1433 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			1433 lines
		
	
	
		
			42 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__6 = 6;
 | |
| static integer c_n1 = -1;
 | |
| static integer c__1 = 1;
 | |
| static integer c__0 = 0;
 | |
| static real c_b50 = 0.f;
 | |
| static real c_b83 = 1.f;
 | |
| 
 | |
| /* > \brief <b> SGELSS solves overdetermined or underdetermined systems for GE matrices</b> */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGELSS + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgelss.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgelss.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgelss.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGELSS( M, N, NRHS, A, LDA, B, LDB, S, RCOND, RANK, */
 | |
| /*                          WORK, LWORK, INFO ) */
 | |
| 
 | |
| /*       INTEGER            INFO, LDA, LDB, LWORK, M, N, NRHS, RANK */
 | |
| /*       REAL               RCOND */
 | |
| /*       REAL               A( LDA, * ), B( LDB, * ), S( * ), WORK( * ) */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SGELSS computes the minimum norm solution to a real linear least */
 | |
| /* > squares problem: */
 | |
| /* > */
 | |
| /* > Minimize 2-norm(| b - A*x |). */
 | |
| /* > */
 | |
| /* > using the singular value decomposition (SVD) of A. A is an M-by-N */
 | |
| /* > matrix which may be rank-deficient. */
 | |
| /* > */
 | |
| /* > Several right hand side vectors b and solution vectors x can be */
 | |
| /* > handled in a single call; they are stored as the columns of the */
 | |
| /* > M-by-NRHS right hand side matrix B and the N-by-NRHS solution matrix */
 | |
| /* > X. */
 | |
| /* > */
 | |
| /* > The effective rank of A is determined by treating as zero those */
 | |
| /* > singular values which are less than RCOND times the largest singular */
 | |
| /* > value. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >          The number of rows of the matrix A. M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >          The number of columns of the matrix A. N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] NRHS */
 | |
| /* > \verbatim */
 | |
| /* >          NRHS is INTEGER */
 | |
| /* >          The number of right hand sides, i.e., the number of columns */
 | |
| /* >          of the matrices B and X. NRHS >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* >          On exit, the first f2cmin(m,n) rows of A are overwritten with */
 | |
| /* >          its right singular vectors, stored rowwise. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] B */
 | |
| /* > \verbatim */
 | |
| /* >          B is REAL array, dimension (LDB,NRHS) */
 | |
| /* >          On entry, the M-by-NRHS right hand side matrix B. */
 | |
| /* >          On exit, B is overwritten by the N-by-NRHS solution */
 | |
| /* >          matrix X.  If m >= n and RANK = n, the residual */
 | |
| /* >          sum-of-squares for the solution in the i-th column is given */
 | |
| /* >          by the sum of squares of elements n+1:m in that column. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDB */
 | |
| /* > \verbatim */
 | |
| /* >          LDB is INTEGER */
 | |
| /* >          The leading dimension of the array B. LDB >= f2cmax(1,f2cmax(M,N)). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] S */
 | |
| /* > \verbatim */
 | |
| /* >          S is REAL array, dimension (f2cmin(M,N)) */
 | |
| /* >          The singular values of A in decreasing order. */
 | |
| /* >          The condition number of A in the 2-norm = S(1)/S(f2cmin(m,n)). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] RCOND */
 | |
| /* > \verbatim */
 | |
| /* >          RCOND is REAL */
 | |
| /* >          RCOND is used to determine the effective rank of A. */
 | |
| /* >          Singular values S(i) <= RCOND*S(1) are treated as zero. */
 | |
| /* >          If RCOND < 0, machine precision is used instead. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] RANK */
 | |
| /* > \verbatim */
 | |
| /* >          RANK is INTEGER */
 | |
| /* >          The effective rank of A, i.e., the number of singular values */
 | |
| /* >          which are greater than RCOND*S(1). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (MAX(1,LWORK)) */
 | |
| /* >          On exit, if INFO = 0, WORK(1) returns the optimal LWORK. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          The dimension of the array WORK. LWORK >= 1, and also: */
 | |
| /* >          LWORK >= 3*f2cmin(M,N) + f2cmax( 2*f2cmin(M,N), f2cmax(M,N), NRHS ) */
 | |
| /* >          For good performance, LWORK should generally be larger. */
 | |
| /* > */
 | |
| /* >          If LWORK = -1, then a workspace query is assumed; the routine */
 | |
| /* >          only calculates the optimal size of the WORK array, returns */
 | |
| /* >          this value as the first entry of the WORK array, and no error */
 | |
| /* >          message related to LWORK is issued by XERBLA. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >          = 0:  successful exit */
 | |
| /* >          < 0:  if INFO = -i, the i-th argument had an illegal value. */
 | |
| /* >          > 0:  the algorithm for computing the SVD failed to converge; */
 | |
| /* >                if INFO = i, i off-diagonal elements of an intermediate */
 | |
| /* >                bidiagonal form did not converge to zero. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date December 2016 */
 | |
| 
 | |
| /* > \ingroup realGEsolve */
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sgelss_(integer *m, integer *n, integer *nrhs, real *a, 
 | |
| 	integer *lda, real *b, integer *ldb, real *s, real *rcond, integer *
 | |
| 	rank, real *work, integer *lwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, b_dim1, b_offset, i__1, i__2, i__3, i__4;
 | |
|     real r__1;
 | |
| 
 | |
|     /* Local variables */
 | |
|     real anrm, bnrm;
 | |
|     integer itau, lwork_sgebrd__, lwork_sgeqrf__, i__, lwork_sorgbr__, 
 | |
| 	    lwork_sormbr__, lwork_sormlq__, iascl, ibscl, lwork_sormqr__, 
 | |
| 	    chunk;
 | |
|     extern /* Subroutine */ void sgemm_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, real *, integer *, real *, integer *, real *, 
 | |
| 	    real *, integer *);
 | |
|     real sfmin;
 | |
|     integer minmn, maxmn;
 | |
|     extern /* Subroutine */ void sgemv_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, real *, integer *, real *, real *, integer *);
 | |
|     integer itaup, itauq;
 | |
|     extern /* Subroutine */ void srscl_(integer *, real *, real *, integer *);
 | |
|     integer mnthr, iwork;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer bl, ie, il;
 | |
|     extern /* Subroutine */ void slabad_(real *, real *);
 | |
|     integer mm, bdspac;
 | |
|     extern /* Subroutine */ void sgebrd_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, real *, real *, real *, integer *, integer *);
 | |
|     extern real slamch_(char *), slange_(char *, integer *, integer *,
 | |
| 	     real *, integer *, real *);
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     extern integer ilaenv_(integer *, char *, char *, integer *, integer *, 
 | |
| 	    integer *, integer *, ftnlen, ftnlen);
 | |
|     real bignum;
 | |
|     extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, integer *, integer *), slascl_(char *, integer 
 | |
| 	    *, integer *, real *, real *, integer *, integer *, real *, 
 | |
| 	    integer *, integer *), sgeqrf_(integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, integer *), slacpy_(char 
 | |
| 	    *, integer *, integer *, real *, integer *, real *, integer *), slaset_(char *, integer *, integer *, real *, real *, 
 | |
| 	    real *, integer *), sbdsqr_(char *, integer *, integer *, 
 | |
| 	    integer *, integer *, real *, real *, real *, integer *, real *, 
 | |
| 	    integer *, real *, integer *, real *, integer *), sorgbr_(
 | |
| 	    char *, integer *, integer *, integer *, real *, integer *, real *
 | |
| 	    , real *, integer *, integer *);
 | |
|     integer ldwork;
 | |
|     extern /* Subroutine */ void sormbr_(char *, char *, char *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, real *, integer *
 | |
| 	    , real *, integer *, integer *);
 | |
|     integer minwrk, maxwrk;
 | |
|     real smlnum;
 | |
|     extern /* Subroutine */ void sormlq_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     logical lquery;
 | |
|     extern /* Subroutine */ void sormqr_(char *, char *, integer *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, real *, integer *, real *, 
 | |
| 	    integer *, integer *);
 | |
|     real dum[1], eps, thr;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK driver routine (version 3.7.0) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     December 2016 */
 | |
| 
 | |
| 
 | |
| /*  ===================================================================== */
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     b_dim1 = *ldb;
 | |
|     b_offset = 1 + b_dim1 * 1;
 | |
|     b -= b_offset;
 | |
|     --s;
 | |
|     --work;
 | |
| 
 | |
|     /* Function Body */
 | |
|     *info = 0;
 | |
|     minmn = f2cmin(*m,*n);
 | |
|     maxmn = f2cmax(*m,*n);
 | |
|     lquery = *lwork == -1;
 | |
|     if (*m < 0) {
 | |
| 	*info = -1;
 | |
|     } else if (*n < 0) {
 | |
| 	*info = -2;
 | |
|     } else if (*nrhs < 0) {
 | |
| 	*info = -3;
 | |
|     } else if (*lda < f2cmax(1,*m)) {
 | |
| 	*info = -5;
 | |
|     } else if (*ldb < f2cmax(1,maxmn)) {
 | |
| 	*info = -7;
 | |
|     }
 | |
| 
 | |
| /*     Compute workspace */
 | |
| /*      (Note: Comments in the code beginning "Workspace:" describe the */
 | |
| /*       minimal amount of workspace needed at that point in the code, */
 | |
| /*       as well as the preferred amount for good performance. */
 | |
| /*       NB refers to the optimal block size for the immediately */
 | |
| /*       following subroutine, as returned by ILAENV.) */
 | |
| 
 | |
|     if (*info == 0) {
 | |
| 	minwrk = 1;
 | |
| 	maxwrk = 1;
 | |
| 	if (minmn > 0) {
 | |
| 	    mm = *m;
 | |
| 	    mnthr = ilaenv_(&c__6, "SGELSS", " ", m, n, nrhs, &c_n1, (ftnlen)
 | |
| 		    6, (ftnlen)1);
 | |
| 	    if (*m >= *n && *m >= mnthr) {
 | |
| 
 | |
| /*              Path 1a - overdetermined, with many more rows than */
 | |
| /*                        columns */
 | |
| 
 | |
| /*              Compute space needed for SGEQRF */
 | |
| 		sgeqrf_(m, n, &a[a_offset], lda, dum, dum, &c_n1, info);
 | |
| 		lwork_sgeqrf__ = dum[0];
 | |
| /*              Compute space needed for SORMQR */
 | |
| 		sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, dum, &b[
 | |
| 			b_offset], ldb, dum, &c_n1, info);
 | |
| 		lwork_sormqr__ = dum[0];
 | |
| 		mm = *n;
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n + lwork_sgeqrf__;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n + lwork_sormqr__;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| 	    }
 | |
| 	    if (*m >= *n) {
 | |
| 
 | |
| /*              Path 1 - overdetermined or exactly determined */
 | |
| 
 | |
| /*              Compute workspace needed for SBDSQR */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		i__1 = 1, i__2 = *n * 5;
 | |
| 		bdspac = f2cmax(i__1,i__2);
 | |
| /*              Compute space needed for SGEBRD */
 | |
| 		sgebrd_(&mm, n, &a[a_offset], lda, &s[1], dum, dum, dum, dum, 
 | |
| 			&c_n1, info);
 | |
| 		lwork_sgebrd__ = dum[0];
 | |
| /*              Compute space needed for SORMBR */
 | |
| 		sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, dum, &
 | |
| 			b[b_offset], ldb, dum, &c_n1, info);
 | |
| 		lwork_sormbr__ = dum[0];
 | |
| /*              Compute space needed for SORGBR */
 | |
| 		sorgbr_("P", n, n, n, &a[a_offset], lda, dum, dum, &c_n1, 
 | |
| 			info);
 | |
| 		lwork_sorgbr__ = dum[0];
 | |
| /*              Compute total workspace needed */
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n * 3 + lwork_sgebrd__;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n * 3 + lwork_sormbr__;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n * 3 + lwork_sorgbr__;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| 		maxwrk = f2cmax(maxwrk,bdspac);
 | |
| /* Computing MAX */
 | |
| 		i__1 = maxwrk, i__2 = *n * *nrhs;
 | |
| 		maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = *n * 3 + mm, i__2 = *n * 3 + *nrhs, i__1 = f2cmax(i__1,
 | |
| 			i__2);
 | |
| 		minwrk = f2cmax(i__1,bdspac);
 | |
| 		maxwrk = f2cmax(minwrk,maxwrk);
 | |
| 	    }
 | |
| 	    if (*n > *m) {
 | |
| 
 | |
| /*              Compute workspace needed for SBDSQR */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 		i__1 = 1, i__2 = *m * 5;
 | |
| 		bdspac = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		i__1 = *m * 3 + *nrhs, i__2 = *m * 3 + *n, i__1 = f2cmax(i__1,
 | |
| 			i__2);
 | |
| 		minwrk = f2cmax(i__1,bdspac);
 | |
| 		if (*n >= mnthr) {
 | |
| 
 | |
| /*                 Path 2a - underdetermined, with many more columns */
 | |
| /*                 than rows */
 | |
| 
 | |
| /*                 Compute space needed for SGEBRD */
 | |
| 		    sgebrd_(m, m, &a[a_offset], lda, &s[1], dum, dum, dum, 
 | |
| 			    dum, &c_n1, info);
 | |
| 		    lwork_sgebrd__ = dum[0];
 | |
| /*                 Compute space needed for SORMBR */
 | |
| 		    sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, dum,
 | |
| 			     &b[b_offset], ldb, dum, &c_n1, info);
 | |
| 		    lwork_sormbr__ = dum[0];
 | |
| /*                 Compute space needed for SORGBR */
 | |
| 		    sorgbr_("P", m, m, m, &a[a_offset], lda, dum, dum, &c_n1, 
 | |
| 			    info);
 | |
| 		    lwork_sorgbr__ = dum[0];
 | |
| /*                 Compute space needed for SORMLQ */
 | |
| 		    sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, dum, &b[
 | |
| 			    b_offset], ldb, dum, &c_n1, info);
 | |
| 		    lwork_sormlq__ = dum[0];
 | |
| /*                 Compute total workspace needed */
 | |
| 		    maxwrk = *m + *m * ilaenv_(&c__1, "SGELQF", " ", m, n, &
 | |
| 			    c_n1, &c_n1, (ftnlen)6, (ftnlen)1);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + 
 | |
| 			    lwork_sgebrd__;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + 
 | |
| 			    lwork_sormbr__;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + (*m << 2) + 
 | |
| 			    lwork_sorgbr__;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * *m + *m + bdspac;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    if (*nrhs > 1) {
 | |
| /* Computing MAX */
 | |
| 			i__1 = maxwrk, i__2 = *m * *m + *m + *m * *nrhs;
 | |
| 			maxwrk = f2cmax(i__1,i__2);
 | |
| 		    } else {
 | |
| /* Computing MAX */
 | |
| 			i__1 = maxwrk, i__2 = *m * *m + (*m << 1);
 | |
| 			maxwrk = f2cmax(i__1,i__2);
 | |
| 		    }
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m + lwork_sormlq__;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		} else {
 | |
| 
 | |
| /*                 Path 2 - underdetermined */
 | |
| 
 | |
| /*                 Compute space needed for SGEBRD */
 | |
| 		    sgebrd_(m, n, &a[a_offset], lda, &s[1], dum, dum, dum, 
 | |
| 			    dum, &c_n1, info);
 | |
| 		    lwork_sgebrd__ = dum[0];
 | |
| /*                 Compute space needed for SORMBR */
 | |
| 		    sormbr_("Q", "L", "T", m, nrhs, m, &a[a_offset], lda, dum,
 | |
| 			     &b[b_offset], ldb, dum, &c_n1, info);
 | |
| 		    lwork_sormbr__ = dum[0];
 | |
| /*                 Compute space needed for SORGBR */
 | |
| 		    sorgbr_("P", m, n, m, &a[a_offset], lda, dum, dum, &c_n1, 
 | |
| 			    info);
 | |
| 		    lwork_sorgbr__ = dum[0];
 | |
| 		    maxwrk = *m * 3 + lwork_sgebrd__;
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * 3 + lwork_sormbr__;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *m * 3 + lwork_sorgbr__;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		    maxwrk = f2cmax(maxwrk,bdspac);
 | |
| /* Computing MAX */
 | |
| 		    i__1 = maxwrk, i__2 = *n * *nrhs;
 | |
| 		    maxwrk = f2cmax(i__1,i__2);
 | |
| 		}
 | |
| 	    }
 | |
| 	    maxwrk = f2cmax(minwrk,maxwrk);
 | |
| 	}
 | |
| 	work[1] = (real) maxwrk;
 | |
| 
 | |
| 	if (*lwork < minwrk && ! lquery) {
 | |
| 	    *info = -12;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGELSS", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     } else if (lquery) {
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return if possible */
 | |
| 
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	*rank = 0;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Get machine parameters */
 | |
| 
 | |
|     eps = slamch_("P");
 | |
|     sfmin = slamch_("S");
 | |
|     smlnum = sfmin / eps;
 | |
|     bignum = 1.f / smlnum;
 | |
|     slabad_(&smlnum, &bignum);
 | |
| 
 | |
| /*     Scale A if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     anrm = slange_("M", m, n, &a[a_offset], lda, &work[1]);
 | |
|     iascl = 0;
 | |
|     if (anrm > 0.f && anrm < smlnum) {
 | |
| 
 | |
| /*        Scale matrix norm up to SMLNUM */
 | |
| 
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &smlnum, m, n, &a[a_offset], lda, 
 | |
| 		info);
 | |
| 	iascl = 1;
 | |
|     } else if (anrm > bignum) {
 | |
| 
 | |
| /*        Scale matrix norm down to BIGNUM */
 | |
| 
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &bignum, m, n, &a[a_offset], lda, 
 | |
| 		info);
 | |
| 	iascl = 2;
 | |
|     } else if (anrm == 0.f) {
 | |
| 
 | |
| /*        Matrix all zero. Return zero solution. */
 | |
| 
 | |
| 	i__1 = f2cmax(*m,*n);
 | |
| 	slaset_("F", &i__1, nrhs, &c_b50, &c_b50, &b[b_offset], ldb);
 | |
| 	slaset_("F", &minmn, &c__1, &c_b50, &c_b50, &s[1], &minmn);
 | |
| 	*rank = 0;
 | |
| 	goto L70;
 | |
|     }
 | |
| 
 | |
| /*     Scale B if f2cmax element outside range [SMLNUM,BIGNUM] */
 | |
| 
 | |
|     bnrm = slange_("M", m, nrhs, &b[b_offset], ldb, &work[1]);
 | |
|     ibscl = 0;
 | |
|     if (bnrm > 0.f && bnrm < smlnum) {
 | |
| 
 | |
| /*        Scale matrix norm up to SMLNUM */
 | |
| 
 | |
| 	slascl_("G", &c__0, &c__0, &bnrm, &smlnum, m, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	ibscl = 1;
 | |
|     } else if (bnrm > bignum) {
 | |
| 
 | |
| /*        Scale matrix norm down to BIGNUM */
 | |
| 
 | |
| 	slascl_("G", &c__0, &c__0, &bnrm, &bignum, m, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	ibscl = 2;
 | |
|     }
 | |
| 
 | |
| /*     Overdetermined case */
 | |
| 
 | |
|     if (*m >= *n) {
 | |
| 
 | |
| /*        Path 1 - overdetermined or exactly determined */
 | |
| 
 | |
| 	mm = *m;
 | |
| 	if (*m >= mnthr) {
 | |
| 
 | |
| /*           Path 1a - overdetermined, with many more rows than columns */
 | |
| 
 | |
| 	    mm = *n;
 | |
| 	    itau = 1;
 | |
| 	    iwork = itau + *n;
 | |
| 
 | |
| /*           Compute A=Q*R */
 | |
| /*           (Workspace: need 2*N, prefer N+N*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - iwork + 1;
 | |
| 	    sgeqrf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__1,
 | |
| 		     info);
 | |
| 
 | |
| /*           Multiply B by transpose(Q) */
 | |
| /*           (Workspace: need N+NRHS, prefer N+NRHS*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - iwork + 1;
 | |
| 	    sormqr_("L", "T", m, nrhs, n, &a[a_offset], lda, &work[itau], &b[
 | |
| 		    b_offset], ldb, &work[iwork], &i__1, info);
 | |
| 
 | |
| /*           Zero out below R */
 | |
| 
 | |
| 	    if (*n > 1) {
 | |
| 		i__1 = *n - 1;
 | |
| 		i__2 = *n - 1;
 | |
| 		slaset_("L", &i__1, &i__2, &c_b50, &c_b50, &a[a_dim1 + 2], 
 | |
| 			lda);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	ie = 1;
 | |
| 	itauq = ie + *n;
 | |
| 	itaup = itauq + *n;
 | |
| 	iwork = itaup + *n;
 | |
| 
 | |
| /*        Bidiagonalize R in A */
 | |
| /*        (Workspace: need 3*N+MM, prefer 3*N+(MM+N)*NB) */
 | |
| 
 | |
| 	i__1 = *lwork - iwork + 1;
 | |
| 	sgebrd_(&mm, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
 | |
| 		work[itaup], &work[iwork], &i__1, info);
 | |
| 
 | |
| /*        Multiply B by transpose of left bidiagonalizing vectors of R */
 | |
| /*        (Workspace: need 3*N+NRHS, prefer 3*N+NRHS*NB) */
 | |
| 
 | |
| 	i__1 = *lwork - iwork + 1;
 | |
| 	sormbr_("Q", "L", "T", &mm, nrhs, n, &a[a_offset], lda, &work[itauq], 
 | |
| 		&b[b_offset], ldb, &work[iwork], &i__1, info);
 | |
| 
 | |
| /*        Generate right bidiagonalizing vectors of R in A */
 | |
| /*        (Workspace: need 4*N-1, prefer 3*N+(N-1)*NB) */
 | |
| 
 | |
| 	i__1 = *lwork - iwork + 1;
 | |
| 	sorgbr_("P", n, n, n, &a[a_offset], lda, &work[itaup], &work[iwork], &
 | |
| 		i__1, info);
 | |
| 	iwork = ie + *n;
 | |
| 
 | |
| /*        Perform bidiagonal QR iteration */
 | |
| /*          multiply B by transpose of left singular vectors */
 | |
| /*          compute right singular vectors in A */
 | |
| /*        (Workspace: need BDSPAC) */
 | |
| 
 | |
| 	sbdsqr_("U", n, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset], lda, 
 | |
| 		dum, &c__1, &b[b_offset], ldb, &work[iwork], info);
 | |
| 	if (*info != 0) {
 | |
| 	    goto L70;
 | |
| 	}
 | |
| 
 | |
| /*        Multiply B by reciprocals of singular values */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	r__1 = *rcond * s[1];
 | |
| 	thr = f2cmax(r__1,sfmin);
 | |
| 	if (*rcond < 0.f) {
 | |
| /* Computing MAX */
 | |
| 	    r__1 = eps * s[1];
 | |
| 	    thr = f2cmax(r__1,sfmin);
 | |
| 	}
 | |
| 	*rank = 0;
 | |
| 	i__1 = *n;
 | |
| 	for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 	    if (s[i__] > thr) {
 | |
| 		srscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
 | |
| 		++(*rank);
 | |
| 	    } else {
 | |
| 		slaset_("F", &c__1, nrhs, &c_b50, &c_b50, &b[i__ + b_dim1], 
 | |
| 			ldb);
 | |
| 	    }
 | |
| /* L10: */
 | |
| 	}
 | |
| 
 | |
| /*        Multiply B by right singular vectors */
 | |
| /*        (Workspace: need N, prefer N*NRHS) */
 | |
| 
 | |
| 	if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
 | |
| 	    sgemm_("T", "N", n, nrhs, n, &c_b83, &a[a_offset], lda, &b[
 | |
| 		    b_offset], ldb, &c_b50, &work[1], ldb);
 | |
| 	    slacpy_("G", n, nrhs, &work[1], ldb, &b[b_offset], ldb)
 | |
| 		    ;
 | |
| 	} else if (*nrhs > 1) {
 | |
| 	    chunk = *lwork / *n;
 | |
| 	    i__1 = *nrhs;
 | |
| 	    i__2 = chunk;
 | |
| 	    for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += i__2) {
 | |
| /* Computing MIN */
 | |
| 		i__3 = *nrhs - i__ + 1;
 | |
| 		bl = f2cmin(i__3,chunk);
 | |
| 		sgemm_("T", "N", n, &bl, n, &c_b83, &a[a_offset], lda, &b[i__ 
 | |
| 			* b_dim1 + 1], ldb, &c_b50, &work[1], n);
 | |
| 		slacpy_("G", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], ldb);
 | |
| /* L20: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    sgemv_("T", n, n, &c_b83, &a[a_offset], lda, &b[b_offset], &c__1, 
 | |
| 		    &c_b50, &work[1], &c__1);
 | |
| 	    scopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
 | |
| 	}
 | |
| 
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__2 = *m, i__1 = (*m << 1) - 4, i__2 = f2cmax(i__2,i__1), i__2 = f2cmax(
 | |
| 		i__2,*nrhs), i__1 = *n - *m * 3;
 | |
| 	if (*n >= mnthr && *lwork >= (*m << 2) + *m * *m + f2cmax(i__2,i__1)) {
 | |
| 
 | |
| /*        Path 2a - underdetermined, with many more columns than rows */
 | |
| /*        and sufficient workspace for an efficient algorithm */
 | |
| 
 | |
| 	    ldwork = *m;
 | |
| /* Computing MAX */
 | |
| /* Computing MAX */
 | |
| 	    i__3 = *m, i__4 = (*m << 1) - 4, i__3 = f2cmax(i__3,i__4), i__3 = 
 | |
| 		    f2cmax(i__3,*nrhs), i__4 = *n - *m * 3;
 | |
| 	    i__2 = (*m << 2) + *m * *lda + f2cmax(i__3,i__4), i__1 = *m * *lda + 
 | |
| 		    *m + *m * *nrhs;
 | |
| 	    if (*lwork >= f2cmax(i__2,i__1)) {
 | |
| 		ldwork = *lda;
 | |
| 	    }
 | |
| 	    itau = 1;
 | |
| 	    iwork = *m + 1;
 | |
| 
 | |
| /*        Compute A=L*Q */
 | |
| /*        (Workspace: need 2*M, prefer M+M*NB) */
 | |
| 
 | |
| 	    i__2 = *lwork - iwork + 1;
 | |
| 	    sgelqf_(m, n, &a[a_offset], lda, &work[itau], &work[iwork], &i__2,
 | |
| 		     info);
 | |
| 	    il = iwork;
 | |
| 
 | |
| /*        Copy L to WORK(IL), zeroing out above it */
 | |
| 
 | |
| 	    slacpy_("L", m, m, &a[a_offset], lda, &work[il], &ldwork);
 | |
| 	    i__2 = *m - 1;
 | |
| 	    i__1 = *m - 1;
 | |
| 	    slaset_("U", &i__2, &i__1, &c_b50, &c_b50, &work[il + ldwork], &
 | |
| 		    ldwork);
 | |
| 	    ie = il + ldwork * *m;
 | |
| 	    itauq = ie + *m;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    iwork = itaup + *m;
 | |
| 
 | |
| /*        Bidiagonalize L in WORK(IL) */
 | |
| /*        (Workspace: need M*M+5*M, prefer M*M+4*M+2*M*NB) */
 | |
| 
 | |
| 	    i__2 = *lwork - iwork + 1;
 | |
| 	    sgebrd_(m, m, &work[il], &ldwork, &s[1], &work[ie], &work[itauq], 
 | |
| 		    &work[itaup], &work[iwork], &i__2, info);
 | |
| 
 | |
| /*        Multiply B by transpose of left bidiagonalizing vectors of L */
 | |
| /*        (Workspace: need M*M+4*M+NRHS, prefer M*M+4*M+NRHS*NB) */
 | |
| 
 | |
| 	    i__2 = *lwork - iwork + 1;
 | |
| 	    sormbr_("Q", "L", "T", m, nrhs, m, &work[il], &ldwork, &work[
 | |
| 		    itauq], &b[b_offset], ldb, &work[iwork], &i__2, info);
 | |
| 
 | |
| /*        Generate right bidiagonalizing vectors of R in WORK(IL) */
 | |
| /*        (Workspace: need M*M+5*M-1, prefer M*M+4*M+(M-1)*NB) */
 | |
| 
 | |
| 	    i__2 = *lwork - iwork + 1;
 | |
| 	    sorgbr_("P", m, m, m, &work[il], &ldwork, &work[itaup], &work[
 | |
| 		    iwork], &i__2, info);
 | |
| 	    iwork = ie + *m;
 | |
| 
 | |
| /*        Perform bidiagonal QR iteration, */
 | |
| /*           computing right singular vectors of L in WORK(IL) and */
 | |
| /*           multiplying B by transpose of left singular vectors */
 | |
| /*        (Workspace: need M*M+M+BDSPAC) */
 | |
| 
 | |
| 	    sbdsqr_("U", m, m, &c__0, nrhs, &s[1], &work[ie], &work[il], &
 | |
| 		    ldwork, &a[a_offset], lda, &b[b_offset], ldb, &work[iwork]
 | |
| 		    , info);
 | |
| 	    if (*info != 0) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 
 | |
| /*        Multiply B by reciprocals of singular values */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	    r__1 = *rcond * s[1];
 | |
| 	    thr = f2cmax(r__1,sfmin);
 | |
| 	    if (*rcond < 0.f) {
 | |
| /* Computing MAX */
 | |
| 		r__1 = eps * s[1];
 | |
| 		thr = f2cmax(r__1,sfmin);
 | |
| 	    }
 | |
| 	    *rank = 0;
 | |
| 	    i__2 = *m;
 | |
| 	    for (i__ = 1; i__ <= i__2; ++i__) {
 | |
| 		if (s[i__] > thr) {
 | |
| 		    srscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
 | |
| 		    ++(*rank);
 | |
| 		} else {
 | |
| 		    slaset_("F", &c__1, nrhs, &c_b50, &c_b50, &b[i__ + b_dim1]
 | |
| 			    , ldb);
 | |
| 		}
 | |
| /* L30: */
 | |
| 	    }
 | |
| 	    iwork = ie;
 | |
| 
 | |
| /*        Multiply B by right singular vectors of L in WORK(IL) */
 | |
| /*        (Workspace: need M*M+2*M, prefer M*M+M+M*NRHS) */
 | |
| 
 | |
| 	    if (*lwork >= *ldb * *nrhs + iwork - 1 && *nrhs > 1) {
 | |
| 		sgemm_("T", "N", m, nrhs, m, &c_b83, &work[il], &ldwork, &b[
 | |
| 			b_offset], ldb, &c_b50, &work[iwork], ldb);
 | |
| 		slacpy_("G", m, nrhs, &work[iwork], ldb, &b[b_offset], ldb);
 | |
| 	    } else if (*nrhs > 1) {
 | |
| 		chunk = (*lwork - iwork + 1) / *m;
 | |
| 		i__2 = *nrhs;
 | |
| 		i__1 = chunk;
 | |
| 		for (i__ = 1; i__1 < 0 ? i__ >= i__2 : i__ <= i__2; i__ += 
 | |
| 			i__1) {
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *nrhs - i__ + 1;
 | |
| 		    bl = f2cmin(i__3,chunk);
 | |
| 		    sgemm_("T", "N", m, &bl, m, &c_b83, &work[il], &ldwork, &
 | |
| 			    b[i__ * b_dim1 + 1], ldb, &c_b50, &work[iwork], m);
 | |
| 		    slacpy_("G", m, &bl, &work[iwork], m, &b[i__ * b_dim1 + 1]
 | |
| 			    , ldb);
 | |
| /* L40: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		sgemv_("T", m, m, &c_b83, &work[il], &ldwork, &b[b_dim1 + 1], 
 | |
| 			&c__1, &c_b50, &work[iwork], &c__1);
 | |
| 		scopy_(m, &work[iwork], &c__1, &b[b_dim1 + 1], &c__1);
 | |
| 	    }
 | |
| 
 | |
| /*        Zero out below first M rows of B */
 | |
| 
 | |
| 	    i__1 = *n - *m;
 | |
| 	    slaset_("F", &i__1, nrhs, &c_b50, &c_b50, &b[*m + 1 + b_dim1], 
 | |
| 		    ldb);
 | |
| 	    iwork = itau + *m;
 | |
| 
 | |
| /*        Multiply transpose(Q) by B */
 | |
| /*        (Workspace: need M+NRHS, prefer M+NRHS*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - iwork + 1;
 | |
| 	    sormlq_("L", "T", n, nrhs, m, &a[a_offset], lda, &work[itau], &b[
 | |
| 		    b_offset], ldb, &work[iwork], &i__1, info);
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*        Path 2 - remaining underdetermined cases */
 | |
| 
 | |
| 	    ie = 1;
 | |
| 	    itauq = ie + *m;
 | |
| 	    itaup = itauq + *m;
 | |
| 	    iwork = itaup + *m;
 | |
| 
 | |
| /*        Bidiagonalize A */
 | |
| /*        (Workspace: need 3*M+N, prefer 3*M+(M+N)*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - iwork + 1;
 | |
| 	    sgebrd_(m, n, &a[a_offset], lda, &s[1], &work[ie], &work[itauq], &
 | |
| 		    work[itaup], &work[iwork], &i__1, info);
 | |
| 
 | |
| /*        Multiply B by transpose of left bidiagonalizing vectors */
 | |
| /*        (Workspace: need 3*M+NRHS, prefer 3*M+NRHS*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - iwork + 1;
 | |
| 	    sormbr_("Q", "L", "T", m, nrhs, n, &a[a_offset], lda, &work[itauq]
 | |
| 		    , &b[b_offset], ldb, &work[iwork], &i__1, info);
 | |
| 
 | |
| /*        Generate right bidiagonalizing vectors in A */
 | |
| /*        (Workspace: need 4*M, prefer 3*M+M*NB) */
 | |
| 
 | |
| 	    i__1 = *lwork - iwork + 1;
 | |
| 	    sorgbr_("P", m, n, m, &a[a_offset], lda, &work[itaup], &work[
 | |
| 		    iwork], &i__1, info);
 | |
| 	    iwork = ie + *m;
 | |
| 
 | |
| /*        Perform bidiagonal QR iteration, */
 | |
| /*           computing right singular vectors of A in A and */
 | |
| /*           multiplying B by transpose of left singular vectors */
 | |
| /*        (Workspace: need BDSPAC) */
 | |
| 
 | |
| 	    sbdsqr_("L", m, n, &c__0, nrhs, &s[1], &work[ie], &a[a_offset], 
 | |
| 		    lda, dum, &c__1, &b[b_offset], ldb, &work[iwork], info);
 | |
| 	    if (*info != 0) {
 | |
| 		goto L70;
 | |
| 	    }
 | |
| 
 | |
| /*        Multiply B by reciprocals of singular values */
 | |
| 
 | |
| /* Computing MAX */
 | |
| 	    r__1 = *rcond * s[1];
 | |
| 	    thr = f2cmax(r__1,sfmin);
 | |
| 	    if (*rcond < 0.f) {
 | |
| /* Computing MAX */
 | |
| 		r__1 = eps * s[1];
 | |
| 		thr = f2cmax(r__1,sfmin);
 | |
| 	    }
 | |
| 	    *rank = 0;
 | |
| 	    i__1 = *m;
 | |
| 	    for (i__ = 1; i__ <= i__1; ++i__) {
 | |
| 		if (s[i__] > thr) {
 | |
| 		    srscl_(nrhs, &s[i__], &b[i__ + b_dim1], ldb);
 | |
| 		    ++(*rank);
 | |
| 		} else {
 | |
| 		    slaset_("F", &c__1, nrhs, &c_b50, &c_b50, &b[i__ + b_dim1]
 | |
| 			    , ldb);
 | |
| 		}
 | |
| /* L50: */
 | |
| 	    }
 | |
| 
 | |
| /*        Multiply B by right singular vectors of A */
 | |
| /*        (Workspace: need N, prefer N*NRHS) */
 | |
| 
 | |
| 	    if (*lwork >= *ldb * *nrhs && *nrhs > 1) {
 | |
| 		sgemm_("T", "N", n, nrhs, m, &c_b83, &a[a_offset], lda, &b[
 | |
| 			b_offset], ldb, &c_b50, &work[1], ldb);
 | |
| 		slacpy_("F", n, nrhs, &work[1], ldb, &b[b_offset], ldb);
 | |
| 	    } else if (*nrhs > 1) {
 | |
| 		chunk = *lwork / *n;
 | |
| 		i__1 = *nrhs;
 | |
| 		i__2 = chunk;
 | |
| 		for (i__ = 1; i__2 < 0 ? i__ >= i__1 : i__ <= i__1; i__ += 
 | |
| 			i__2) {
 | |
| /* Computing MIN */
 | |
| 		    i__3 = *nrhs - i__ + 1;
 | |
| 		    bl = f2cmin(i__3,chunk);
 | |
| 		    sgemm_("T", "N", n, &bl, m, &c_b83, &a[a_offset], lda, &b[
 | |
| 			    i__ * b_dim1 + 1], ldb, &c_b50, &work[1], n);
 | |
| 		    slacpy_("F", n, &bl, &work[1], n, &b[i__ * b_dim1 + 1], 
 | |
| 			    ldb);
 | |
| /* L60: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		sgemv_("T", m, n, &c_b83, &a[a_offset], lda, &b[b_offset], &
 | |
| 			c__1, &c_b50, &work[1], &c__1);
 | |
| 		scopy_(n, &work[1], &c__1, &b[b_offset], &c__1);
 | |
| 	    }
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Undo scaling */
 | |
| 
 | |
|     if (iascl == 1) {
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &smlnum, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	slascl_("G", &c__0, &c__0, &smlnum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		minmn, info);
 | |
|     } else if (iascl == 2) {
 | |
| 	slascl_("G", &c__0, &c__0, &anrm, &bignum, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
| 	slascl_("G", &c__0, &c__0, &bignum, &anrm, &minmn, &c__1, &s[1], &
 | |
| 		minmn, info);
 | |
|     }
 | |
|     if (ibscl == 1) {
 | |
| 	slascl_("G", &c__0, &c__0, &smlnum, &bnrm, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
|     } else if (ibscl == 2) {
 | |
| 	slascl_("G", &c__0, &c__0, &bignum, &bnrm, n, nrhs, &b[b_offset], ldb,
 | |
| 		 info);
 | |
|     }
 | |
| 
 | |
| L70:
 | |
|     work[1] = (real) maxwrk;
 | |
|     return;
 | |
| 
 | |
| /*     End of SGELSS */
 | |
| 
 | |
| } /* sgelss_ */
 | |
| 
 |