2290 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2290 lines
		
	
	
		
			74 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c_n1 = -1;
 | |
| static integer c__0 = 0;
 | |
| static real c_b63 = 0.f;
 | |
| static integer c__1 = 1;
 | |
| static real c_b84 = 1.f;
 | |
| 
 | |
| /* > \brief \b SGESDD */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGESDD + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgesdd.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgesdd.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgesdd.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGESDD( JOBZ, M, N, A, LDA, S, U, LDU, VT, LDVT, */
 | |
| /*                          WORK, LWORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          JOBZ */
 | |
| /*       INTEGER            INFO, LDA, LDU, LDVT, LWORK, M, N */
 | |
| /*       INTEGER            IWORK( * ) */
 | |
| /*       REAL   A( LDA, * ), S( * ), U( LDU, * ), */
 | |
| /*      $                   VT( LDVT, * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SGESDD computes the singular value decomposition (SVD) of a real */
 | |
| /* > M-by-N matrix A, optionally computing the left and right singular */
 | |
| /* > vectors.  If singular vectors are desired, it uses a */
 | |
| /* > divide-and-conquer algorithm. */
 | |
| /* > */
 | |
| /* > The SVD is written */
 | |
| /* > */
 | |
| /* >      A = U * SIGMA * transpose(V) */
 | |
| /* > */
 | |
| /* > where SIGMA is an M-by-N matrix which is zero except for its */
 | |
| /* > f2cmin(m,n) diagonal elements, U is an M-by-M orthogonal matrix, and */
 | |
| /* > V is an N-by-N orthogonal matrix.  The diagonal elements of SIGMA */
 | |
| /* > are the singular values of A; they are real and non-negative, and */
 | |
| /* > are returned in descending order.  The first f2cmin(m,n) columns of */
 | |
| /* > U and V are the left and right singular vectors of A. */
 | |
| /* > */
 | |
| /* > Note that the routine returns VT = V**T, not V. */
 | |
| /* > */
 | |
| /* > The divide and conquer algorithm makes very mild assumptions about */
 | |
| /* > floating point arithmetic. It will work on machines with a guard */
 | |
| /* > digit in add/subtract, or on those binary machines without guard */
 | |
| /* > digits which subtract like the Cray X-MP, Cray Y-MP, Cray C-90, or */
 | |
| /* > Cray-2. It could conceivably fail on hexadecimal or decimal machines */
 | |
| /* > without guard digits, but we know of none. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBZ */
 | |
| /* > \verbatim */
 | |
| /* >          JOBZ is CHARACTER*1 */
 | |
| /* >          Specifies options for computing all or part of the matrix U: */
 | |
| /* >          = 'A':  all M columns of U and all N rows of V**T are */
 | |
| /* >                  returned in the arrays U and VT; */
 | |
| /* >          = 'S':  the first f2cmin(M,N) columns of U and the first */
 | |
| /* >                  f2cmin(M,N) rows of V**T are returned in the arrays U */
 | |
| /* >                  and VT; */
 | |
| /* >          = 'O':  If M >= N, the first N columns of U are overwritten */
 | |
| /* >                  on the array A and all rows of V**T are returned in */
 | |
| /* >                  the array VT; */
 | |
| /* >                  otherwise, all columns of U are returned in the */
 | |
| /* >                  array U and the first M rows of V**T are overwritten */
 | |
| /* >                  in the array A; */
 | |
| /* >          = 'N':  no columns of U or rows of V**T are computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the input matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the input matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* >          On exit, */
 | |
| /* >          if JOBZ = 'O',  A is overwritten with the first N columns */
 | |
| /* >                          of U (the left singular vectors, stored */
 | |
| /* >                          columnwise) if M >= N; */
 | |
| /* >                          A is overwritten with the first M rows */
 | |
| /* >                          of V**T (the right singular vectors, stored */
 | |
| /* >                          rowwise) otherwise. */
 | |
| /* >          if JOBZ .ne. 'O', the contents of A are destroyed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL array, dimension (f2cmin(M,N)) */
 | |
| /* >          The singular values of A, sorted so that S(i) >= S(i+1). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is REAL array, dimension (LDU,UCOL) */
 | |
| /* >          UCOL = M if JOBZ = 'A' or JOBZ = 'O' and M < N; */
 | |
| /* >          UCOL = f2cmin(M,N) if JOBZ = 'S'. */
 | |
| /* >          If JOBZ = 'A' or JOBZ = 'O' and M < N, U contains the M-by-M */
 | |
| /* >          orthogonal matrix U; */
 | |
| /* >          if JOBZ = 'S', U contains the first f2cmin(M,N) columns of U */
 | |
| /* >          (the left singular vectors, stored columnwise); */
 | |
| /* >          if JOBZ = 'O' and M >= N, or JOBZ = 'N', U is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >          The leading dimension of the array U.  LDU >= 1; if */
 | |
| /* >          JOBZ = 'S' or 'A' or JOBZ = 'O' and M < N, LDU >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] VT */
 | |
| /* > \verbatim */
 | |
| /* >          VT is REAL array, dimension (LDVT,N) */
 | |
| /* >          If JOBZ = 'A' or JOBZ = 'O' and M >= N, VT contains the */
 | |
| /* >          N-by-N orthogonal matrix V**T; */
 | |
| /* >          if JOBZ = 'S', VT contains the first f2cmin(M,N) rows of */
 | |
| /* >          V**T (the right singular vectors, stored rowwise); */
 | |
| /* >          if JOBZ = 'O' and M < N, or JOBZ = 'N', VT is not referenced. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDVT */
 | |
| /* > \verbatim */
 | |
| /* >          LDVT is INTEGER */
 | |
| /* >          The leading dimension of the array VT.  LDVT >= 1; */
 | |
| /* >          if JOBZ = 'A' or JOBZ = 'O' and M >= N, LDVT >= N; */
 | |
| /* >          if JOBZ = 'S', LDVT >= f2cmin(M,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK; */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK >= 1. */
 | |
| /* >          If LWORK = -1, a workspace query is assumed.  The optimal */
 | |
| /* >          size for the WORK array is calculated and stored in WORK(1), */
 | |
| /* >          and no other work except argument checking is performed. */
 | |
| /* > */
 | |
| /* >          Let mx = f2cmax(M,N) and mn = f2cmin(M,N). */
 | |
| /* >          If JOBZ = 'N', LWORK >= 3*mn + f2cmax( mx, 7*mn ). */
 | |
| /* >          If JOBZ = 'O', LWORK >= 3*mn + f2cmax( mx, 5*mn*mn + 4*mn ). */
 | |
| /* >          If JOBZ = 'S', LWORK >= 4*mn*mn + 7*mn. */
 | |
| /* >          If JOBZ = 'A', LWORK >= 4*mn*mn + 6*mn + mx. */
 | |
| /* >          These are not tight minimums in all cases; see comments inside code. */
 | |
| /* >          For good performance, LWORK should generally be larger; */
 | |
| /* >          a query is recommended. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (8*f2cmin(M,N)) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit. */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  SBDSDC did not converge, updating process failed. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup realGEsing */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >     Ming Gu and Huan Ren, Computer Science Division, University of */
 | |
| /* >     California at Berkeley, USA */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sgesdd_(char *jobz, integer *m, integer *n, real *a, 
 | |
| 	integer *lda, real *s, real *u, integer *ldu, real *vt, integer *ldvt,
 | |
| 	 real *work, integer *lwork, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, u_dim1, u_offset, vt_dim1, vt_offset, i__1, 
 | |
| 	    i__2, i__3;
 | |
| 
 | |
|     /* Local variables */
 | |
|     integer lwork_sgelqf_mn__, lwork_sgeqrf_mn__, iscl, lwork_sorglq_mn__, 
 | |
| 	    lwork_sorglq_nn__;
 | |
|     real anrm;
 | |
|     integer idum[1], ierr, itau, lwork_sorgqr_mm__, lwork_sorgqr_mn__, 
 | |
| 	    lwork_sormbr_qln_mm__, lwork_sormbr_qln_mn__, 
 | |
| 	    lwork_sormbr_qln_nn__, lwork_sormbr_prt_mm__, 
 | |
| 	    lwork_sormbr_prt_mn__, lwork_sormbr_prt_nn__, i__;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     integer chunk;
 | |
|     extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    real *, integer *);
 | |
|     integer minmn, wrkbl, itaup, itauq, mnthr;
 | |
|     logical wntqa;
 | |
|     integer nwork;
 | |
|     logical wntqn, wntqo, wntqs;
 | |
|     integer ie, il, ir, bdspac, iu, lwork_sorgbr_p_mm__;
 | |
|     extern /* Subroutine */ void sbdsdc_(char *, char *, integer *, real *, 
 | |
| 	    real *, real *, integer *, real *, integer *, real *, integer *, 
 | |
| 	    real *, integer *, integer *);
 | |
|     integer lwork_sorgbr_q_nn__;
 | |
|     extern /* Subroutine */ void sgebrd_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, real *, real *, real *, integer *, integer *);
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     real bignum;
 | |
|     extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, integer *, integer *), slascl_(char *, integer 
 | |
| 	    *, integer *, real *, real *, integer *, integer *, real *, 
 | |
| 	    integer *, integer *), sgeqrf_(integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *), slacpy_(char 
 | |
| 	    *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
 | |
| 	    real *, integer *);
 | |
|     extern logical sisnan_(real *);
 | |
|     extern /* Subroutine */ void sorgbr_(char *, integer *, integer *, integer 
 | |
| 	    *, real *, integer *, real *, real *, integer *, integer *);
 | |
|     integer ldwrkl;
 | |
|     extern /* Subroutine */ void sormbr_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, real *, integer *
 | |
| 	    , real *, integer *, integer *);
 | |
|     integer ldwrkr, minwrk, ldwrku, maxwrk;
 | |
|     extern /* Subroutine */ void sorglq_(integer *, integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *);
 | |
|     integer ldwkvt;
 | |
|     real smlnum;
 | |
|     logical wntqas;
 | |
|     extern /* Subroutine */ void sorgqr_(integer *, integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *);
 | |
|     logical lquery;
 | |
|     integer blk;
 | |
|     real dum[1], eps;
 | |
|     integer ivt, lwork_sgebrd_mm__, lwork_sgebrd_mn__, lwork_sgebrd_nn__;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     --s;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     vt_dim1 = *ldvt;
 | |
|     vt_offset = 1 + vt_dim1 * 1;
 | |
|     vt -= vt_offset;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     minmn = f2cmin(*m,*n);
 | |
|     wntqa = lsame_(jobz, "A");
 | |
|     wntqs = lsame_(jobz, "S");
 | |
|     wntqas = wntqa || wntqs;
 | |
|     wntqo = lsame_(jobz, "O");
 | |
|     wntqn = lsame_(jobz, "N");
 | |
|     lquery = *lwork == -1;
 | |
| 
 | |
|     if (! (wntqa || wntqs || wntqo || wntqn)) {
 | |
| 	*info = -1;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldu < 1 || wntqas && *ldu < *m || wntqo && *m < *n && *ldu < *
 | |
| 	    m) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldvt < 1 || wntqa && *ldvt < *n || wntqs && *ldvt < minmn || 
 | |
| 	    wntqo && *m >= *n && *ldvt < *n) {
 | |
| 	*info = -10;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| /*       Note: Comments in the code beginning "Workspace:" describe the */
 | |
| /*       minimal amount of workspace allocated at that point in the code, */
 | |
| /*       as well as the preferred amount for good performance. */
 | |
| /*       NB refers to the optimal block size for the immediately */
 | |
| /*       following subroutine, as returned by ILAENV. */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	minwrk = 1;
 | |
| 	maxwrk = 1;
 | |
| 	bdspac = 0;
 | |
| 	mnthr = (integer) (minmn * 11.f / 6.f);
 | |
| 	if (*m >= *n && minmn > 0) {
 | |
| 
 | |
| /*           Compute space needed for SBDSDC */
 | |
| 
 | |
| 	    if (wntqn) {
 | |
| /*              sbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
 | |
| /*              keep 7*N for backwards compatibility. */
 | |
| 		bdspac = *n * 7;
 | |
| 	    } else {
 | |
| 		bdspac = *n * 3 * *n + (*n << 2);
 | |
| 	    }
 | |
| 
 | |
| /*           Compute space preferred for each routine */
 | |
| 	    sgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sgebrd_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sgebrd_(n, n, dum, n, dum, dum, dum, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sgebrd_nn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sgeqrf_(m, n, dum, m, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sgeqrf_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sorgbr_("Q", n, n, n, dum, n, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sorgbr_q_nn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sorgqr_(m, m, n, dum, m, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sorgqr_mm__ = (integer) dum[0];
 | |
| 
 | |
| 	    sorgqr_(m, n, n, dum, m, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sorgqr_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("P", "R", "T", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_prt_nn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("Q", "L", "N", n, n, n, dum, n, dum, dum, n, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_qln_nn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("Q", "L", "N", m, n, n, dum, m, dum, dum, m, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_qln_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("Q", "L", "N", m, m, n, dum, m, dum, dum, m, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_qln_mm__ = (integer) dum[0];
 | |
| 
 | |
| 	    if (*m >= mnthr) {
 | |
| 		if (wntqn) {
 | |
| 
 | |
| /*                 Path 1 (M >> N, JOBZ='N') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_sgeqrf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = bdspac + *n;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = bdspac + *n;
 | |
| 		} else if (wntqo) {
 | |
| 
 | |
| /*                 Path 2 (M >> N, JOBZ='O') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_sgeqrf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n + lwork_sorgqr_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + (*n << 1) * *n;
 | |
| 		    minwrk = bdspac + (*n << 1) * *n + *n * 3;
 | |
| 		} else if (wntqs) {
 | |
| 
 | |
| /*                 Path 3 (M >> N, JOBZ='S') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_sgeqrf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n + lwork_sorgqr_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + *n * *n;
 | |
| 		    minwrk = bdspac + *n * *n + *n * 3;
 | |
| 		} else if (wntqa) {
 | |
| 
 | |
| /*                 Path 4 (M >> N, JOBZ='A') */
 | |
| 
 | |
| 		    wrkbl = *n + lwork_sgeqrf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n + lwork_sorgqr_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sgebrd_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + *n * *n;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = *n * 3 + bdspac, i__2 = *n + *m;
 | |
| 		    minwrk = *n * *n + f2cmax(i__1,i__2);
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Path 5 (M >= N, but not much larger) */
 | |
| 
 | |
| 		wrkbl = *n * 3 + lwork_sgebrd_mn__;
 | |
| 		if (wntqn) {
 | |
| /*                 Path 5n (M >= N, jobz='N') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + bdspac;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = *n * 3 + f2cmax(*m,bdspac);
 | |
| 		} else if (wntqo) {
 | |
| /*                 Path 5o (M >= N, jobz='O') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + *m * *n;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = *m, i__2 = *n * *n + bdspac;
 | |
| 		    minwrk = *n * 3 + f2cmax(i__1,i__2);
 | |
| 		} else if (wntqs) {
 | |
| /*                 Path 5s (M >= N, jobz='S') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + bdspac;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = *n * 3 + f2cmax(*m,bdspac);
 | |
| 		} else if (wntqa) {
 | |
| /*                 Path 5a (M >= N, jobz='A') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_qln_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + lwork_sormbr_prt_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *n * 3 + bdspac;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = *n * 3 + f2cmax(*m,bdspac);
 | |
| 		}
 | |
| 	    }
 | |
| 	} else if (minmn > 0) {
 | |
| 
 | |
| /*           Compute space needed for SBDSDC */
 | |
| 
 | |
| 	    if (wntqn) {
 | |
| /*              sbdsdc needs only 4*N (or 6*N for uplo=L for LAPACK <= 3.6) */
 | |
| /*              keep 7*N for backwards compatibility. */
 | |
| 		bdspac = *m * 7;
 | |
| 	    } else {
 | |
| 		bdspac = *m * 3 * *m + (*m << 2);
 | |
| 	    }
 | |
| 
 | |
| /*           Compute space preferred for each routine */
 | |
| 	    sgebrd_(m, n, dum, m, dum, dum, dum, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sgebrd_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sgebrd_(m, m, &a[a_offset], m, &s[1], dum, dum, dum, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sgebrd_mm__ = (integer) dum[0];
 | |
| 
 | |
| 	    sgelqf_(m, n, &a[a_offset], m, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sgelqf_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sorglq_(n, n, m, dum, n, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sorglq_nn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sorglq_(m, n, m, &a[a_offset], m, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sorglq_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sorgbr_("P", m, m, m, &a[a_offset], n, dum, dum, &c_n1, &ierr);
 | |
| 	    lwork_sorgbr_p_mm__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("P", "R", "T", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_prt_mm__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("P", "R", "T", m, n, m, dum, m, dum, dum, m, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_prt_mn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("P", "R", "T", n, n, m, dum, n, dum, dum, n, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_prt_nn__ = (integer) dum[0];
 | |
| 
 | |
| 	    sormbr_("Q", "L", "N", m, m, m, dum, m, dum, dum, m, dum, &c_n1, &
 | |
| 		    ierr);
 | |
| 	    lwork_sormbr_qln_mm__ = (integer) dum[0];
 | |
| 
 | |
| 	    if (*n >= mnthr) {
 | |
| 		if (wntqn) {
 | |
| 
 | |
| /*                 Path 1t (N >> M, JOBZ='N') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_sgelqf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = bdspac + *m;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = bdspac + *m;
 | |
| 		} else if (wntqo) {
 | |
| 
 | |
| /*                 Path 2t (N >> M, JOBZ='O') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_sgelqf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m + lwork_sorglq_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + (*m << 1) * *m;
 | |
| 		    minwrk = bdspac + (*m << 1) * *m + *m * 3;
 | |
| 		} else if (wntqs) {
 | |
| 
 | |
| /*                 Path 3t (N >> M, JOBZ='S') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_sgelqf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m + lwork_sorglq_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + *m * *m;
 | |
| 		    minwrk = bdspac + *m * *m + *m * 3;
 | |
| 		} else if (wntqa) {
 | |
| 
 | |
| /*                 Path 4t (N >> M, JOBZ='A') */
 | |
| 
 | |
| 		    wrkbl = *m + lwork_sgelqf_mn__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m + lwork_sorglq_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sgebrd_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + *m * *m;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = *m * 3 + bdspac, i__2 = *m + *n;
 | |
| 		    minwrk = *m * *m + f2cmax(i__1,i__2);
 | |
| 		}
 | |
| 	    } else {
 | |
| 
 | |
| /*              Path 5t (N > M, but not much larger) */
 | |
| 
 | |
| 		wrkbl = *m * 3 + lwork_sgebrd_mn__;
 | |
| 		if (wntqn) {
 | |
| /*                 Path 5tn (N > M, jobz='N') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + bdspac;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = *m * 3 + f2cmax(*n,bdspac);
 | |
| 		} else if (wntqo) {
 | |
| /*                 Path 5to (N > M, jobz='O') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + bdspac;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = wrkbl + *m * *n;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = *n, i__2 = *m * *m + bdspac;
 | |
| 		    minwrk = *m * 3 + f2cmax(i__1,i__2);
 | |
| 		} else if (wntqs) {
 | |
| /*                 Path 5ts (N > M, jobz='S') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_mn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + bdspac;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = *m * 3 + f2cmax(*n,bdspac);
 | |
| 		} else if (wntqa) {
 | |
| /*                 Path 5ta (N > M, jobz='A') */
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_qln_mm__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + lwork_sormbr_prt_nn__;
 | |
| 		    wrkbl = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = wrkbl, i__2 = *m * 3 + bdspac;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    minwrk = *m * 3 + f2cmax(*n,bdspac);
 | |
| 		}
 | |
| 	    }
 | |
| 	}
 | |
| 	maxwrk = f2cmax(maxwrk,minwrk);
 | |
| 	work[1] = (real) maxwrk;
 | |
| 
 | |
| 	if (*lwork < minwrk && ! lquery) {
 | |
| 	    *info = -12;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGESDD", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine constants */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     smlnum = sqrt(slamch_("S")) / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     anrm = slange_("M", m, n, &a[a_offset], lda, dum);
 | |
|     if (sisnan_(&anrm)) {
 | |
| 	*info = -4;
 | |
| 	return;
 | |
|     }
 | |
|     iscl = 0;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 	iscl = 1;
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
|     } else if (anrm > bignum) {
 | |
| 	iscl = 1;
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, &
 | |
| 		ierr);
 | |
|     }
 | |
| 
 | |
|     if (*m >= *n) {
 | |
| 
 | |
| /*        A has at least as many rows as columns. If A has sufficiently */
 | |
| /*        more rows than columns, first reduce using the QR */
 | |
| /*        decomposition (if sufficient workspace available) */
 | |
| 
 | |
| 	if (*m >= mnthr) {
 | |
| 
 | |
| 	    if (wntqn) {
 | |
| 
 | |
| /*              Path 1 (M >> N, JOBZ='N') */
 | |
| /*              No singular vectors to be computed */
 | |
| 
 | |
| 		itau = 1;
 | |
| 		nwork = itau + *n;
 | |
| 
 | |
| /*              Compute A=Q*R */
 | |
| /*              Workspace: need   N [tau] + N    [work] */
 | |
| /*              Workspace: prefer N [tau] + N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__1, &ierr);
 | |
| 
 | |
| /*              Zero out below R */
 | |
| 
 | |
| 		i__1 = *n - 1;
 | |
| 		i__2 = *n - 1;
 | |
| 		slaset_("L", &i__1, &i__2, &c_b63, &c_b63, &a[a_dim1 + 2], 
 | |
| 			lda);
 | |
| 		ie = 1;
 | |
| 		itauq = ie + *n;
 | |
| 		itaup = itauq + *n;
 | |
| 		nwork = itaup + *n;
 | |
| 
 | |
| /*              Bidiagonalize R in A */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + N      [work] */
 | |
| /*              Workspace: prefer 3*N [e, tauq, taup] + 2*N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__1, &ierr);
 | |
| 		nwork = ie + *n;
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing singular values only */
 | |
| /*              Workspace: need   N [e] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
 | |
| 			 dum, idum, &work[nwork], &iwork[1], info);
 | |
| 
 | |
| 	    } else if (wntqo) {
 | |
| 
 | |
| /*              Path 2 (M >> N, JOBZ = 'O') */
 | |
| /*              N left singular vectors to be overwritten on A and */
 | |
| /*              N right singular vectors to be computed in VT */
 | |
| 
 | |
| 		ir = 1;
 | |
| 
 | |
| /*              WORK(IR) is LDWRKR by N */
 | |
| 
 | |
| 		if (*lwork >= *lda * *n + *n * *n + *n * 3 + bdspac) {
 | |
| 		    ldwrkr = *lda;
 | |
| 		} else {
 | |
| 		    ldwrkr = (*lwork - *n * *n - *n * 3 - bdspac) / *n;
 | |
| 		}
 | |
| 		itau = ir + ldwrkr * *n;
 | |
| 		nwork = itau + *n;
 | |
| 
 | |
| /*              Compute A=Q*R */
 | |
| /*              Workspace: need   N*N [R] + N [tau] + N    [work] */
 | |
| /*              Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__1, &ierr);
 | |
| 
 | |
| /*              Copy R to WORK(IR), zeroing out below it */
 | |
| 
 | |
| 		slacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
 | |
| 		i__1 = *n - 1;
 | |
| 		i__2 = *n - 1;
 | |
| 		slaset_("L", &i__1, &i__2, &c_b63, &c_b63, &work[ir + 1], &
 | |
| 			ldwrkr);
 | |
| 
 | |
| /*              Generate Q in A */
 | |
| /*              Workspace: need   N*N [R] + N [tau] + N    [work] */
 | |
| /*              Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
 | |
| 			 &i__1, &ierr);
 | |
| 		ie = itau;
 | |
| 		itauq = ie + *n;
 | |
| 		itaup = itauq + *n;
 | |
| 		nwork = itaup + *n;
 | |
| 
 | |
| /*              Bidiagonalize R in WORK(IR) */
 | |
| /*              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N      [work] */
 | |
| /*              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__1, &ierr);
 | |
| 
 | |
| /*              WORK(IU) is N by N */
 | |
| 
 | |
| 		iu = nwork;
 | |
| 		nwork = iu + *n * *n;
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in WORK(IU) and computing right */
 | |
| /*              singular vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N*N [U] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Overwrite WORK(IU) by left singular vectors of R */
 | |
| /*              and VT by right singular vectors of R */
 | |
| /*              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N    [work] */
 | |
| /*              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
 | |
| 			itauq], &work[iu], n, &work[nwork], &i__1, &ierr);
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
 | |
| 			ierr);
 | |
| 
 | |
| /*              Multiply Q in A by left singular vectors of R in */
 | |
| /*              WORK(IU), storing result in WORK(IR) and copying to A */
 | |
| /*              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N*N [U] */
 | |
| /*              Workspace: prefer M*N [R] + 3*N [e, tauq, taup] + N*N [U] */
 | |
| 
 | |
| 		i__1 = *m;
 | |
| 		i__2 = ldwrkr;
 | |
| 		for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
 | |
| 			i__2) {
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *m - i__ + 1;
 | |
| 		    chunk = f2cmin(i__3,ldwrkr);
 | |
| 		    sgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ + a_dim1], 
 | |
| 			    lda, &work[iu], n, &c_b63, &work[ir], &ldwrkr);
 | |
| 		    slacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ + 
 | |
| 			    a_dim1], lda);
 | |
| /* L10: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntqs) {
 | |
| 
 | |
| /*              Path 3 (M >> N, JOBZ='S') */
 | |
| /*              N left singular vectors to be computed in U and */
 | |
| /*              N right singular vectors to be computed in VT */
 | |
| 
 | |
| 		ir = 1;
 | |
| 
 | |
| /*              WORK(IR) is N by N */
 | |
| 
 | |
| 		ldwrkr = *n;
 | |
| 		itau = ir + ldwrkr * *n;
 | |
| 		nwork = itau + *n;
 | |
| 
 | |
| /*              Compute A=Q*R */
 | |
| /*              Workspace: need   N*N [R] + N [tau] + N    [work] */
 | |
| /*              Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__2, &ierr);
 | |
| 
 | |
| /*              Copy R to WORK(IR), zeroing out below it */
 | |
| 
 | |
| 		slacpy_("U", n, n, &a[a_offset], lda, &work[ir], &ldwrkr);
 | |
| 		i__2 = *n - 1;
 | |
| 		i__1 = *n - 1;
 | |
| 		slaset_("L", &i__2, &i__1, &c_b63, &c_b63, &work[ir + 1], &
 | |
| 			ldwrkr);
 | |
| 
 | |
| /*              Generate Q in A */
 | |
| /*              Workspace: need   N*N [R] + N [tau] + N    [work] */
 | |
| /*              Workspace: prefer N*N [R] + N [tau] + N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sorgqr_(m, n, n, &a[a_offset], lda, &work[itau], &work[nwork],
 | |
| 			 &i__2, &ierr);
 | |
| 		ie = itau;
 | |
| 		itauq = ie + *n;
 | |
| 		itaup = itauq + *n;
 | |
| 		nwork = itaup + *n;
 | |
| 
 | |
| /*              Bidiagonalize R in WORK(IR) */
 | |
| /*              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N      [work] */
 | |
| /*              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + 2*N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgebrd_(n, n, &work[ir], &ldwrkr, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__2, &ierr);
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagoal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of R and VT */
 | |
| /*              by right singular vectors of R */
 | |
| /*              Workspace: need   N*N [R] + 3*N [e, tauq, taup] + N    [work] */
 | |
| /*              Workspace: prefer N*N [R] + 3*N [e, tauq, taup] + N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", n, n, n, &work[ir], &ldwrkr, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", n, n, n, &work[ir], &ldwrkr, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
 | |
| 			ierr);
 | |
| 
 | |
| /*              Multiply Q in A by left singular vectors of R in */
 | |
| /*              WORK(IR), storing result in U */
 | |
| /*              Workspace: need   N*N [R] */
 | |
| 
 | |
| 		slacpy_("F", n, n, &u[u_offset], ldu, &work[ir], &ldwrkr);
 | |
| 		sgemm_("N", "N", m, n, n, &c_b84, &a[a_offset], lda, &work[ir]
 | |
| 			, &ldwrkr, &c_b63, &u[u_offset], ldu);
 | |
| 
 | |
| 	    } else if (wntqa) {
 | |
| 
 | |
| /*              Path 4 (M >> N, JOBZ='A') */
 | |
| /*              M left singular vectors to be computed in U and */
 | |
| /*              N right singular vectors to be computed in VT */
 | |
| 
 | |
| 		iu = 1;
 | |
| 
 | |
| /*              WORK(IU) is N by N */
 | |
| 
 | |
| 		ldwrku = *n;
 | |
| 		itau = iu + ldwrku * *n;
 | |
| 		nwork = itau + *n;
 | |
| 
 | |
| /*              Compute A=Q*R, copying result to U */
 | |
| /*              Workspace: need   N*N [U] + N [tau] + N    [work] */
 | |
| /*              Workspace: prefer N*N [U] + N [tau] + N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__2, &ierr);
 | |
| 		slacpy_("L", m, n, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 
 | |
| /*              Generate Q in U */
 | |
| /*              Workspace: need   N*N [U] + N [tau] + M    [work] */
 | |
| /*              Workspace: prefer N*N [U] + N [tau] + M*NB [work] */
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sorgqr_(m, m, n, &u[u_offset], ldu, &work[itau], &work[nwork],
 | |
| 			 &i__2, &ierr);
 | |
| 
 | |
| /*              Produce R in A, zeroing out other entries */
 | |
| 
 | |
| 		i__2 = *n - 1;
 | |
| 		i__1 = *n - 1;
 | |
| 		slaset_("L", &i__2, &i__1, &c_b63, &c_b63, &a[a_dim1 + 2], 
 | |
| 			lda);
 | |
| 		ie = itau;
 | |
| 		itauq = ie + *n;
 | |
| 		itaup = itauq + *n;
 | |
| 		nwork = itaup + *n;
 | |
| 
 | |
| /*              Bidiagonalize R in A */
 | |
| /*              Workspace: need   N*N [U] + 3*N [e, tauq, taup] + N      [work] */
 | |
| /*              Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + 2*N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgebrd_(n, n, &a[a_offset], lda, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__2, &ierr);
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in WORK(IU) and computing right */
 | |
| /*              singular vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   N*N [U] + 3*N [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], n, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Overwrite WORK(IU) by left singular vectors of R and VT */
 | |
| /*              by right singular vectors of R */
 | |
| /*              Workspace: need   N*N [U] + 3*N [e, tauq, taup] + N    [work] */
 | |
| /*              Workspace: prefer N*N [U] + 3*N [e, tauq, taup] + N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", n, n, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
 | |
| 			ierr);
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
 | |
| 			ierr);
 | |
| 
 | |
| /*              Multiply Q in U by left singular vectors of R in */
 | |
| /*              WORK(IU), storing result in A */
 | |
| /*              Workspace: need   N*N [U] */
 | |
| 
 | |
| 		sgemm_("N", "N", m, n, n, &c_b84, &u[u_offset], ldu, &work[iu]
 | |
| 			, &ldwrku, &c_b63, &a[a_offset], lda);
 | |
| 
 | |
| /*              Copy left singular vectors of A from A to U */
 | |
| 
 | |
| 		slacpy_("F", m, n, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           M .LT. MNTHR */
 | |
| 
 | |
| /*           Path 5 (M >= N, but not much larger) */
 | |
| /*           Reduce to bidiagonal form without QR decomposition */
 | |
| 
 | |
| 	    ie = 1;
 | |
| 	    itauq = ie + *n;
 | |
| 	    itaup = itauq + *n;
 | |
| 	    nwork = itaup + *n;
 | |
| 
 | |
| /*           Bidiagonalize A */
 | |
| /*           Workspace: need   3*N [e, tauq, taup] + M        [work] */
 | |
| /*           Workspace: prefer 3*N [e, tauq, taup] + (M+N)*NB [work] */
 | |
| 
 | |
| 	    i__2 = *lwork - nwork + 1;
 | |
| 	    sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
 | |
| 		    work[itaup], &work[nwork], &i__2, &ierr);
 | |
| 	    if (wntqn) {
 | |
| 
 | |
| /*              Path 5n (M >= N, JOBZ='N') */
 | |
| /*              Perform bidiagonal SVD, only computing singular values */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "N", n, &s[1], &work[ie], dum, &c__1, dum, &c__1,
 | |
| 			 dum, idum, &work[nwork], &iwork[1], info);
 | |
| 	    } else if (wntqo) {
 | |
| /*              Path 5o (M >= N, JOBZ='O') */
 | |
| 		iu = nwork;
 | |
| 		if (*lwork >= *m * *n + *n * 3 + bdspac) {
 | |
| 
 | |
| /*                 WORK( IU ) is M by N */
 | |
| 
 | |
| 		    ldwrku = *m;
 | |
| 		    nwork = iu + ldwrku * *n;
 | |
| 		    slaset_("F", m, n, &c_b63, &c_b63, &work[iu], &ldwrku);
 | |
| /*                 IR is unused; silence compile warnings */
 | |
| 		    ir = -1;
 | |
| 		} else {
 | |
| 
 | |
| /*                 WORK( IU ) is N by N */
 | |
| 
 | |
| 		    ldwrku = *n;
 | |
| 		    nwork = iu + ldwrku * *n;
 | |
| 
 | |
| /*                 WORK(IR) is LDWRKR by N */
 | |
| 
 | |
| 		    ir = nwork;
 | |
| 		    ldwrkr = (*lwork - *n * *n - *n * 3) / *n;
 | |
| 		}
 | |
| 		nwork = iu + ldwrku * *n;
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in WORK(IU) and computing right */
 | |
| /*              singular vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + N*N [U] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "I", n, &s[1], &work[ie], &work[iu], &ldwrku, &
 | |
| 			vt[vt_offset], ldvt, dum, idum, &work[nwork], &iwork[
 | |
| 			1], info);
 | |
| 
 | |
| /*              Overwrite VT by right singular vectors of A */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + N*N [U] + N    [work] */
 | |
| /*              Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
 | |
| 			ierr);
 | |
| 
 | |
| 		if (*lwork >= *m * *n + *n * 3 + bdspac) {
 | |
| 
 | |
| /*                 Path 5o-fast */
 | |
| /*                 Overwrite WORK(IU) by left singular vectors of A */
 | |
| /*                 Workspace: need   3*N [e, tauq, taup] + M*N [U] + N    [work] */
 | |
| /*                 Workspace: prefer 3*N [e, tauq, taup] + M*N [U] + N*NB [work] */
 | |
| 
 | |
| 		    i__2 = *lwork - nwork + 1;
 | |
| 		    sormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
 | |
| 			    itauq], &work[iu], &ldwrku, &work[nwork], &i__2, &
 | |
| 			    ierr);
 | |
| 
 | |
| /*                 Copy left singular vectors of A from WORK(IU) to A */
 | |
| 
 | |
| 		    slacpy_("F", m, n, &work[iu], &ldwrku, &a[a_offset], lda);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Path 5o-slow */
 | |
| /*                 Generate Q in A */
 | |
| /*                 Workspace: need   3*N [e, tauq, taup] + N*N [U] + N    [work] */
 | |
| /*                 Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + N*NB [work] */
 | |
| 
 | |
| 		    i__2 = *lwork - nwork + 1;
 | |
| 		    sorgbr_("Q", m, n, n, &a[a_offset], lda, &work[itauq], &
 | |
| 			    work[nwork], &i__2, &ierr);
 | |
| 
 | |
| /*                 Multiply Q in A by left singular vectors of */
 | |
| /*                 bidiagonal matrix in WORK(IU), storing result in */
 | |
| /*                 WORK(IR) and copying to A */
 | |
| /*                 Workspace: need   3*N [e, tauq, taup] + N*N [U] + NB*N [R] */
 | |
| /*                 Workspace: prefer 3*N [e, tauq, taup] + N*N [U] + M*N  [R] */
 | |
| 
 | |
| 		    i__2 = *m;
 | |
| 		    i__1 = ldwrkr;
 | |
| 		    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
 | |
| 			     i__1) {
 | |
| /* Computing MIN */
 | |
| 			i__3 = *m - i__ + 1;
 | |
| 			chunk = f2cmin(i__3,ldwrkr);
 | |
| 			sgemm_("N", "N", &chunk, n, n, &c_b84, &a[i__ + 
 | |
| 				a_dim1], lda, &work[iu], &ldwrku, &c_b63, &
 | |
| 				work[ir], &ldwrkr);
 | |
| 			slacpy_("F", &chunk, n, &work[ir], &ldwrkr, &a[i__ + 
 | |
| 				a_dim1], lda);
 | |
| /* L20: */
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntqs) {
 | |
| 
 | |
| /*              Path 5s (M >= N, JOBZ='S') */
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		slaset_("F", m, n, &c_b63, &c_b63, &u[u_offset], ldu);
 | |
| 		sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of A and VT */
 | |
| /*              by right singular vectors of A */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + N    [work] */
 | |
| /*              Workspace: prefer 3*N [e, tauq, taup] + N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, n, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", n, n, n, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
 | |
| 			ierr);
 | |
| 	    } else if (wntqa) {
 | |
| 
 | |
| /*              Path 5a (M >= N, JOBZ='A') */
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		slaset_("F", m, m, &c_b63, &c_b63, &u[u_offset], ldu);
 | |
| 		sbdsdc_("U", "I", n, &s[1], &work[ie], &u[u_offset], ldu, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Set the right corner of U to identity matrix */
 | |
| 
 | |
| 		if (*m > *n) {
 | |
| 		    i__1 = *m - *n;
 | |
| 		    i__2 = *m - *n;
 | |
| 		    slaset_("F", &i__1, &i__2, &c_b63, &c_b84, &u[*n + 1 + (*
 | |
| 			    n + 1) * u_dim1], ldu);
 | |
| 		}
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of A and VT */
 | |
| /*              by right singular vectors of A */
 | |
| /*              Workspace: need   3*N [e, tauq, taup] + M    [work] */
 | |
| /*              Workspace: prefer 3*N [e, tauq, taup] + M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
 | |
| 			ierr);
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| /*        A has more columns than rows. If A has sufficiently more */
 | |
| /*        columns than rows, first reduce using the LQ decomposition (if */
 | |
| /*        sufficient workspace available) */
 | |
| 
 | |
| 	if (*n >= mnthr) {
 | |
| 
 | |
| 	    if (wntqn) {
 | |
| 
 | |
| /*              Path 1t (N >> M, JOBZ='N') */
 | |
| /*              No singular vectors to be computed */
 | |
| 
 | |
| 		itau = 1;
 | |
| 		nwork = itau + *m;
 | |
| 
 | |
| /*              Compute A=L*Q */
 | |
| /*              Workspace: need   M [tau] + M [work] */
 | |
| /*              Workspace: prefer M [tau] + M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__1, &ierr);
 | |
| 
 | |
| /*              Zero out above L */
 | |
| 
 | |
| 		i__1 = *m - 1;
 | |
| 		i__2 = *m - 1;
 | |
| 		slaset_("U", &i__1, &i__2, &c_b63, &c_b63, &a[(a_dim1 << 1) + 
 | |
| 			1], lda);
 | |
| 		ie = 1;
 | |
| 		itauq = ie + *m;
 | |
| 		itaup = itauq + *m;
 | |
| 		nwork = itaup + *m;
 | |
| 
 | |
| /*              Bidiagonalize L in A */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + M      [work] */
 | |
| /*              Workspace: prefer 3*M [e, tauq, taup] + 2*M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__1, &ierr);
 | |
| 		nwork = ie + *m;
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing singular values only */
 | |
| /*              Workspace: need   M [e] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
 | |
| 			 dum, idum, &work[nwork], &iwork[1], info);
 | |
| 
 | |
| 	    } else if (wntqo) {
 | |
| 
 | |
| /*              Path 2t (N >> M, JOBZ='O') */
 | |
| /*              M right singular vectors to be overwritten on A and */
 | |
| /*              M left singular vectors to be computed in U */
 | |
| 
 | |
| 		ivt = 1;
 | |
| 
 | |
| /*              WORK(IVT) is M by M */
 | |
| /*              WORK(IL)  is M by M; it is later resized to M by chunk for gemm */
 | |
| 
 | |
| 		il = ivt + *m * *m;
 | |
| 		if (*lwork >= *m * *n + *m * *m + *m * 3 + bdspac) {
 | |
| 		    ldwrkl = *m;
 | |
| 		    chunk = *n;
 | |
| 		} else {
 | |
| 		    ldwrkl = *m;
 | |
| 		    chunk = (*lwork - *m * *m) / *m;
 | |
| 		}
 | |
| 		itau = il + ldwrkl * *m;
 | |
| 		nwork = itau + *m;
 | |
| 
 | |
| /*              Compute A=L*Q */
 | |
| /*              Workspace: need   M*M [VT] + M*M [L] + M [tau] + M    [work] */
 | |
| /*              Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__1, &ierr);
 | |
| 
 | |
| /*              Copy L to WORK(IL), zeroing about above it */
 | |
| 
 | |
| 		slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
 | |
| 		i__1 = *m - 1;
 | |
| 		i__2 = *m - 1;
 | |
| 		slaset_("U", &i__1, &i__2, &c_b63, &c_b63, &work[il + ldwrkl],
 | |
| 			 &ldwrkl);
 | |
| 
 | |
| /*              Generate Q in A */
 | |
| /*              Workspace: need   M*M [VT] + M*M [L] + M [tau] + M    [work] */
 | |
| /*              Workspace: prefer M*M [VT] + M*M [L] + M [tau] + M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
 | |
| 			 &i__1, &ierr);
 | |
| 		ie = itau;
 | |
| 		itauq = ie + *m;
 | |
| 		itaup = itauq + *m;
 | |
| 		nwork = itaup + *m;
 | |
| 
 | |
| /*              Bidiagonalize L in WORK(IL) */
 | |
| /*              Workspace: need   M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M      [work] */
 | |
| /*              Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__1, &ierr);
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U, and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in WORK(IVT) */
 | |
| /*              Workspace: need   M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
 | |
| 			work[ivt], m, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of L and WORK(IVT) */
 | |
| /*              by right singular vectors of L */
 | |
| /*              Workspace: need   M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M    [work] */
 | |
| /*              Workspace: prefer M*M [VT] + M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
 | |
| 			itaup], &work[ivt], m, &work[nwork], &i__1, &ierr);
 | |
| 
 | |
| /*              Multiply right singular vectors of L in WORK(IVT) by Q */
 | |
| /*              in A, storing result in WORK(IL) and copying to A */
 | |
| /*              Workspace: need   M*M [VT] + M*M [L] */
 | |
| /*              Workspace: prefer M*M [VT] + M*N [L] */
 | |
| /*              At this point, L is resized as M by chunk. */
 | |
| 
 | |
| 		i__1 = *n;
 | |
| 		i__2 = chunk;
 | |
| 		for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
 | |
| 			i__2) {
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *n - i__ + 1;
 | |
| 		    blk = f2cmin(i__3,chunk);
 | |
| 		    sgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], m, &a[
 | |
| 			    i__ * a_dim1 + 1], lda, &c_b63, &work[il], &
 | |
| 			    ldwrkl);
 | |
| 		    slacpy_("F", m, &blk, &work[il], &ldwrkl, &a[i__ * a_dim1 
 | |
| 			    + 1], lda);
 | |
| /* L30: */
 | |
| 		}
 | |
| 
 | |
| 	    } else if (wntqs) {
 | |
| 
 | |
| /*              Path 3t (N >> M, JOBZ='S') */
 | |
| /*              M right singular vectors to be computed in VT and */
 | |
| /*              M left singular vectors to be computed in U */
 | |
| 
 | |
| 		il = 1;
 | |
| 
 | |
| /*              WORK(IL) is M by M */
 | |
| 
 | |
| 		ldwrkl = *m;
 | |
| 		itau = il + ldwrkl * *m;
 | |
| 		nwork = itau + *m;
 | |
| 
 | |
| /*              Compute A=L*Q */
 | |
| /*              Workspace: need   M*M [L] + M [tau] + M    [work] */
 | |
| /*              Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__2, &ierr);
 | |
| 
 | |
| /*              Copy L to WORK(IL), zeroing out above it */
 | |
| 
 | |
| 		slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwrkl);
 | |
| 		i__2 = *m - 1;
 | |
| 		i__1 = *m - 1;
 | |
| 		slaset_("U", &i__2, &i__1, &c_b63, &c_b63, &work[il + ldwrkl],
 | |
| 			 &ldwrkl);
 | |
| 
 | |
| /*              Generate Q in A */
 | |
| /*              Workspace: need   M*M [L] + M [tau] + M    [work] */
 | |
| /*              Workspace: prefer M*M [L] + M [tau] + M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sorglq_(m, n, m, &a[a_offset], lda, &work[itau], &work[nwork],
 | |
| 			 &i__2, &ierr);
 | |
| 		ie = itau;
 | |
| 		itauq = ie + *m;
 | |
| 		itaup = itauq + *m;
 | |
| 		nwork = itaup + *m;
 | |
| 
 | |
| /*              Bidiagonalize L in WORK(IU). */
 | |
| /*              Workspace: need   M*M [L] + 3*M [e, tauq, taup] + M      [work] */
 | |
| /*              Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + 2*M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgebrd_(m, m, &work[il], &ldwrkl, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__2, &ierr);
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   M*M [L] + 3*M [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of L and VT */
 | |
| /*              by right singular vectors of L */
 | |
| /*              Workspace: need   M*M [L] + 3*M [e, tauq, taup] + M    [work] */
 | |
| /*              Workspace: prefer M*M [L] + 3*M [e, tauq, taup] + M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, m, m, &work[il], &ldwrkl, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", m, m, m, &work[il], &ldwrkl, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__2, &
 | |
| 			ierr);
 | |
| 
 | |
| /*              Multiply right singular vectors of L in WORK(IL) by */
 | |
| /*              Q in A, storing result in VT */
 | |
| /*              Workspace: need   M*M [L] */
 | |
| 
 | |
| 		slacpy_("F", m, m, &vt[vt_offset], ldvt, &work[il], &ldwrkl);
 | |
| 		sgemm_("N", "N", m, n, m, &c_b84, &work[il], &ldwrkl, &a[
 | |
| 			a_offset], lda, &c_b63, &vt[vt_offset], ldvt);
 | |
| 
 | |
| 	    } else if (wntqa) {
 | |
| 
 | |
| /*              Path 4t (N >> M, JOBZ='A') */
 | |
| /*              N right singular vectors to be computed in VT and */
 | |
| /*              M left singular vectors to be computed in U */
 | |
| 
 | |
| 		ivt = 1;
 | |
| 
 | |
| /*              WORK(IVT) is M by M */
 | |
| 
 | |
| 		ldwkvt = *m;
 | |
| 		itau = ivt + ldwkvt * *m;
 | |
| 		nwork = itau + *m;
 | |
| 
 | |
| /*              Compute A=L*Q, copying result to VT */
 | |
| /*              Workspace: need   M*M [VT] + M [tau] + M    [work] */
 | |
| /*              Workspace: prefer M*M [VT] + M [tau] + M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[nwork], &
 | |
| 			i__2, &ierr);
 | |
| 		slacpy_("U", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
 | |
| 
 | |
| /*              Generate Q in VT */
 | |
| /*              Workspace: need   M*M [VT] + M [tau] + N    [work] */
 | |
| /*              Workspace: prefer M*M [VT] + M [tau] + N*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sorglq_(n, n, m, &vt[vt_offset], ldvt, &work[itau], &work[
 | |
| 			nwork], &i__2, &ierr);
 | |
| 
 | |
| /*              Produce L in A, zeroing out other entries */
 | |
| 
 | |
| 		i__2 = *m - 1;
 | |
| 		i__1 = *m - 1;
 | |
| 		slaset_("U", &i__2, &i__1, &c_b63, &c_b63, &a[(a_dim1 << 1) + 
 | |
| 			1], lda);
 | |
| 		ie = itau;
 | |
| 		itauq = ie + *m;
 | |
| 		itaup = itauq + *m;
 | |
| 		nwork = itaup + *m;
 | |
| 
 | |
| /*              Bidiagonalize L in A */
 | |
| /*              Workspace: need   M*M [VT] + 3*M [e, tauq, taup] + M      [work] */
 | |
| /*              Workspace: prefer M*M [VT] + 3*M [e, tauq, taup] + 2*M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sgebrd_(m, m, &a[a_offset], lda, &s[1], &work[ie], &work[
 | |
| 			itauq], &work[itaup], &work[nwork], &i__2, &ierr);
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in WORK(IVT) */
 | |
| /*              Workspace: need   M*M [VT] + 3*M [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("U", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
 | |
| 			work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
 | |
| 			, info);
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of L and WORK(IVT) */
 | |
| /*              by right singular vectors of L */
 | |
| /*              Workspace: need   M*M [VT] + 3*M [e, tauq, taup]+ M    [work] */
 | |
| /*              Workspace: prefer M*M [VT] + 3*M [e, tauq, taup]+ M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, m, m, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", m, m, m, &a[a_offset], lda, &work[
 | |
| 			itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, &
 | |
| 			ierr);
 | |
| 
 | |
| /*              Multiply right singular vectors of L in WORK(IVT) by */
 | |
| /*              Q in VT, storing result in A */
 | |
| /*              Workspace: need   M*M [VT] */
 | |
| 
 | |
| 		sgemm_("N", "N", m, n, m, &c_b84, &work[ivt], &ldwkvt, &vt[
 | |
| 			vt_offset], ldvt, &c_b63, &a[a_offset], lda);
 | |
| 
 | |
| /*              Copy right singular vectors of A from A to VT */
 | |
| 
 | |
| 		slacpy_("F", m, n, &a[a_offset], lda, &vt[vt_offset], ldvt);
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*           N .LT. MNTHR */
 | |
| 
 | |
| /*           Path 5t (N > M, but not much larger) */
 | |
| /*           Reduce to bidiagonal form without LQ decomposition */
 | |
| 
 | |
| 	    ie = 1;
 | |
| 	    itauq = ie + *m;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    nwork = itaup + *m;
 | |
| 
 | |
| /*           Bidiagonalize A */
 | |
| /*           Workspace: need   3*M [e, tauq, taup] + N        [work] */
 | |
| /*           Workspace: prefer 3*M [e, tauq, taup] + (M+N)*NB [work] */
 | |
| 
 | |
| 	    i__2 = *lwork - nwork + 1;
 | |
| 	    sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
 | |
| 		    work[itaup], &work[nwork], &i__2, &ierr);
 | |
| 	    if (wntqn) {
 | |
| 
 | |
| /*              Path 5tn (N > M, JOBZ='N') */
 | |
| /*              Perform bidiagonal SVD, only computing singular values */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("L", "N", m, &s[1], &work[ie], dum, &c__1, dum, &c__1,
 | |
| 			 dum, idum, &work[nwork], &iwork[1], info);
 | |
| 	    } else if (wntqo) {
 | |
| /*              Path 5to (N > M, JOBZ='O') */
 | |
| 		ldwkvt = *m;
 | |
| 		ivt = nwork;
 | |
| 		if (*lwork >= *m * *n + *m * 3 + bdspac) {
 | |
| 
 | |
| /*                 WORK( IVT ) is M by N */
 | |
| 
 | |
| 		    slaset_("F", m, n, &c_b63, &c_b63, &work[ivt], &ldwkvt);
 | |
| 		    nwork = ivt + ldwkvt * *n;
 | |
| /*                 IL is unused; silence compile warnings */
 | |
| 		    il = -1;
 | |
| 		} else {
 | |
| 
 | |
| /*                 WORK( IVT ) is M by M */
 | |
| 
 | |
| 		    nwork = ivt + ldwkvt * *m;
 | |
| 		    il = nwork;
 | |
| 
 | |
| /*                 WORK(IL) is M by CHUNK */
 | |
| 
 | |
| 		    chunk = (*lwork - *m * *m - *m * 3) / *m;
 | |
| 		}
 | |
| 
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in WORK(IVT) */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + M*M [VT] + BDSPAC */
 | |
| 
 | |
| 		sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &
 | |
| 			work[ivt], &ldwkvt, dum, idum, &work[nwork], &iwork[1]
 | |
| 			, info);
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of A */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + M*M [VT] + M    [work] */
 | |
| /*              Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
 | |
| 
 | |
| 		i__2 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__2, &ierr);
 | |
| 
 | |
| 		if (*lwork >= *m * *n + *m * 3 + bdspac) {
 | |
| 
 | |
| /*                 Path 5to-fast */
 | |
| /*                 Overwrite WORK(IVT) by left singular vectors of A */
 | |
| /*                 Workspace: need   3*M [e, tauq, taup] + M*N [VT] + M    [work] */
 | |
| /*                 Workspace: prefer 3*M [e, tauq, taup] + M*N [VT] + M*NB [work] */
 | |
| 
 | |
| 		    i__2 = *lwork - nwork + 1;
 | |
| 		    sormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
 | |
| 			    itaup], &work[ivt], &ldwkvt, &work[nwork], &i__2, 
 | |
| 			    &ierr);
 | |
| 
 | |
| /*                 Copy right singular vectors of A from WORK(IVT) to A */
 | |
| 
 | |
| 		    slacpy_("F", m, n, &work[ivt], &ldwkvt, &a[a_offset], lda);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Path 5to-slow */
 | |
| /*                 Generate P**T in A */
 | |
| /*                 Workspace: need   3*M [e, tauq, taup] + M*M [VT] + M    [work] */
 | |
| /*                 Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*NB [work] */
 | |
| 
 | |
| 		    i__2 = *lwork - nwork + 1;
 | |
| 		    sorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &
 | |
| 			    work[nwork], &i__2, &ierr);
 | |
| 
 | |
| /*                 Multiply Q in A by right singular vectors of */
 | |
| /*                 bidiagonal matrix in WORK(IVT), storing result in */
 | |
| /*                 WORK(IL) and copying to A */
 | |
| /*                 Workspace: need   3*M [e, tauq, taup] + M*M [VT] + M*NB [L] */
 | |
| /*                 Workspace: prefer 3*M [e, tauq, taup] + M*M [VT] + M*N  [L] */
 | |
| 
 | |
| 		    i__2 = *n;
 | |
| 		    i__1 = chunk;
 | |
| 		    for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ +=
 | |
| 			     i__1) {
 | |
| /* Computing MIN */
 | |
| 			i__3 = *n - i__ + 1;
 | |
| 			blk = f2cmin(i__3,chunk);
 | |
| 			sgemm_("N", "N", m, &blk, m, &c_b84, &work[ivt], &
 | |
| 				ldwkvt, &a[i__ * a_dim1 + 1], lda, &c_b63, &
 | |
| 				work[il], m);
 | |
| 			slacpy_("F", m, &blk, &work[il], m, &a[i__ * a_dim1 + 
 | |
| 				1], lda);
 | |
| /* L40: */
 | |
| 		    }
 | |
| 		}
 | |
| 	    } else if (wntqs) {
 | |
| 
 | |
| /*              Path 5ts (N > M, JOBZ='S') */
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		slaset_("F", m, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
 | |
| 		sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of A and VT */
 | |
| /*              by right singular vectors of A */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + M    [work] */
 | |
| /*              Workspace: prefer 3*M [e, tauq, taup] + M*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", m, n, m, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
 | |
| 			ierr);
 | |
| 	    } else if (wntqa) {
 | |
| 
 | |
| /*              Path 5ta (N > M, JOBZ='A') */
 | |
| /*              Perform bidiagonal SVD, computing left singular vectors */
 | |
| /*              of bidiagonal matrix in U and computing right singular */
 | |
| /*              vectors of bidiagonal matrix in VT */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + BDSPAC */
 | |
| 
 | |
| 		slaset_("F", n, n, &c_b63, &c_b63, &vt[vt_offset], ldvt);
 | |
| 		sbdsdc_("L", "I", m, &s[1], &work[ie], &u[u_offset], ldu, &vt[
 | |
| 			vt_offset], ldvt, dum, idum, &work[nwork], &iwork[1], 
 | |
| 			info);
 | |
| 
 | |
| /*              Set the right corner of VT to identity matrix */
 | |
| 
 | |
| 		if (*n > *m) {
 | |
| 		    i__1 = *n - *m;
 | |
| 		    i__2 = *n - *m;
 | |
| 		    slaset_("F", &i__1, &i__2, &c_b63, &c_b84, &vt[*m + 1 + (*
 | |
| 			    m + 1) * vt_dim1], ldvt);
 | |
| 		}
 | |
| 
 | |
| /*              Overwrite U by left singular vectors of A and VT */
 | |
| /*              by right singular vectors of A */
 | |
| /*              Workspace: need   3*M [e, tauq, taup] + N    [work] */
 | |
| /*              Workspace: prefer 3*M [e, tauq, taup] + N*NB [work] */
 | |
| 
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("Q", "L", "N", m, m, n, &a[a_offset], lda, &work[
 | |
| 			itauq], &u[u_offset], ldu, &work[nwork], &i__1, &ierr);
 | |
| 		i__1 = *lwork - nwork + 1;
 | |
| 		sormbr_("P", "R", "T", n, n, m, &a[a_offset], lda, &work[
 | |
| 			itaup], &vt[vt_offset], ldvt, &work[nwork], &i__1, &
 | |
| 			ierr);
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling if necessary */
 | |
| 
 | |
|     if (iscl == 1) {
 | |
| 	if (anrm > bignum) {
 | |
| 	    slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		    minmn, &ierr);
 | |
| 	}
 | |
| 	if (anrm < smlnum) {
 | |
| 	    slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		    minmn, &ierr);
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Return optimal workspace in WORK(1) */
 | |
| 
 | |
|     work[1] = (real) maxwrk;
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SGESDD */
 | |
| 
 | |
| } /* sgesdd_ */
 | |
| 
 |