1272 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1272 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c_n1 = -1;
 | |
| static integer c__0 = 0;
 | |
| static integer c__1 = 1;
 | |
| 
 | |
| /* > \brief \b SGERFSX */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGERFSX + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgerfsx
 | |
| .f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgerfsx
 | |
| .f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgerfsx
 | |
| .f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGERFSX( TRANS, EQUED, N, NRHS, A, LDA, AF, LDAF, IPIV, */
 | |
| /*                           R, C, B, LDB, X, LDX, RCOND, BERR, N_ERR_BNDS, */
 | |
| /*                           ERR_BNDS_NORM, ERR_BNDS_COMP, NPARAMS, PARAMS, */
 | |
| /*                           WORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       CHARACTER          TRANS, EQUED */
 | |
| /*       INTEGER            INFO, LDA, LDAF, LDB, LDX, N, NRHS, NPARAMS, */
 | |
| /*      $                   N_ERR_BNDS */
 | |
| /*       REAL               RCOND */
 | |
| /*       INTEGER            IPIV( * ), IWORK( * ) */
 | |
| /*       REAL               A( LDA, * ), AF( LDAF, * ), B( LDB, * ), */
 | |
| /*      $                   X( LDX , * ), WORK( * ) */
 | |
| /*       REAL               R( * ), C( * ), PARAMS( * ), BERR( * ), */
 | |
| /*      $                   ERR_BNDS_NORM( NRHS, * ), */
 | |
| /*      $                   ERR_BNDS_COMP( NRHS, * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >    SGERFSX improves the computed solution to a system of linear */
 | |
| /* >    equations and provides error bounds and backward error estimates */
 | |
| /* >    for the solution.  In addition to normwise error bound, the code */
 | |
| /* >    provides maximum componentwise error bound if possible.  See */
 | |
| /* >    comments for ERR_BNDS_NORM and ERR_BNDS_COMP for details of the */
 | |
| /* >    error bounds. */
 | |
| /* > */
 | |
| /* >    The original system of linear equations may have been equilibrated */
 | |
| /* >    before calling this routine, as described by arguments EQUED, R */
 | |
| /* >    and C below. In this case, the solution and error bounds returned */
 | |
| /* >    are for the original unequilibrated system. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \verbatim */
 | |
| /* >     Some optional parameters are bundled in the PARAMS array.  These */
 | |
| /* >     settings determine how refinement is performed, but often the */
 | |
| /* >     defaults are acceptable.  If the defaults are acceptable, users */
 | |
| /* >     can pass NPARAMS = 0 which prevents the source code from accessing */
 | |
| /* >     the PARAMS argument. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] TRANS */
 | |
| /* > \verbatim */
 | |
| /* >          TRANS is CHARACTER*1 */
 | |
| /* >     Specifies the form of the system of equations: */
 | |
| /* >       = 'N':  A * X = B     (No transpose) */
 | |
| /* >       = 'T':  A**T * X = B  (Transpose) */
 | |
| /* >       = 'C':  A**H * X = B  (Conjugate transpose = Transpose) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] EQUED */
 | |
| /* > \verbatim */
 | |
| /* >          EQUED is CHARACTER*1 */
 | |
| /* >     Specifies the form of equilibration that was done to A */
 | |
| /* >     before calling this routine. This is needed to compute */
 | |
| /* >     the solution and error bounds correctly. */
 | |
| /* >       = 'N':  No equilibration */
 | |
| /* >       = 'R':  Row equilibration, i.e., A has been premultiplied by */
 | |
| /* >               diag(R). */
 | |
| /* >       = 'C':  Column equilibration, i.e., A has been postmultiplied */
 | |
| /* >               by diag(C). */
 | |
| /* >       = 'B':  Both row and column equilibration, i.e., A has been */
 | |
| /* >               replaced by diag(R) * A * diag(C). */
 | |
| /* >               The right hand side B has been changed accordingly. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >     The order of the matrix A.  N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >     The number of right hand sides, i.e., the number of columns */
 | |
| /* >     of the matrices B and X.  NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,N) */
 | |
| /* >     The original N-by-N matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >     The leading dimension of the array A.  LDA >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] AF */
 | |
| /* > \verbatim */
 | |
| /* >          AF is REAL array, dimension (LDAF,N) */
 | |
| /* >     The factors L and U from the factorization A = P*L*U */
 | |
| /* >     as computed by SGETRF. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDAF */
 | |
| /* > \verbatim */
 | |
| /* >          LDAF is INTEGER */
 | |
| /* >     The leading dimension of the array AF.  LDAF >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] IPIV */
 | |
| /* > \verbatim */
 | |
| /* >          IPIV is INTEGER array, dimension (N) */
 | |
| /* >     The pivot indices from SGETRF; for 1<=i<=N, row i of the */
 | |
| /* >     matrix was interchanged with row IPIV(i). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] R */
 | |
| /* > \verbatim */
 | |
| /* >          R is REAL array, dimension (N) */
 | |
| /* >     The row scale factors for A.  If EQUED = 'R' or 'B', A is */
 | |
| /* >     multiplied on the left by diag(R); if EQUED = 'N' or 'C', R */
 | |
| /* >     is not accessed. */
 | |
| /* >     If R is accessed, each element of R should be a power of the radix */
 | |
| /* >     to ensure a reliable solution and error estimates. Scaling by */
 | |
| /* >     powers of the radix does not cause rounding errors unless the */
 | |
| /* >     result underflows or overflows. Rounding errors during scaling */
 | |
| /* >     lead to refining with a matrix that is not equivalent to the */
 | |
| /* >     input matrix, producing error estimates that may not be */
 | |
| /* >     reliable. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] C */
 | |
| /* > \verbatim */
 | |
| /* >          C is REAL array, dimension (N) */
 | |
| /* >     The column scale factors for A.  If EQUED = 'C' or 'B', A is */
 | |
| /* >     multiplied on the right by diag(C); if EQUED = 'N' or 'R', C */
 | |
| /* >     is not accessed. */
 | |
| /* >     If C is accessed, each element of C should be a power of the radix */
 | |
| /* >     to ensure a reliable solution and error estimates. Scaling by */
 | |
| /* >     powers of the radix does not cause rounding errors unless the */
 | |
| /* >     result underflows or overflows. Rounding errors during scaling */
 | |
| /* >     lead to refining with a matrix that is not equivalent to the */
 | |
| /* >     input matrix, producing error estimates that may not be */
 | |
| /* >     reliable. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB,NRHS) */
 | |
| /* >     The right hand side matrix B. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >     The leading dimension of the array B.  LDB >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] X */
 | |
| /* > \verbatim */
 | |
| /* >          X is REAL array, dimension (LDX,NRHS) */
 | |
| /* >     On entry, the solution matrix X, as computed by SGETRS. */
 | |
| /* >     On exit, the improved solution matrix X. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDX */
 | |
| /* > \verbatim */
 | |
| /* >          LDX is INTEGER */
 | |
| /* >     The leading dimension of the array X.  LDX >= f2cmax(1,N). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RCOND */
 | |
| /* > \verbatim */
 | |
| /* >          RCOND is REAL */
 | |
| /* >     Reciprocal scaled condition number.  This is an estimate of the */
 | |
| /* >     reciprocal Skeel condition number of the matrix A after */
 | |
| /* >     equilibration (if done).  If this is less than the machine */
 | |
| /* >     precision (in particular, if it is zero), the matrix is singular */
 | |
| /* >     to working precision.  Note that the error may still be small even */
 | |
| /* >     if this number is very small and the matrix appears ill- */
 | |
| /* >     conditioned. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] BERR */
 | |
| /* > \verbatim */
 | |
| /* >          BERR is REAL array, dimension (NRHS) */
 | |
| /* >     Componentwise relative backward error.  This is the */
 | |
| /* >     componentwise relative backward error of each solution vector X(j) */
 | |
| /* >     (i.e., the smallest relative change in any element of A or B that */
 | |
| /* >     makes X(j) an exact solution). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N_ERR_BNDS */
 | |
| /* > \verbatim */
 | |
| /* >          N_ERR_BNDS is INTEGER */
 | |
| /* >     Number of error bounds to return for each right hand side */
 | |
| /* >     and each type (normwise or componentwise).  See ERR_BNDS_NORM and */
 | |
| /* >     ERR_BNDS_COMP below. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ERR_BNDS_NORM */
 | |
| /* > \verbatim */
 | |
| /* >          ERR_BNDS_NORM is REAL array, dimension (NRHS, N_ERR_BNDS) */
 | |
| /* >     For each right-hand side, this array contains information about */
 | |
| /* >     various error bounds and condition numbers corresponding to the */
 | |
| /* >     normwise relative error, which is defined as follows: */
 | |
| /* > */
 | |
| /* >     Normwise relative error in the ith solution vector: */
 | |
| /* >             max_j (abs(XTRUE(j,i) - X(j,i))) */
 | |
| /* >            ------------------------------ */
 | |
| /* >                  max_j abs(X(j,i)) */
 | |
| /* > */
 | |
| /* >     The array is indexed by the type of error information as described */
 | |
| /* >     below. There currently are up to three pieces of information */
 | |
| /* >     returned. */
 | |
| /* > */
 | |
| /* >     The first index in ERR_BNDS_NORM(i,:) corresponds to the ith */
 | |
| /* >     right-hand side. */
 | |
| /* > */
 | |
| /* >     The second index in ERR_BNDS_NORM(:,err) contains the following */
 | |
| /* >     three fields: */
 | |
| /* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | |
| /* >              reciprocal condition number is less than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). */
 | |
| /* > */
 | |
| /* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | |
| /* >              almost certainly within a factor of 10 of the true error */
 | |
| /* >              so long as the next entry is greater than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | |
| /* >              be trusted if the previous boolean is true. */
 | |
| /* > */
 | |
| /* >     err = 3  Reciprocal condition number: Estimated normwise */
 | |
| /* >              reciprocal condition number.  Compared with the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | |
| /* >              estimate is "guaranteed". These reciprocal condition */
 | |
| /* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | |
| /* >              appropriately scaled matrix Z. */
 | |
| /* >              Let Z = S*A, where S scales each row by a power of the */
 | |
| /* >              radix so all absolute row sums of Z are approximately 1. */
 | |
| /* > */
 | |
| /* >     See Lapack Working Note 165 for further details and extra */
 | |
| /* >     cautions. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] ERR_BNDS_COMP */
 | |
| /* > \verbatim */
 | |
| /* >          ERR_BNDS_COMP is REAL array, dimension (NRHS, N_ERR_BNDS) */
 | |
| /* >     For each right-hand side, this array contains information about */
 | |
| /* >     various error bounds and condition numbers corresponding to the */
 | |
| /* >     componentwise relative error, which is defined as follows: */
 | |
| /* > */
 | |
| /* >     Componentwise relative error in the ith solution vector: */
 | |
| /* >                    abs(XTRUE(j,i) - X(j,i)) */
 | |
| /* >             max_j ---------------------- */
 | |
| /* >                         abs(X(j,i)) */
 | |
| /* > */
 | |
| /* >     The array is indexed by the right-hand side i (on which the */
 | |
| /* >     componentwise relative error depends), and the type of error */
 | |
| /* >     information as described below. There currently are up to three */
 | |
| /* >     pieces of information returned for each right-hand side. If */
 | |
| /* >     componentwise accuracy is not requested (PARAMS(3) = 0.0), then */
 | |
| /* >     ERR_BNDS_COMP is not accessed.  If N_ERR_BNDS < 3, then at most */
 | |
| /* >     the first (:,N_ERR_BNDS) entries are returned. */
 | |
| /* > */
 | |
| /* >     The first index in ERR_BNDS_COMP(i,:) corresponds to the ith */
 | |
| /* >     right-hand side. */
 | |
| /* > */
 | |
| /* >     The second index in ERR_BNDS_COMP(:,err) contains the following */
 | |
| /* >     three fields: */
 | |
| /* >     err = 1 "Trust/don't trust" boolean. Trust the answer if the */
 | |
| /* >              reciprocal condition number is less than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). */
 | |
| /* > */
 | |
| /* >     err = 2 "Guaranteed" error bound: The estimated forward error, */
 | |
| /* >              almost certainly within a factor of 10 of the true error */
 | |
| /* >              so long as the next entry is greater than the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon'). This error bound should only */
 | |
| /* >              be trusted if the previous boolean is true. */
 | |
| /* > */
 | |
| /* >     err = 3  Reciprocal condition number: Estimated componentwise */
 | |
| /* >              reciprocal condition number.  Compared with the threshold */
 | |
| /* >              sqrt(n) * slamch('Epsilon') to determine if the error */
 | |
| /* >              estimate is "guaranteed". These reciprocal condition */
 | |
| /* >              numbers are 1 / (norm(Z^{-1},inf) * norm(Z,inf)) for some */
 | |
| /* >              appropriately scaled matrix Z. */
 | |
| /* >              Let Z = S*(A*diag(x)), where x is the solution for the */
 | |
| /* >              current right-hand side and S scales each row of */
 | |
| /* >              A*diag(x) by a power of the radix so all absolute row */
 | |
| /* >              sums of Z are approximately 1. */
 | |
| /* > */
 | |
| /* >     See Lapack Working Note 165 for further details and extra */
 | |
| /* >     cautions. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NPARAMS */
 | |
| /* > \verbatim */
 | |
| /* >          NPARAMS is INTEGER */
 | |
| /* >     Specifies the number of parameters set in PARAMS.  If <= 0, the */
 | |
| /* >     PARAMS array is never referenced and default values are used. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] PARAMS */
 | |
| /* > \verbatim */
 | |
| /* >          PARAMS is REAL array, dimension NPARAMS */
 | |
| /* >     Specifies algorithm parameters.  If an entry is < 0.0, then */
 | |
| /* >     that entry will be filled with default value used for that */
 | |
| /* >     parameter.  Only positions up to NPARAMS are accessed; defaults */
 | |
| /* >     are used for higher-numbered parameters. */
 | |
| /* > */
 | |
| /* >       PARAMS(LA_LINRX_ITREF_I = 1) : Whether to perform iterative */
 | |
| /* >            refinement or not. */
 | |
| /* >         Default: 1.0 */
 | |
| /* >            = 0.0:  No refinement is performed, and no error bounds are */
 | |
| /* >                    computed. */
 | |
| /* >            = 1.0:  Use the double-precision refinement algorithm, */
 | |
| /* >                    possibly with doubled-single computations if the */
 | |
| /* >                    compilation environment does not support DOUBLE */
 | |
| /* >                    PRECISION. */
 | |
| /* >              (other values are reserved for future use) */
 | |
| /* > */
 | |
| /* >       PARAMS(LA_LINRX_ITHRESH_I = 2) : Maximum number of residual */
 | |
| /* >            computations allowed for refinement. */
 | |
| /* >         Default: 10 */
 | |
| /* >         Aggressive: Set to 100 to permit convergence using approximate */
 | |
| /* >                     factorizations or factorizations other than LU. If */
 | |
| /* >                     the factorization uses a technique other than */
 | |
| /* >                     Gaussian elimination, the guarantees in */
 | |
| /* >                     err_bnds_norm and err_bnds_comp may no longer be */
 | |
| /* >                     trustworthy. */
 | |
| /* > */
 | |
| /* >       PARAMS(LA_LINRX_CWISE_I = 3) : Flag determining if the code */
 | |
| /* >            will attempt to find a solution with small componentwise */
 | |
| /* >            relative error in the double-precision algorithm.  Positive */
 | |
| /* >            is true, 0.0 is false. */
 | |
| /* >         Default: 1.0 (attempt componentwise convergence) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (4*N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (N) */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >       = 0:  Successful exit. The solution to every right-hand side is */
 | |
| /* >         guaranteed. */
 | |
| /* >       < 0:  If INFO = -i, the i-th argument had an illegal value */
 | |
| /* >       > 0 and <= N:  U(INFO,INFO) is exactly zero.  The factorization */
 | |
| /* >         has been completed, but the factor U is exactly singular, so */
 | |
| /* >         the solution and error bounds could not be computed. RCOND = 0 */
 | |
| /* >         is returned. */
 | |
| /* >       = N+J: The solution corresponding to the Jth right-hand side is */
 | |
| /* >         not guaranteed. The solutions corresponding to other right- */
 | |
| /* >         hand sides K with K > J may not be guaranteed as well, but */
 | |
| /* >         only the first such right-hand side is reported. If a small */
 | |
| /* >         componentwise error is not requested (PARAMS(3) = 0.0) then */
 | |
| /* >         the Jth right-hand side is the first with a normwise error */
 | |
| /* >         bound that is not guaranteed (the smallest J such */
 | |
| /* >         that ERR_BNDS_NORM(J,1) = 0.0). By default (PARAMS(3) = 1.0) */
 | |
| /* >         the Jth right-hand side is the first with either a normwise or */
 | |
| /* >         componentwise error bound that is not guaranteed (the smallest */
 | |
| /* >         J such that either ERR_BNDS_NORM(J,1) = 0.0 or */
 | |
| /* >         ERR_BNDS_COMP(J,1) = 0.0). See the definition of */
 | |
| /* >         ERR_BNDS_NORM(:,1) and ERR_BNDS_COMP(:,1). To get information */
 | |
| /* >         about all of the right-hand sides check ERR_BNDS_NORM or */
 | |
| /* >         ERR_BNDS_COMP. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realGEcomputational */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sgerfsx_(char *trans, char *equed, integer *n, integer *
 | |
| 	nrhs, real *a, integer *lda, real *af, integer *ldaf, integer *ipiv, 
 | |
| 	real *r__, real *c__, real *b, integer *ldb, real *x, integer *ldx, 
 | |
| 	real *rcond, real *berr, integer *n_err_bnds__, real *err_bnds_norm__,
 | |
| 	 real *err_bnds_comp__, integer *nparams, real *params, real *work, 
 | |
| 	integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, af_dim1, af_offset, b_dim1, b_offset, x_dim1, 
 | |
| 	    x_offset, err_bnds_norm_dim1, err_bnds_norm_offset, 
 | |
| 	    err_bnds_comp_dim1, err_bnds_comp_offset, i__1;
 | |
|     real r__1, r__2;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real illrcond_thresh__, unstable_thresh__;
 | |
|     extern /* Subroutine */ void sla_gerfsx_extended_(integer *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, integer *, 
 | |
| 	    integer *, logical *, real *, real *, integer *, real *, integer *
 | |
| 	    , real *, integer *, real *, real *, real *, real *, real *, real 
 | |
| 	    *, real *, integer *, real *, real *, logical *, integer *);
 | |
|     real err_lbnd__;
 | |
|     char norm[1];
 | |
|     integer ref_type__;
 | |
|     extern integer ilatrans_(char *);
 | |
|     logical ignore_cwise__;
 | |
|     integer j;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     real anorm, rcond_tmp__;
 | |
|     integer prec_type__;
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern void sgecon_(
 | |
| 	    char *, integer *, real *, integer *, real *, real *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     logical colequ, notran, rowequ;
 | |
|     integer trans_type__;
 | |
|     extern integer ilaprec_(char *);
 | |
|     extern real sla_gercond_(char *, integer *, real *, integer *, real *, 
 | |
| 	    integer *, integer *, integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer ithresh, n_norms__;
 | |
|     real rthresh, cwise_wrong__;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Check the input parameters. */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     err_bnds_comp_dim1 = *nrhs;
 | |
|     err_bnds_comp_offset = 1 + err_bnds_comp_dim1 * 1;
 | |
|     err_bnds_comp__ -= err_bnds_comp_offset;
 | |
|     err_bnds_norm_dim1 = *nrhs;
 | |
|     err_bnds_norm_offset = 1 + err_bnds_norm_dim1 * 1;
 | |
|     err_bnds_norm__ -= err_bnds_norm_offset;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     af_dim1 = *ldaf;
 | |
|     af_offset = 1 + af_dim1 * 1;
 | |
|     af -= af_offset;
 | |
|     --ipiv;
 | |
|     --r__;
 | |
|     --c__;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     x_dim1 = *ldx;
 | |
|     x_offset = 1 + x_dim1 * 1;
 | |
|     x -= x_offset;
 | |
|     --berr;
 | |
|     --params;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     trans_type__ = ilatrans_(trans);
 | |
|     ref_type__ = 1;
 | |
|     if (*nparams >= 1) {
 | |
| 	if (params[1] < 0.f) {
 | |
| 	    params[1] = 1.f;
 | |
| 	} else {
 | |
| 	    ref_type__ = params[1];
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Set default parameters. */
 | |
| 
 | |
|     illrcond_thresh__ = (real) (*n) * slamch_("Epsilon");
 | |
|     ithresh = 10;
 | |
|     rthresh = .5f;
 | |
|     unstable_thresh__ = .25f;
 | |
|     ignore_cwise__ = FALSE_;
 | |
| 
 | |
|     if (*nparams >= 2) {
 | |
| 	if (params[2] < 0.f) {
 | |
| 	    params[2] = (real) ithresh;
 | |
| 	} else {
 | |
| 	    ithresh = (integer) params[2];
 | |
| 	}
 | |
|     }
 | |
|     if (*nparams >= 3) {
 | |
| 	if (params[3] < 0.f) {
 | |
| 	    if (ignore_cwise__) {
 | |
| 		params[3] = 0.f;
 | |
| 	    } else {
 | |
| 		params[3] = 1.f;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    ignore_cwise__ = params[3] == 0.f;
 | |
| 	}
 | |
|     }
 | |
|     if (ref_type__ == 0 || *n_err_bnds__ == 0) {
 | |
| 	n_norms__ = 0;
 | |
|     } else if (ignore_cwise__) {
 | |
| 	n_norms__ = 1;
 | |
|     } else {
 | |
| 	n_norms__ = 2;
 | |
|     }
 | |
| 
 | |
|     notran = lsame_(trans, "N");
 | |
|     rowequ = lsame_(equed, "R") || lsame_(equed, "B");
 | |
|     colequ = lsame_(equed, "C") || lsame_(equed, "B");
 | |
| 
 | |
| /*     Test input parameters. */
 | |
| 
 | |
|     if (trans_type__ == -1) {
 | |
| 	*info = -1;
 | |
|     } else if (! rowequ && ! colequ && ! lsame_(equed, "N")) {
 | |
| 	*info = -2;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -4;
 | |
|     } else if (*lda < f2cmax(1,*n)) {
 | |
| 	*info = -6;
 | |
|     } else if (*ldaf < f2cmax(1,*n)) {
 | |
| 	*info = -8;
 | |
|     } else if (*ldb < f2cmax(1,*n)) {
 | |
| 	*info = -13;
 | |
|     } else if (*ldx < f2cmax(1,*n)) {
 | |
| 	*info = -15;
 | |
|     }
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGERFSX", &i__1, (ftnlen)7);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible. */
 | |
| 
 | |
|     if (*n == 0 || *nrhs == 0) {
 | |
| 	*rcond = 1.f;
 | |
| 	i__1 = *nrhs;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    berr[j] = 0.f;
 | |
| 	    if (*n_err_bnds__ >= 1) {
 | |
| 		err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
 | |
| 		err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
 | |
| 	    }
 | |
| 	    if (*n_err_bnds__ >= 2) {
 | |
| 		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 0.f;
 | |
| 		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 0.f;
 | |
| 	    }
 | |
| 	    if (*n_err_bnds__ >= 3) {
 | |
| 		err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 1.f;
 | |
| 		err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 1.f;
 | |
| 	    }
 | |
| 	}
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Default to failure. */
 | |
| 
 | |
|     *rcond = 0.f;
 | |
|     i__1 = *nrhs;
 | |
|     for (j = 1; j <= i__1; ++j) {
 | |
| 	berr[j] = 1.f;
 | |
| 	if (*n_err_bnds__ >= 1) {
 | |
| 	    err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
 | |
| 	    err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
 | |
| 	}
 | |
| 	if (*n_err_bnds__ >= 2) {
 | |
| 	    err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
 | |
| 	    err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
 | |
| 	}
 | |
| 	if (*n_err_bnds__ >= 3) {
 | |
| 	    err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = 0.f;
 | |
| 	    err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = 0.f;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Compute the norm of A and the reciprocal of the condition */
 | |
| /*     number of A. */
 | |
| 
 | |
|     if (notran) {
 | |
| 	*(unsigned char *)norm = 'I';
 | |
|     } else {
 | |
| 	*(unsigned char *)norm = '1';
 | |
|     }
 | |
|     anorm = slange_(norm, n, n, &a[a_offset], lda, &work[1]);
 | |
|     sgecon_(norm, n, &af[af_offset], ldaf, &anorm, rcond, &work[1], &iwork[1],
 | |
| 	     info);
 | |
| 
 | |
| /*     Perform refinement on each right-hand side */
 | |
| 
 | |
|     if (ref_type__ != 0) {
 | |
| 	prec_type__ = ilaprec_("D");
 | |
| 	if (notran) {
 | |
| 	    sla_gerfsx_extended_(&prec_type__, &trans_type__, n, nrhs, &a[
 | |
| 		    a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &colequ, &
 | |
| 		    c__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], &
 | |
| 		    n_norms__, &err_bnds_norm__[err_bnds_norm_offset], &
 | |
| 		    err_bnds_comp__[err_bnds_comp_offset], &work[*n + 1], &
 | |
| 		    work[1], &work[(*n << 1) + 1], &work[1], rcond, &ithresh, 
 | |
| 		    &rthresh, &unstable_thresh__, &ignore_cwise__, info);
 | |
| 	} else {
 | |
| 	    sla_gerfsx_extended_(&prec_type__, &trans_type__, n, nrhs, &a[
 | |
| 		    a_offset], lda, &af[af_offset], ldaf, &ipiv[1], &rowequ, &
 | |
| 		    r__[1], &b[b_offset], ldb, &x[x_offset], ldx, &berr[1], &
 | |
| 		    n_norms__, &err_bnds_norm__[err_bnds_norm_offset], &
 | |
| 		    err_bnds_comp__[err_bnds_comp_offset], &work[*n + 1], &
 | |
| 		    work[1], &work[(*n << 1) + 1], &work[1], rcond, &ithresh, 
 | |
| 		    &rthresh, &unstable_thresh__, &ignore_cwise__, info);
 | |
| 	}
 | |
|     }
 | |
| /* Computing MAX */
 | |
|     r__1 = 10.f, r__2 = sqrt((real) (*n));
 | |
|     err_lbnd__ = f2cmax(r__1,r__2) * slamch_("Epsilon");
 | |
|     if (*n_err_bnds__ >= 1 && n_norms__ >= 1) {
 | |
| 
 | |
| /*     Compute scaled normwise condition number cond(A*C). */
 | |
| 
 | |
| 	if (colequ && notran) {
 | |
| 	    rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
 | |
| 		    af_offset], ldaf, &ipiv[1], &c_n1, &c__[1], info, &work[1]
 | |
| 		    , &iwork[1]);
 | |
| 	} else if (rowequ && ! notran) {
 | |
| 	    rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
 | |
| 		    af_offset], ldaf, &ipiv[1], &c_n1, &r__[1], info, &work[1]
 | |
| 		    , &iwork[1]);
 | |
| 	} else {
 | |
| 	    rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
 | |
| 		    af_offset], ldaf, &ipiv[1], &c__0, &r__[1], info, &work[1]
 | |
| 		    , &iwork[1]);
 | |
| 	}
 | |
| 	i__1 = *nrhs;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 
 | |
| /*     Cap the error at 1.0. */
 | |
| 
 | |
| 	    if (*n_err_bnds__ >= 2 && err_bnds_norm__[j + (err_bnds_norm_dim1 
 | |
| 		    << 1)] > 1.f) {
 | |
| 		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
 | |
| 	    }
 | |
| 
 | |
| /*     Threshold the error (see LAWN). */
 | |
| 
 | |
| 	    if (rcond_tmp__ < illrcond_thresh__) {
 | |
| 		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = 1.f;
 | |
| 		err_bnds_norm__[j + err_bnds_norm_dim1] = 0.f;
 | |
| 		if (*info <= *n) {
 | |
| 		    *info = *n + j;
 | |
| 		}
 | |
| 	    } else if (err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] < 
 | |
| 		    err_lbnd__) {
 | |
| 		err_bnds_norm__[j + (err_bnds_norm_dim1 << 1)] = err_lbnd__;
 | |
| 		err_bnds_norm__[j + err_bnds_norm_dim1] = 1.f;
 | |
| 	    }
 | |
| 
 | |
| /*     Save the condition number. */
 | |
| 
 | |
| 	    if (*n_err_bnds__ >= 3) {
 | |
| 		err_bnds_norm__[j + err_bnds_norm_dim1 * 3] = rcond_tmp__;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
|     if (*n_err_bnds__ >= 1 && n_norms__ >= 2) {
 | |
| 
 | |
| /*     Compute componentwise condition number cond(A*diag(Y(:,J))) for */
 | |
| /*     each right-hand side using the current solution as an estimate of */
 | |
| /*     the true solution.  If the componentwise error estimate is too */
 | |
| /*     large, then the solution is a lousy estimate of truth and the */
 | |
| /*     estimated RCOND may be too optimistic.  To avoid misleading users, */
 | |
| /*     the inverse condition number is set to 0.0 when the estimated */
 | |
| /*     cwise error is at least CWISE_WRONG. */
 | |
| 
 | |
| 	cwise_wrong__ = sqrt(slamch_("Epsilon"));
 | |
| 	i__1 = *nrhs;
 | |
| 	for (j = 1; j <= i__1; ++j) {
 | |
| 	    if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 
 | |
| 		    cwise_wrong__) {
 | |
| 		rcond_tmp__ = sla_gercond_(trans, n, &a[a_offset], lda, &af[
 | |
| 			af_offset], ldaf, &ipiv[1], &c__1, &x[j * x_dim1 + 1],
 | |
| 			 info, &work[1], &iwork[1]);
 | |
| 	    } else {
 | |
| 		rcond_tmp__ = 0.f;
 | |
| 	    }
 | |
| 
 | |
| /*     Cap the error at 1.0. */
 | |
| 
 | |
| 	    if (*n_err_bnds__ >= 2 && err_bnds_comp__[j + (err_bnds_comp_dim1 
 | |
| 		    << 1)] > 1.f) {
 | |
| 		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
 | |
| 	    }
 | |
| 
 | |
| /*     Threshold the error (see LAWN). */
 | |
| 
 | |
| 	    if (rcond_tmp__ < illrcond_thresh__) {
 | |
| 		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = 1.f;
 | |
| 		err_bnds_comp__[j + err_bnds_comp_dim1] = 0.f;
 | |
| 		if (params[3] == 1.f && *info < *n + j) {
 | |
| 		    *info = *n + j;
 | |
| 		}
 | |
| 	    } else if (err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] < 
 | |
| 		    err_lbnd__) {
 | |
| 		err_bnds_comp__[j + (err_bnds_comp_dim1 << 1)] = err_lbnd__;
 | |
| 		err_bnds_comp__[j + err_bnds_comp_dim1] = 1.f;
 | |
| 	    }
 | |
| 
 | |
| /*     Save the condition number. */
 | |
| 
 | |
| 	    if (*n_err_bnds__ >= 3) {
 | |
| 		err_bnds_comp__[j + err_bnds_comp_dim1 * 3] = rcond_tmp__;
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     return;
 | |
| 
 | |
| /*     End of SGERFSX */
 | |
| 
 | |
| } /* sgerfsx_ */
 | |
| 
 |