
 | |
| /* >          the real Schur form of (A,B) were further reduced to */
 | |
| /* >          triangular form using 2-by-2 complex unitary transformations. */
 | |
| /* >          If ALPHAI(j) is zero, then the j-th eigenvalue is real; if */
 | |
| /* >          positive, then the j-th and (j+1)-st eigenvalues are a */
 | |
| /* >          complex conjugate pair, with ALPHAI(j+1) negative. */
 | |
| /* > */
 | |
| /* >          Note: the quotients ALPHAR(j)/BETA(j) and ALPHAI(j)/BETA(j) */
 | |
| /* >          may easily over- or underflow, and BETA(j) may even be zero. */
 | |
| /* >          Thus, the user should avoid naively computing the ratio. */
 | |
| /* >          However, ALPHAR and ALPHAI will be always less than and */
 | |
| /* >          usually comparable with norm(A) in magnitude, and BETA always */
 | |
| /* >          less than and usually comparable with norm(B). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VSL */
 | |
| /* > \verbatim */
 | |
| /* >          VSL is REAL array, dimension (LDVSL,N) */
 | |
| /* >          If JOBVSL = 'V', VSL will contain the left Schur vectors. */
 | |
| /* >          Not referenced if JOBVSL = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVSL */
 | |
| /* > \verbatim */
 | |
| /* >          LDVSL is INTEGER */
 | |
| /* >          The leading dimension of the matrix VSL. LDVSL >=1, and */
 | |
| /* >          if JOBVSL = 'V', LDVSL >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VSR */
 | |
| /* > \verbatim */
 | |
| /* >          VSR is REAL array, dimension (LDVSR,N) */
 | |
| /* >          If JOBVSR = 'V', VSR will contain the right Schur vectors. */
 | |
| /* >          Not referenced if JOBVSR = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVSR */
 | |
| /* > \verbatim */
 | |
| /* >          LDVSR is INTEGER */
 | |
| /* >          The leading dimension of the matrix VSR. LDVSR >= 1, and */
 | |
| /* >          if JOBVSR = 'V', LDVSR >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BWORK */
 | |
| /* > \verbatim */
 | |
| /* >          BWORK is LOGICAL array, dimension (N) */
 | |
| /* >          Not referenced if SORT = 'N'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          = 1,...,N: */
 | |
| /* >                The QZ iteration failed.  (A,B) are not in Schur */
 | |
| /* >                form, but ALPHAR(j), ALPHAI(j), and BETA(j) should */
 | |
| /* >                be correct for j=INFO+1,...,N. */
 | |
| /* >          > N:  =N+1: other than QZ iteration failed in SHGEQZ. */
 | |
| /* >                =N+2: after reordering, roundoff changed values of */
 | |
| /* >                      some complex eigenvalues so that leading */
 | |
| /* >                      eigenvalues in the Generalized Schur form no */
 | |
| /* >                      longer satisfy SELCTG=.TRUE.  This could also */
 | |
| /* >                      be caused due to scaling. */
 | |
| /* >                =N+3: reordering failed in STGSEN. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date January 2015 */
 | |
| 
 | |
| /* > \ingroup realGEeigen */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sgges3_(char *jobvsl, char *jobvsr, char *sort, L_fp 
 | |
| 	selctg, integer *n, real *a, integer *lda, real *b, integer *ldb, 
 | |
| 	integer *sdim, real *alphar, real *alphai, real *beta, real *vsl, 
 | |
| 	integer *ldvsl, real *vsr, integer *ldvsr, real *work, integer *lwork,
 | |
| 	 logical *bwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, vsl_dim1, vsl_offset, 
 | |
| 	    vsr_dim1, vsr_offset, i__1, i__2;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real anrm, bnrm;
 | |
|     integer idum[1], ierr, itau, iwrk;
 | |
|     real pvsl, pvsr;
 | |
|     integer i__;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer ileft, icols;
 | |
|     logical cursl, ilvsl, ilvsr;
 | |
|     integer irows;
 | |
|     extern /* Subroutine */ void sgghd3_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, integer *, real *, integer *
 | |
| 	    , real *, integer *, real *, integer *, integer *)
 | |
| 	    ;
 | |
|     logical lst2sl;
 | |
|     extern /* Subroutine */ void slabad_(real *, real *);
 | |
|     integer ip;
 | |
|     extern /* Subroutine */ void sggbak_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, integer *
 | |
| 	    ), sggbal_(char *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, integer *, integer *, real *, real *, real *, 
 | |
| 	    integer *);
 | |
|     logical ilascl, ilbscl;
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     real safmin;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     real safmax, bignum;
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *);
 | |
|     integer ijobvl, iright;
 | |
|     extern /* Subroutine */ void sgeqrf_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, integer *, integer *);
 | |
|     integer ijobvr;
 | |
|     extern /* Subroutine */ void slacpy_(char *, integer *, integer *, real *, 
 | |
| 	    integer *, real *, integer *), slaset_(char *, integer *, 
 | |
| 	    integer *, real *, real *, real *, integer *);
 | |
|     real anrmto, bnrmto;
 | |
|     logical lastsl;
 | |
|     extern /* Subroutine */ void shgeqz_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, integer *, real *
 | |
| 	    , real *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, integer *), stgsen_(integer *, 
 | |
| 	    logical *, logical *, logical *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, real *, real *, real *, real *, integer *, 
 | |
| 	    real *, integer *, integer *, real *, real *, real *, real *, 
 | |
| 	    integer *, integer *, integer *, integer *);
 | |
|     real smlnum;
 | |
|     extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *);
 | |
|     logical wantst, lquery;
 | |
|     integer lwkopt;
 | |
|     extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     real dif[2];
 | |
|     integer ihi, ilo;
 | |
|     real eps;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.6.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     January 2015 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Decode the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --alphar;
 | |
|     --alphai;
 | |
|     --beta;
 | |
|     vsl_dim1 = *ldvsl;
 | |
|     vsl_offset = 1 + vsl_dim1 * 1;
 | |
|     vsl -= vsl_offset;
 | |
|     vsr_dim1 = *ldvsr;
 | |
|     vsr_offset = 1 + vsr_dim1 * 1;
 | |
|     vsr -= vsr_offset;
 | |
|     --work;
 | |
|     --bwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     if (lsame_(jobvsl, "N")) {
 | |
| 	ijobvl = 1;
 | |
| 	ilvsl = FALSE_;
 | |
|     } else if (lsame_(jobvsl, "V")) {
 | |
| 	ijobvl = 2;
 | |
| 	ilvsl = TRUE_;
 | |
|     } else {
 | |
| 	ijobvl = -1;
 | |
| 	ilvsl = FALSE_;
 | |
|     }
 | |
| 
 | |
|     if (lsame_(jobvsr, "N")) {
 | |
| 	ijobvr = 1;
 | |
| 	ilvsr = FALSE_;
 | |
|     } else if (lsame_(jobvsr, "V")) {
 | |
| 	ijobvr = 2;
 | |
| 	ilvsr = TRUE_;
 | |
|     } else {
 | |
| 	ijobvr = -1;
 | |
| 	ilvsr = FALSE_;
 | |
|     }
 | |
| 
 | |
|     wantst = lsame_(sort, "S");
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     *info = 0;
 | |
|     lquery = *lwork == -1;
 | |
|     if (ijobvl <= 0) {
 | |
| 	*info = -1;
 | |
|     } else if (ijobvr <= 0) {
 | |
| 	*info = -2;
 | |
|     } else if (! wantst && ! lsame_(sort, "N")) {
 | |
| 	*info = -3;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -5;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -7;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -9;
 | |
|     } else if (*ldvsl < 1 || ilvsl && *ldvsl < *n) {
 | |
| 	*info = -15;
 | |
|     } else if (*ldvsr < 1 || ilvsr && *ldvsr < *n) {
 | |
| 	*info = -17;
 | |
|     } else if (*lwork < *n * 6 + 16 && ! lquery) {
 | |
| 	*info = -19;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	sgeqrf_(n, n, &b[b_offset], ldb, &work[1], &work[1], &c_n1, &ierr);
 | |
| /* Computing MAX */
 | |
| 	i__1 = *n * 6 + 16, i__2 = *n * 3 + (integer) work[1];
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
| 	sormqr_("L", "T", n, n, n, &b[b_offset], ldb, &work[1], &a[a_offset], 
 | |
| 		lda, &work[1], &c_n1, &ierr);
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
| 	if (ilvsl) {
 | |
| 	    sorgqr_(n, n, n, &vsl[vsl_offset], ldvsl, &work[1], &work[1], &
 | |
| 		    c_n1, &ierr);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
 | |
| 	    lwkopt = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| 	sgghd3_(jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[b_offset], 
 | |
| 		ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[
 | |
| 		1], &c_n1, &ierr);
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = *n * 3 + (integer) work[1];
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
| 	shgeqz_("S", jobvsl, jobvsr, n, &c__1, n, &a[a_offset], lda, &b[
 | |
| 		b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
 | |
| 		vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[1], &c_n1, 
 | |
| 		&ierr);
 | |
| /* Computing MAX */
 | |
| 	i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
 | |
| 	lwkopt = f2cmax(i__1,i__2);
 | |
| 	if (wantst) {
 | |
| 	    stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &
 | |
| 		    b[b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
 | |
| 		    vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, 
 | |
| 		    &pvsr, dif, &work[1], &c_n1, idum, &c__1, &ierr);
 | |
| /* Computing MAX */
 | |
| 	    i__1 = lwkopt, i__2 = (*n << 1) + (integer) work[1];
 | |
| 	    lwkopt = f2cmax(i__1,i__2);
 | |
| 	}
 | |
| 	work[1] = (real) lwkopt;
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGGES3 ", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*n == 0) {
 | |
| 	*sdim = 0;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     safmin = slamch_("S");
 | |
|     safmax = 1.f / safmin;
 | |
|     slabad_(&safmin, &safmax);
 | |
|     smlnum = sqrt(safmin) / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     anrm = slange_("M", n, n, &a[a_offset], lda, &work[1]);
 | |
|     ilascl = FALSE_;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 	anrmto = smlnum;
 | |
| 	ilascl = TRUE_;
 | |
|     } else if (anrm > bignum) {
 | |
| 	anrmto = bignum;
 | |
| 	ilascl = TRUE_;
 | |
|     }
 | |
|     if (ilascl) {
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &anrmto, n, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
| /*     Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     bnrm = slange_("M", n, n, &b[b_offset], ldb, &work[1]);
 | |
|     ilbscl = FALSE_;
 | |
|     if (bnrm > 0.f && bnrm < smlnum) {
 | |
| 	bnrmto = smlnum;
 | |
| 	ilbscl = TRUE_;
 | |
|     } else if (bnrm > bignum) {
 | |
| 	bnrmto = bignum;
 | |
| 	ilbscl = TRUE_;
 | |
|     }
 | |
|     if (ilbscl) {
 | |
| 	slascl_("G", &c__0, &c__0, &bnrm, &bnrmto, n, n, &b[b_offset], ldb, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
| /*     Permute the matrix to make it more nearly triangular */
 | |
| 
 | |
|     ileft = 1;
 | |
|     iright = *n + 1;
 | |
|     iwrk = iright + *n;
 | |
|     sggbal_("P", n, &a[a_offset], lda, &b[b_offset], ldb, &ilo, &ihi, &work[
 | |
| 	    ileft], &work[iright], &work[iwrk], &ierr);
 | |
| 
 | |
| /*     Reduce B to triangular form (QR decomposition of B) */
 | |
| 
 | |
|     irows = ihi + 1 - ilo;
 | |
|     icols = *n + 1 - ilo;
 | |
|     itau = iwrk;
 | |
|     iwrk = itau + irows;
 | |
|     i__1 = *lwork + 1 - iwrk;
 | |
|     sgeqrf_(&irows, &icols, &b[ilo + ilo * b_dim1], ldb, &work[itau], &work[
 | |
| 	    iwrk], &i__1, &ierr);
 | |
| 
 | |
| /*     Apply the orthogonal transformation to matrix A */
 | |
| 
 | |
|     i__1 = *lwork + 1 - iwrk;
 | |
|     sormqr_("L", "T", &irows, &icols, &irows, &b[ilo + ilo * b_dim1], ldb, &
 | |
| 	    work[itau], &a[ilo + ilo * a_dim1], lda, &work[iwrk], &i__1, &
 | |
| 	    ierr);
 | |
| 
 | |
| /*     Initialize VSL */
 | |
| 
 | |
|     if (ilvsl) {
 | |
| 	slaset_("Full", n, n, &c_b36, &c_b37, &vsl[vsl_offset], ldvsl);
 | |
| 	if (irows > 1) {
 | |
| 	    i__1 = irows - 1;
 | |
| 	    i__2 = irows - 1;
 | |
| 	    slacpy_("L", &i__1, &i__2, &b[ilo + 1 + ilo * b_dim1], ldb, &vsl[
 | |
| 		    ilo + 1 + ilo * vsl_dim1], ldvsl);
 | |
| 	}
 | |
| 	i__1 = *lwork + 1 - iwrk;
 | |
| 	sorgqr_(&irows, &irows, &irows, &vsl[ilo + ilo * vsl_dim1], ldvsl, &
 | |
| 		work[itau], &work[iwrk], &i__1, &ierr);
 | |
|     }
 | |
| 
 | |
| /*     Initialize VSR */
 | |
| 
 | |
|     if (ilvsr) {
 | |
| 	slaset_("Full", n, n, &c_b36, &c_b37, &vsr[vsr_offset], ldvsr);
 | |
|     }
 | |
| 
 | |
| /*     Reduce to generalized Hessenberg form */
 | |
| 
 | |
|     i__1 = *lwork + 1 - iwrk;
 | |
|     sgghd3_(jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[b_offset], 
 | |
| 	    ldb, &vsl[vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk]
 | |
| 	    , &i__1, &ierr);
 | |
| 
 | |
| /*     Perform QZ algorithm, computing Schur vectors if desired */
 | |
| 
 | |
|     iwrk = itau;
 | |
|     i__1 = *lwork + 1 - iwrk;
 | |
|     shgeqz_("S", jobvsl, jobvsr, n, &ilo, &ihi, &a[a_offset], lda, &b[
 | |
| 	    b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[vsl_offset]
 | |
| 	    , ldvsl, &vsr[vsr_offset], ldvsr, &work[iwrk], &i__1, &ierr);
 | |
|     if (ierr != 0) {
 | |
| 	if (ierr > 0 && ierr <= *n) {
 | |
| 	    *info = ierr;
 | |
| 	} else if (ierr > *n && ierr <= *n << 1) {
 | |
| 	    *info = ierr - *n;
 | |
| 	} else {
 | |
| 	    *info = *n + 1;
 | |
| 	}
 | |
| 	goto L40;
 | |
|     }
 | |
| 
 | |
| /*     Sort eigenvalues ALPHA/BETA if desired */
 | |
| 
 | |
|     *sdim = 0;
 | |
|     if (wantst) {
 | |
| 
 | |
| /*        Undo scaling on eigenvalues before SELCTGing */
 | |
| 
 | |
| 	if (ilascl) {
 | |
| 	    slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], 
 | |
| 		    n, &ierr);
 | |
| 	    slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], 
 | |
| 		    n, &ierr);
 | |
| 	}
 | |
| 	if (ilbscl) {
 | |
| 	    slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, 
 | |
| 		    &ierr);
 | |
| 	}
 | |
| 
 | |
| /*        Select eigenvalues */
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    bwork[i__] = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
 | |
| /* L10: */
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *lwork - iwrk + 1;
 | |
| 	stgsen_(&c__0, &ilvsl, &ilvsr, &bwork[1], n, &a[a_offset], lda, &b[
 | |
| 		b_offset], ldb, &alphar[1], &alphai[1], &beta[1], &vsl[
 | |
| 		vsl_offset], ldvsl, &vsr[vsr_offset], ldvsr, sdim, &pvsl, &
 | |
| 		pvsr, dif, &work[iwrk], &i__1, idum, &c__1, &ierr);
 | |
| 	if (ierr == 1) {
 | |
| 	    *info = *n + 3;
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     Apply back-permutation to VSL and VSR */
 | |
| 
 | |
|     if (ilvsl) {
 | |
| 	sggbak_("P", "L", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsl[
 | |
| 		vsl_offset], ldvsl, &ierr);
 | |
|     }
 | |
| 
 | |
|     if (ilvsr) {
 | |
| 	sggbak_("P", "R", n, &ilo, &ihi, &work[ileft], &work[iright], n, &vsr[
 | |
| 		vsr_offset], ldvsr, &ierr);
 | |
|     }
 | |
| 
 | |
| /*     Check if unscaling would cause over/underflow, if so, rescale */
 | |
| /*     (ALPHAR(I),ALPHAI(I),BETA(I)) so BETA(I) is on the order of */
 | |
| /*     B(I,I) and ALPHAR(I) and ALPHAI(I) are on the order of A(I,I) */
 | |
| 
 | |
|     if (ilascl) {
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    if (alphai[i__] != 0.f) {
 | |
| 		if (alphar[i__] / safmax > anrmto / anrm || safmin / alphar[
 | |
| 			i__] > anrm / anrmto) {
 | |
| 		    work[1] = (r__1 = a[i__ + i__ * a_dim1] / alphar[i__], 
 | |
| 			    abs(r__1));
 | |
| 		    beta[i__] *= work[1];
 | |
| 		    alphar[i__] *= work[1];
 | |
| 		    alphai[i__] *= work[1];
 | |
| 		} else if (alphai[i__] / safmax > anrmto / anrm || safmin / 
 | |
| 			alphai[i__] > anrm / anrmto) {
 | |
| 		    work[1] = (r__1 = a[i__ + (i__ + 1) * a_dim1] / alphai[
 | |
| 			    i__], abs(r__1));
 | |
| 		    beta[i__] *= work[1];
 | |
| 		    alphar[i__] *= work[1];
 | |
| 		    alphai[i__] *= work[1];
 | |
| 		}
 | |
| 	    }
 | |
| /* L50: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (ilbscl) {
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    if (alphai[i__] != 0.f) {
 | |
| 		if (beta[i__] / safmax > bnrmto / bnrm || safmin / beta[i__] 
 | |
| 			> bnrm / bnrmto) {
 | |
| 		    work[1] = (r__1 = b[i__ + i__ * b_dim1] / beta[i__], abs(
 | |
| 			    r__1));
 | |
| 		    beta[i__] *= work[1];
 | |
| 		    alphar[i__] *= work[1];
 | |
| 		    alphai[i__] *= work[1];
 | |
| 		}
 | |
| 	    }
 | |
| /* L60: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling */
 | |
| 
 | |
|     if (ilascl) {
 | |
| 	slascl_("H", &c__0, &c__0, &anrmto, &anrm, n, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
| 	slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphar[1], n, &
 | |
| 		ierr);
 | |
| 	slascl_("G", &c__0, &c__0, &anrmto, &anrm, n, &c__1, &alphai[1], n, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
|     if (ilbscl) {
 | |
| 	slascl_("U", &c__0, &c__0, &bnrmto, &bnrm, n, n, &b[b_offset], ldb, &
 | |
| 		ierr);
 | |
| 	slascl_("G", &c__0, &c__0, &bnrmto, &bnrm, n, &c__1, &beta[1], n, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
|     if (wantst) {
 | |
| 
 | |
| /*        Check if reordering is correct */
 | |
| 
 | |
| 	lastsl = TRUE_;
 | |
| 	lst2sl = TRUE_;
 | |
| 	*sdim = 0;
 | |
| 	ip = 0;
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    cursl = (*selctg)(&alphar[i__], &alphai[i__], &beta[i__]);
 | |
| 	    if (alphai[i__] == 0.f) {
 | |
| 		if (cursl) {
 | |
| 		    ++(*sdim);
 | |
| 		}
 | |
| 		ip = 0;
 | |
| 		if (cursl && ! lastsl) {
 | |
| 		    *info = *n + 2;
 | |
| 		}
 | |
| 	    } else {
 | |
| 		if (ip == 1) {
 | |
| 
 | |
| /*                 Last eigenvalue of conjugate pair */
 | |
| 
 | |
| 		    cursl = cursl || lastsl;
 | |
| 		    lastsl = cursl;
 | |
| 		    if (cursl) {
 | |
| 			*sdim += 2;
 | |
| 		    }
 | |
| 		    ip = -1;
 | |
| 		    if (cursl && ! lst2sl) {
 | |
| 			*info = *n + 2;
 | |
| 		    }
 | |
| 		} else {
 | |
| 
 | |
| /*                 First eigenvalue of conjugate pair */
 | |
| 
 | |
| 		    ip = 1;
 | |
| 		}
 | |
| 	    }
 | |
| 	    lst2sl = lastsl;
 | |
| 	    lastsl = cursl;
 | |
| /* L30: */
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| L40:
 | |
| 
 | |
|     work[1] = (real) lwkopt;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SGGES3 */
 | |
| 
 | |
| } /* sgges3_ */
 | |
| 
 |