2804 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
			
		
		
	
	
			2804 lines
		
	
	
		
			91 KiB
		
	
	
	
		
			C
		
	
	
	
| #include <math.h>
 | |
| #include <stdlib.h>
 | |
| #include <string.h>
 | |
| #include <stdio.h>
 | |
| #include <complex.h>
 | |
| #ifdef complex
 | |
| #undef complex
 | |
| #endif
 | |
| #ifdef I
 | |
| #undef I
 | |
| #endif
 | |
| 
 | |
| #if defined(_WIN64)
 | |
| typedef long long BLASLONG;
 | |
| typedef unsigned long long BLASULONG;
 | |
| #else
 | |
| typedef long BLASLONG;
 | |
| typedef unsigned long BLASULONG;
 | |
| #endif
 | |
| 
 | |
| #ifdef LAPACK_ILP64
 | |
| typedef BLASLONG blasint;
 | |
| #if defined(_WIN64)
 | |
| #define blasabs(x) llabs(x)
 | |
| #else
 | |
| #define blasabs(x) labs(x)
 | |
| #endif
 | |
| #else
 | |
| typedef int blasint;
 | |
| #define blasabs(x) abs(x)
 | |
| #endif
 | |
| 
 | |
| typedef blasint integer;
 | |
| 
 | |
| typedef unsigned int uinteger;
 | |
| typedef char *address;
 | |
| typedef short int shortint;
 | |
| typedef float real;
 | |
| typedef double doublereal;
 | |
| typedef struct { real r, i; } complex;
 | |
| typedef struct { doublereal r, i; } doublecomplex;
 | |
| #ifdef _MSC_VER
 | |
| static inline _Fcomplex Cf(complex *z) {_Fcomplex zz={z->r , z->i}; return zz;}
 | |
| static inline _Dcomplex Cd(doublecomplex *z) {_Dcomplex zz={z->r , z->i};return zz;}
 | |
| static inline _Fcomplex * _pCf(complex *z) {return (_Fcomplex*)z;}
 | |
| static inline _Dcomplex * _pCd(doublecomplex *z) {return (_Dcomplex*)z;}
 | |
| #else
 | |
| static inline _Complex float Cf(complex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex double Cd(doublecomplex *z) {return z->r + z->i*_Complex_I;}
 | |
| static inline _Complex float * _pCf(complex *z) {return (_Complex float*)z;}
 | |
| static inline _Complex double * _pCd(doublecomplex *z) {return (_Complex double*)z;}
 | |
| #endif
 | |
| #define pCf(z) (*_pCf(z))
 | |
| #define pCd(z) (*_pCd(z))
 | |
| typedef int logical;
 | |
| typedef short int shortlogical;
 | |
| typedef char logical1;
 | |
| typedef char integer1;
 | |
| 
 | |
| #define TRUE_ (1)
 | |
| #define FALSE_ (0)
 | |
| 
 | |
| /* Extern is for use with -E */
 | |
| #ifndef Extern
 | |
| #define Extern extern
 | |
| #endif
 | |
| 
 | |
| /* I/O stuff */
 | |
| 
 | |
| typedef int flag;
 | |
| typedef int ftnlen;
 | |
| typedef int ftnint;
 | |
| 
 | |
| /*external read, write*/
 | |
| typedef struct
 | |
| {	flag cierr;
 | |
| 	ftnint ciunit;
 | |
| 	flag ciend;
 | |
| 	char *cifmt;
 | |
| 	ftnint cirec;
 | |
| } cilist;
 | |
| 
 | |
| /*internal read, write*/
 | |
| typedef struct
 | |
| {	flag icierr;
 | |
| 	char *iciunit;
 | |
| 	flag iciend;
 | |
| 	char *icifmt;
 | |
| 	ftnint icirlen;
 | |
| 	ftnint icirnum;
 | |
| } icilist;
 | |
| 
 | |
| /*open*/
 | |
| typedef struct
 | |
| {	flag oerr;
 | |
| 	ftnint ounit;
 | |
| 	char *ofnm;
 | |
| 	ftnlen ofnmlen;
 | |
| 	char *osta;
 | |
| 	char *oacc;
 | |
| 	char *ofm;
 | |
| 	ftnint orl;
 | |
| 	char *oblnk;
 | |
| } olist;
 | |
| 
 | |
| /*close*/
 | |
| typedef struct
 | |
| {	flag cerr;
 | |
| 	ftnint cunit;
 | |
| 	char *csta;
 | |
| } cllist;
 | |
| 
 | |
| /*rewind, backspace, endfile*/
 | |
| typedef struct
 | |
| {	flag aerr;
 | |
| 	ftnint aunit;
 | |
| } alist;
 | |
| 
 | |
| /* inquire */
 | |
| typedef struct
 | |
| {	flag inerr;
 | |
| 	ftnint inunit;
 | |
| 	char *infile;
 | |
| 	ftnlen infilen;
 | |
| 	ftnint	*inex;	/*parameters in standard's order*/
 | |
| 	ftnint	*inopen;
 | |
| 	ftnint	*innum;
 | |
| 	ftnint	*innamed;
 | |
| 	char	*inname;
 | |
| 	ftnlen	innamlen;
 | |
| 	char	*inacc;
 | |
| 	ftnlen	inacclen;
 | |
| 	char	*inseq;
 | |
| 	ftnlen	inseqlen;
 | |
| 	char 	*indir;
 | |
| 	ftnlen	indirlen;
 | |
| 	char	*infmt;
 | |
| 	ftnlen	infmtlen;
 | |
| 	char	*inform;
 | |
| 	ftnint	informlen;
 | |
| 	char	*inunf;
 | |
| 	ftnlen	inunflen;
 | |
| 	ftnint	*inrecl;
 | |
| 	ftnint	*innrec;
 | |
| 	char	*inblank;
 | |
| 	ftnlen	inblanklen;
 | |
| } inlist;
 | |
| 
 | |
| #define VOID void
 | |
| 
 | |
| union Multitype {	/* for multiple entry points */
 | |
| 	integer1 g;
 | |
| 	shortint h;
 | |
| 	integer i;
 | |
| 	/* longint j; */
 | |
| 	real r;
 | |
| 	doublereal d;
 | |
| 	complex c;
 | |
| 	doublecomplex z;
 | |
| 	};
 | |
| 
 | |
| typedef union Multitype Multitype;
 | |
| 
 | |
| struct Vardesc {	/* for Namelist */
 | |
| 	char *name;
 | |
| 	char *addr;
 | |
| 	ftnlen *dims;
 | |
| 	int  type;
 | |
| 	};
 | |
| typedef struct Vardesc Vardesc;
 | |
| 
 | |
| struct Namelist {
 | |
| 	char *name;
 | |
| 	Vardesc **vars;
 | |
| 	int nvars;
 | |
| 	};
 | |
| typedef struct Namelist Namelist;
 | |
| 
 | |
| #define abs(x) ((x) >= 0 ? (x) : -(x))
 | |
| #define dabs(x) (fabs(x))
 | |
| #define f2cmin(a,b) ((a) <= (b) ? (a) : (b))
 | |
| #define f2cmax(a,b) ((a) >= (b) ? (a) : (b))
 | |
| #define dmin(a,b) (f2cmin(a,b))
 | |
| #define dmax(a,b) (f2cmax(a,b))
 | |
| #define bit_test(a,b)	((a) >> (b) & 1)
 | |
| #define bit_clear(a,b)	((a) & ~((uinteger)1 << (b)))
 | |
| #define bit_set(a,b)	((a) |  ((uinteger)1 << (b)))
 | |
| 
 | |
| #define abort_() { sig_die("Fortran abort routine called", 1); }
 | |
| #define c_abs(z) (cabsf(Cf(z)))
 | |
| #define c_cos(R,Z) { pCf(R)=ccos(Cf(Z)); }
 | |
| #ifdef _MSC_VER
 | |
| #define c_div(c, a, b) {Cf(c)._Val[0] = (Cf(a)._Val[0]/Cf(b)._Val[0]); Cf(c)._Val[1]=(Cf(a)._Val[1]/Cf(b)._Val[1]);}
 | |
| #define z_div(c, a, b) {Cd(c)._Val[0] = (Cd(a)._Val[0]/Cd(b)._Val[0]); Cd(c)._Val[1]=(Cd(a)._Val[1]/df(b)._Val[1]);}
 | |
| #else
 | |
| #define c_div(c, a, b) {pCf(c) = Cf(a)/Cf(b);}
 | |
| #define z_div(c, a, b) {pCd(c) = Cd(a)/Cd(b);}
 | |
| #endif
 | |
| #define c_exp(R, Z) {pCf(R) = cexpf(Cf(Z));}
 | |
| #define c_log(R, Z) {pCf(R) = clogf(Cf(Z));}
 | |
| #define c_sin(R, Z) {pCf(R) = csinf(Cf(Z));}
 | |
| //#define c_sqrt(R, Z) {*(R) = csqrtf(Cf(Z));}
 | |
| #define c_sqrt(R, Z) {pCf(R) = csqrtf(Cf(Z));}
 | |
| #define d_abs(x) (fabs(*(x)))
 | |
| #define d_acos(x) (acos(*(x)))
 | |
| #define d_asin(x) (asin(*(x)))
 | |
| #define d_atan(x) (atan(*(x)))
 | |
| #define d_atn2(x, y) (atan2(*(x),*(y)))
 | |
| #define d_cnjg(R, Z) { pCd(R) = conj(Cd(Z)); }
 | |
| #define r_cnjg(R, Z) { pCf(R) = conjf(Cf(Z)); }
 | |
| #define d_cos(x) (cos(*(x)))
 | |
| #define d_cosh(x) (cosh(*(x)))
 | |
| #define d_dim(__a, __b) ( *(__a) > *(__b) ? *(__a) - *(__b) : 0.0 )
 | |
| #define d_exp(x) (exp(*(x)))
 | |
| #define d_imag(z) (cimag(Cd(z)))
 | |
| #define r_imag(z) (cimagf(Cf(z)))
 | |
| #define d_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define r_int(__x) (*(__x)>0 ? floor(*(__x)) : -floor(- *(__x)))
 | |
| #define d_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define r_lg10(x) ( 0.43429448190325182765 * log(*(x)) )
 | |
| #define d_log(x) (log(*(x)))
 | |
| #define d_mod(x, y) (fmod(*(x), *(y)))
 | |
| #define u_nint(__x) ((__x)>=0 ? floor((__x) + .5) : -floor(.5 - (__x)))
 | |
| #define d_nint(x) u_nint(*(x))
 | |
| #define u_sign(__a,__b) ((__b) >= 0 ? ((__a) >= 0 ? (__a) : -(__a)) : -((__a) >= 0 ? (__a) : -(__a)))
 | |
| #define d_sign(a,b) u_sign(*(a),*(b))
 | |
| #define r_sign(a,b) u_sign(*(a),*(b))
 | |
| #define d_sin(x) (sin(*(x)))
 | |
| #define d_sinh(x) (sinh(*(x)))
 | |
| #define d_sqrt(x) (sqrt(*(x)))
 | |
| #define d_tan(x) (tan(*(x)))
 | |
| #define d_tanh(x) (tanh(*(x)))
 | |
| #define i_abs(x) abs(*(x))
 | |
| #define i_dnnt(x) ((integer)u_nint(*(x)))
 | |
| #define i_len(s, n) (n)
 | |
| #define i_nint(x) ((integer)u_nint(*(x)))
 | |
| #define i_sign(a,b) ((integer)u_sign((integer)*(a),(integer)*(b)))
 | |
| #define pow_dd(ap, bp) ( pow(*(ap), *(bp)))
 | |
| #define pow_si(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_ri(B,E) spow_ui(*(B),*(E))
 | |
| #define pow_di(B,E) dpow_ui(*(B),*(E))
 | |
| #define pow_zi(p, a, b) {pCd(p) = zpow_ui(Cd(a), *(b));}
 | |
| #define pow_ci(p, a, b) {pCf(p) = cpow_ui(Cf(a), *(b));}
 | |
| #define pow_zz(R,A,B) {pCd(R) = cpow(Cd(A),*(B));}
 | |
| #define s_cat(lpp, rpp, rnp, np, llp) { 	ftnlen i, nc, ll; char *f__rp, *lp; 	ll = (llp); lp = (lpp); 	for(i=0; i < (int)*(np); ++i) {         	nc = ll; 	        if((rnp)[i] < nc) nc = (rnp)[i]; 	        ll -= nc;         	f__rp = (rpp)[i]; 	        while(--nc >= 0) *lp++ = *(f__rp)++;         } 	while(--ll >= 0) *lp++ = ' '; }
 | |
| #define s_cmp(a,b,c,d) ((integer)strncmp((a),(b),f2cmin((c),(d))))
 | |
| #define s_copy(A,B,C,D) { int __i,__m; for (__i=0, __m=f2cmin((C),(D)); __i<__m && (B)[__i] != 0; ++__i) (A)[__i] = (B)[__i]; }
 | |
| #define sig_die(s, kill) { exit(1); }
 | |
| #define s_stop(s, n) {exit(0);}
 | |
| static char junk[] = "\n@(#)LIBF77 VERSION 19990503\n";
 | |
| #define z_abs(z) (cabs(Cd(z)))
 | |
| #define z_exp(R, Z) {pCd(R) = cexp(Cd(Z));}
 | |
| #define z_sqrt(R, Z) {pCd(R) = csqrt(Cd(Z));}
 | |
| #define myexit_() break;
 | |
| #define mycycle() continue;
 | |
| #define myceiling(w) {ceil(w)}
 | |
| #define myhuge(w) {HUGE_VAL}
 | |
| //#define mymaxloc_(w,s,e,n) {if (sizeof(*(w)) == sizeof(double)) dmaxloc_((w),*(s),*(e),n); else dmaxloc_((w),*(s),*(e),n);}
 | |
| #define mymaxloc(w,s,e,n) {dmaxloc_(w,*(s),*(e),n)}
 | |
| 
 | |
| /* procedure parameter types for -A and -C++ */
 | |
| 
 | |
| #define F2C_proc_par_types 1
 | |
| #ifdef __cplusplus
 | |
| typedef logical (*L_fp)(...);
 | |
| #else
 | |
| typedef logical (*L_fp)();
 | |
| #endif
 | |
| 
 | |
| static float spow_ui(float x, integer n) {
 | |
| 	float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static double dpow_ui(double x, integer n) {
 | |
| 	double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #ifdef _MSC_VER
 | |
| static _Fcomplex cpow_ui(complex x, integer n) {
 | |
| 	complex pow={1.0,0.0}; unsigned long int u;
 | |
| 		if(n != 0) {
 | |
| 		if(n < 0) n = -n, x.r = 1/x.r, x.i=1/x.i;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow.r *= x.r, pow.i *= x.i;
 | |
| 			if(u >>= 1) x.r *= x.r, x.i *= x.i;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Fcomplex p={pow.r, pow.i};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex float cpow_ui(_Complex float x, integer n) {
 | |
| 	_Complex float pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| #ifdef _MSC_VER
 | |
| static _Dcomplex zpow_ui(_Dcomplex x, integer n) {
 | |
| 	_Dcomplex pow={1.0,0.0}; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x._Val[0] = 1/x._Val[0], x._Val[1] =1/x._Val[1];
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow._Val[0] *= x._Val[0], pow._Val[1] *= x._Val[1];
 | |
| 			if(u >>= 1) x._Val[0] *= x._Val[0], x._Val[1] *= x._Val[1];
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	_Dcomplex p = {pow._Val[0], pow._Val[1]};
 | |
| 	return p;
 | |
| }
 | |
| #else
 | |
| static _Complex double zpow_ui(_Complex double x, integer n) {
 | |
| 	_Complex double pow=1.0; unsigned long int u;
 | |
| 	if(n != 0) {
 | |
| 		if(n < 0) n = -n, x = 1/x;
 | |
| 		for(u = n; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| #endif
 | |
| static integer pow_ii(integer x, integer n) {
 | |
| 	integer pow; unsigned long int u;
 | |
| 	if (n <= 0) {
 | |
| 		if (n == 0 || x == 1) pow = 1;
 | |
| 		else if (x != -1) pow = x == 0 ? 1/x : 0;
 | |
| 		else n = -n;
 | |
| 	}
 | |
| 	if ((n > 0) || !(n == 0 || x == 1 || x != -1)) {
 | |
| 		u = n;
 | |
| 		for(pow = 1; ; ) {
 | |
| 			if(u & 01) pow *= x;
 | |
| 			if(u >>= 1) x *= x;
 | |
| 			else break;
 | |
| 		}
 | |
| 	}
 | |
| 	return pow;
 | |
| }
 | |
| static integer dmaxloc_(double *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	double m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static integer smaxloc_(float *w, integer s, integer e, integer *n)
 | |
| {
 | |
| 	float m; integer i, mi;
 | |
| 	for(m=w[s-1], mi=s, i=s+1; i<=e; i++)
 | |
| 		if (w[i-1]>m) mi=i ,m=w[i-1];
 | |
| 	return mi-s+1;
 | |
| }
 | |
| static inline void cdotc_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i]))._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i]))._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conjf(Cf(&x[i*incx]))._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conjf(Cf(&x[i*incx]))._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i])) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conjf(Cf(&x[i*incx])) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotc_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i]))._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i]))._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += conj(Cd(&x[i*incx]))._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += conj(Cd(&x[i*incx]))._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i])) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += conj(Cd(&x[i*incx])) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif	
 | |
| static inline void cdotu_(complex *z, integer *n_, complex *x, integer *incx_, complex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Fcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i])._Val[0] * Cf(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i])._Val[1] * Cf(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cf(&x[i*incx])._Val[0] * Cf(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cf(&x[i*incx])._Val[1] * Cf(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex float zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i]) * Cf(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cf(&x[i*incx]) * Cf(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCf(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| static inline void zdotu_(doublecomplex *z, integer *n_, doublecomplex *x, integer *incx_, doublecomplex *y, integer *incy_) {
 | |
| 	integer n = *n_, incx = *incx_, incy = *incy_, i;
 | |
| #ifdef _MSC_VER
 | |
| 	_Dcomplex zdotc = {0.0, 0.0};
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i])._Val[0] * Cd(&y[i])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i])._Val[1] * Cd(&y[i])._Val[1];
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc._Val[0] += Cd(&x[i*incx])._Val[0] * Cd(&y[i*incy])._Val[0];
 | |
| 			zdotc._Val[1] += Cd(&x[i*incx])._Val[1] * Cd(&y[i*incy])._Val[1];
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #else
 | |
| 	_Complex double zdotc = 0.0;
 | |
| 	if (incx == 1 && incy == 1) {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i]) * Cd(&y[i]);
 | |
| 		}
 | |
| 	} else {
 | |
| 		for (i=0;i<n;i++) { /* zdotc = zdotc + dconjg(x(i))* y(i) */
 | |
| 			zdotc += Cd(&x[i*incx]) * Cd(&y[i*incy]);
 | |
| 		}
 | |
| 	}
 | |
| 	pCd(z) = zdotc;
 | |
| }
 | |
| #endif
 | |
| /*  -- translated by f2c (version 20000121).
 | |
|    You must link the resulting object file with the libraries:
 | |
| 	-lf2c -lm   (in that order)
 | |
| */
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 | |
| /* Table of constant values */
 | |
| 
 | |
| static integer c__1 = 1;
 | |
| static real c_b34 = 0.f;
 | |
| static real c_b35 = 1.f;
 | |
| static integer c__0 = 0;
 | |
| static integer c_n1 = -1;
 | |
| 
 | |
| /* > \brief \b SGEJSV */
 | |
| 
 | |
| /*  =========== DOCUMENTATION =========== */
 | |
| 
 | |
| /* Online html documentation available at */
 | |
| /*            http://www.netlib.org/lapack/explore-html/ */
 | |
| 
 | |
| /* > \htmlonly */
 | |
| /* > Download SGEJSV + dependencies */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgejsv.
 | |
| f"> */
 | |
| /* > [TGZ]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgejsv.
 | |
| f"> */
 | |
| /* > [ZIP]</a> */
 | |
| /* > <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgejsv.
 | |
| f"> */
 | |
| /* > [TXT]</a> */
 | |
| /* > \endhtmlonly */
 | |
| 
 | |
| /*  Definition: */
 | |
| /*  =========== */
 | |
| 
 | |
| /*       SUBROUTINE SGEJSV( JOBA, JOBU, JOBV, JOBR, JOBT, JOBP, */
 | |
| /*                          M, N, A, LDA, SVA, U, LDU, V, LDV, */
 | |
| /*                          WORK, LWORK, IWORK, INFO ) */
 | |
| 
 | |
| /*       IMPLICIT    NONE */
 | |
| /*       INTEGER     INFO, LDA, LDU, LDV, LWORK, M, N */
 | |
| /*       REAL        A( LDA, * ), SVA( N ), U( LDU, * ), V( LDV, * ), */
 | |
| /*      $            WORK( LWORK ) */
 | |
| /*       INTEGER     IWORK( * ) */
 | |
| /*       CHARACTER*1 JOBA, JOBP, JOBR, JOBT, JOBU, JOBV */
 | |
| 
 | |
| 
 | |
| /* > \par Purpose: */
 | |
| /*  ============= */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > SGEJSV computes the singular value decomposition (SVD) of a real M-by-N */
 | |
| /* > matrix [A], where M >= N. The SVD of [A] is written as */
 | |
| /* > */
 | |
| /* >              [A] = [U] * [SIGMA] * [V]^t, */
 | |
| /* > */
 | |
| /* > where [SIGMA] is an N-by-N (M-by-N) matrix which is zero except for its N */
 | |
| /* > diagonal elements, [U] is an M-by-N (or M-by-M) orthonormal matrix, and */
 | |
| /* > [V] is an N-by-N orthogonal matrix. The diagonal elements of [SIGMA] are */
 | |
| /* > the singular values of [A]. The columns of [U] and [V] are the left and */
 | |
| /* > the right singular vectors of [A], respectively. The matrices [U] and [V] */
 | |
| /* > are computed and stored in the arrays U and V, respectively. The diagonal */
 | |
| /* > of [SIGMA] is computed and stored in the array SVA. */
 | |
| /* > SGEJSV can sometimes compute tiny singular values and their singular vectors much */
 | |
| /* > more accurately than other SVD routines, see below under Further Details. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Arguments: */
 | |
| /*  ========== */
 | |
| 
 | |
| /* > \param[in] JOBA */
 | |
| /* > \verbatim */
 | |
| /* >          JOBA is CHARACTER*1 */
 | |
| /* >         Specifies the level of accuracy: */
 | |
| /* >       = 'C': This option works well (high relative accuracy) if A = B * D, */
 | |
| /* >              with well-conditioned B and arbitrary diagonal matrix D. */
 | |
| /* >              The accuracy cannot be spoiled by COLUMN scaling. The */
 | |
| /* >              accuracy of the computed output depends on the condition of */
 | |
| /* >              B, and the procedure aims at the best theoretical accuracy. */
 | |
| /* >              The relative error max_{i=1:N}|d sigma_i| / sigma_i is */
 | |
| /* >              bounded by f(M,N)*epsilon* cond(B), independent of D. */
 | |
| /* >              The input matrix is preprocessed with the QRF with column */
 | |
| /* >              pivoting. This initial preprocessing and preconditioning by */
 | |
| /* >              a rank revealing QR factorization is common for all values of */
 | |
| /* >              JOBA. Additional actions are specified as follows: */
 | |
| /* >       = 'E': Computation as with 'C' with an additional estimate of the */
 | |
| /* >              condition number of B. It provides a realistic error bound. */
 | |
| /* >       = 'F': If A = D1 * C * D2 with ill-conditioned diagonal scalings */
 | |
| /* >              D1, D2, and well-conditioned matrix C, this option gives */
 | |
| /* >              higher accuracy than the 'C' option. If the structure of the */
 | |
| /* >              input matrix is not known, and relative accuracy is */
 | |
| /* >              desirable, then this option is advisable. The input matrix A */
 | |
| /* >              is preprocessed with QR factorization with FULL (row and */
 | |
| /* >              column) pivoting. */
 | |
| /* >       = 'G': Computation as with 'F' with an additional estimate of the */
 | |
| /* >              condition number of B, where A=D*B. If A has heavily weighted */
 | |
| /* >              rows, then using this condition number gives too pessimistic */
 | |
| /* >              error bound. */
 | |
| /* >       = 'A': Small singular values are the noise and the matrix is treated */
 | |
| /* >              as numerically rank deficient. The error in the computed */
 | |
| /* >              singular values is bounded by f(m,n)*epsilon*||A||. */
 | |
| /* >              The computed SVD A = U * S * V^t restores A up to */
 | |
| /* >              f(m,n)*epsilon*||A||. */
 | |
| /* >              This gives the procedure the licence to discard (set to zero) */
 | |
| /* >              all singular values below N*epsilon*||A||. */
 | |
| /* >       = 'R': Similar as in 'A'. Rank revealing property of the initial */
 | |
| /* >              QR factorization is used do reveal (using triangular factor) */
 | |
| /* >              a gap sigma_{r+1} < epsilon * sigma_r in which case the */
 | |
| /* >              numerical RANK is declared to be r. The SVD is computed with */
 | |
| /* >              absolute error bounds, but more accurately than with 'A'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBU */
 | |
| /* > \verbatim */
 | |
| /* >          JOBU is CHARACTER*1 */
 | |
| /* >         Specifies whether to compute the columns of U: */
 | |
| /* >       = 'U': N columns of U are returned in the array U. */
 | |
| /* >       = 'F': full set of M left sing. vectors is returned in the array U. */
 | |
| /* >       = 'W': U may be used as workspace of length M*N. See the description */
 | |
| /* >              of U. */
 | |
| /* >       = 'N': U is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBV */
 | |
| /* > \verbatim */
 | |
| /* >          JOBV is CHARACTER*1 */
 | |
| /* >         Specifies whether to compute the matrix V: */
 | |
| /* >       = 'V': N columns of V are returned in the array V; Jacobi rotations */
 | |
| /* >              are not explicitly accumulated. */
 | |
| /* >       = 'J': N columns of V are returned in the array V, but they are */
 | |
| /* >              computed as the product of Jacobi rotations. This option is */
 | |
| /* >              allowed only if JOBU .NE. 'N', i.e. in computing the full SVD. */
 | |
| /* >       = 'W': V may be used as workspace of length N*N. See the description */
 | |
| /* >              of V. */
 | |
| /* >       = 'N': V is not computed. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBR */
 | |
| /* > \verbatim */
 | |
| /* >          JOBR is CHARACTER*1 */
 | |
| /* >         Specifies the RANGE for the singular values. Issues the licence to */
 | |
| /* >         set to zero small positive singular values if they are outside */
 | |
| /* >         specified range. If A .NE. 0 is scaled so that the largest singular */
 | |
| /* >         value of c*A is around SQRT(BIG), BIG=SLAMCH('O'), then JOBR issues */
 | |
| /* >         the licence to kill columns of A whose norm in c*A is less than */
 | |
| /* >         SQRT(SFMIN) (for JOBR = 'R'), or less than SMALL=SFMIN/EPSLN, */
 | |
| /* >         where SFMIN=SLAMCH('S'), EPSLN=SLAMCH('E'). */
 | |
| /* >       = 'N': Do not kill small columns of c*A. This option assumes that */
 | |
| /* >              BLAS and QR factorizations and triangular solvers are */
 | |
| /* >              implemented to work in that range. If the condition of A */
 | |
| /* >              is greater than BIG, use SGESVJ. */
 | |
| /* >       = 'R': RESTRICTED range for sigma(c*A) is [SQRT(SFMIN), SQRT(BIG)] */
 | |
| /* >              (roughly, as described above). This option is recommended. */
 | |
| /* >                                             =========================== */
 | |
| /* >         For computing the singular values in the FULL range [SFMIN,BIG] */
 | |
| /* >         use SGESVJ. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBT */
 | |
| /* > \verbatim */
 | |
| /* >          JOBT is CHARACTER*1 */
 | |
| /* >         If the matrix is square then the procedure may determine to use */
 | |
| /* >         transposed A if A^t seems to be better with respect to convergence. */
 | |
| /* >         If the matrix is not square, JOBT is ignored. This is subject to */
 | |
| /* >         changes in the future. */
 | |
| /* >         The decision is based on two values of entropy over the adjoint */
 | |
| /* >         orbit of A^t * A. See the descriptions of WORK(6) and WORK(7). */
 | |
| /* >       = 'T': transpose if entropy test indicates possibly faster */
 | |
| /* >         convergence of Jacobi process if A^t is taken as input. If A is */
 | |
| /* >         replaced with A^t, then the row pivoting is included automatically. */
 | |
| /* >       = 'N': do not speculate. */
 | |
| /* >         This option can be used to compute only the singular values, or the */
 | |
| /* >         full SVD (U, SIGMA and V). For only one set of singular vectors */
 | |
| /* >         (U or V), the caller should provide both U and V, as one of the */
 | |
| /* >         matrices is used as workspace if the matrix A is transposed. */
 | |
| /* >         The implementer can easily remove this constraint and make the */
 | |
| /* >         code more complicated. See the descriptions of U and V. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] JOBP */
 | |
| /* > \verbatim */
 | |
| /* >          JOBP is CHARACTER*1 */
 | |
| /* >         Issues the licence to introduce structured perturbations to drown */
 | |
| /* >         denormalized numbers. This licence should be active if the */
 | |
| /* >         denormals are poorly implemented, causing slow computation, */
 | |
| /* >         especially in cases of fast convergence (!). For details see [1,2]. */
 | |
| /* >         For the sake of simplicity, this perturbations are included only */
 | |
| /* >         when the full SVD or only the singular values are requested. The */
 | |
| /* >         implementer/user can easily add the perturbation for the cases of */
 | |
| /* >         computing one set of singular vectors. */
 | |
| /* >       = 'P': introduce perturbation */
 | |
| /* >       = 'N': do not perturb */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] M */
 | |
| /* > \verbatim */
 | |
| /* >          M is INTEGER */
 | |
| /* >         The number of rows of the input matrix A.  M >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] N */
 | |
| /* > \verbatim */
 | |
| /* >          N is INTEGER */
 | |
| /* >         The number of columns of the input matrix A. M >= N >= 0. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in,out] A */
 | |
| /* > \verbatim */
 | |
| /* >          A is REAL array, dimension (LDA,N) */
 | |
| /* >          On entry, the M-by-N matrix A. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDA */
 | |
| /* > \verbatim */
 | |
| /* >          LDA is INTEGER */
 | |
| /* >          The leading dimension of the array A.  LDA >= f2cmax(1,M). */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] SVA */
 | |
| /* > \verbatim */
 | |
| /* >          SVA is REAL array, dimension (N) */
 | |
| /* >          On exit, */
 | |
| /* >          - For WORK(1)/WORK(2) = ONE: The singular values of A. During the */
 | |
| /* >            computation SVA contains Euclidean column norms of the */
 | |
| /* >            iterated matrices in the array A. */
 | |
| /* >          - For WORK(1) .NE. WORK(2): The singular values of A are */
 | |
| /* >            (WORK(1)/WORK(2)) * SVA(1:N). This factored form is used if */
 | |
| /* >            sigma_max(A) overflows or if small singular values have been */
 | |
| /* >            saved from underflow by scaling the input matrix A. */
 | |
| /* >          - If JOBR='R' then some of the singular values may be returned */
 | |
| /* >            as exact zeros obtained by "set to zero" because they are */
 | |
| /* >            below the numerical rank threshold or are denormalized numbers. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] U */
 | |
| /* > \verbatim */
 | |
| /* >          U is REAL array, dimension ( LDU, N ) */
 | |
| /* >          If JOBU = 'U', then U contains on exit the M-by-N matrix of */
 | |
| /* >                         the left singular vectors. */
 | |
| /* >          If JOBU = 'F', then U contains on exit the M-by-M matrix of */
 | |
| /* >                         the left singular vectors, including an ONB */
 | |
| /* >                         of the orthogonal complement of the Range(A). */
 | |
| /* >          If JOBU = 'W'  .AND. (JOBV = 'V' .AND. JOBT = 'T' .AND. M = N), */
 | |
| /* >                         then U is used as workspace if the procedure */
 | |
| /* >                         replaces A with A^t. In that case, [V] is computed */
 | |
| /* >                         in U as left singular vectors of A^t and then */
 | |
| /* >                         copied back to the V array. This 'W' option is just */
 | |
| /* >                         a reminder to the caller that in this case U is */
 | |
| /* >                         reserved as workspace of length N*N. */
 | |
| /* >          If JOBU = 'N'  U is not referenced, unless JOBT='T'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDU */
 | |
| /* > \verbatim */
 | |
| /* >          LDU is INTEGER */
 | |
| /* >          The leading dimension of the array U,  LDU >= 1. */
 | |
| /* >          IF  JOBU = 'U' or 'F' or 'W',  then LDU >= M. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] V */
 | |
| /* > \verbatim */
 | |
| /* >          V is REAL array, dimension ( LDV, N ) */
 | |
| /* >          If JOBV = 'V', 'J' then V contains on exit the N-by-N matrix of */
 | |
| /* >                         the right singular vectors; */
 | |
| /* >          If JOBV = 'W', AND (JOBU = 'U' AND JOBT = 'T' AND M = N), */
 | |
| /* >                         then V is used as workspace if the pprocedure */
 | |
| /* >                         replaces A with A^t. In that case, [U] is computed */
 | |
| /* >                         in V as right singular vectors of A^t and then */
 | |
| /* >                         copied back to the U array. This 'W' option is just */
 | |
| /* >                         a reminder to the caller that in this case V is */
 | |
| /* >                         reserved as workspace of length N*N. */
 | |
| /* >          If JOBV = 'N'  V is not referenced, unless JOBT='T'. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LDV */
 | |
| /* > \verbatim */
 | |
| /* >          LDV is INTEGER */
 | |
| /* >          The leading dimension of the array V,  LDV >= 1. */
 | |
| /* >          If JOBV = 'V' or 'J' or 'W', then LDV >= N. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] WORK */
 | |
| /* > \verbatim */
 | |
| /* >          WORK is REAL array, dimension (LWORK) */
 | |
| /* >          On exit, */
 | |
| /* >          WORK(1) = SCALE = WORK(2) / WORK(1) is the scaling factor such */
 | |
| /* >                    that SCALE*SVA(1:N) are the computed singular values */
 | |
| /* >                    of A. (See the description of SVA().) */
 | |
| /* >          WORK(2) = See the description of WORK(1). */
 | |
| /* >          WORK(3) = SCONDA is an estimate for the condition number of */
 | |
| /* >                    column equilibrated A. (If JOBA = 'E' or 'G') */
 | |
| /* >                    SCONDA is an estimate of SQRT(||(R^t * R)^(-1)||_1). */
 | |
| /* >                    It is computed using SPOCON. It holds */
 | |
| /* >                    N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA */
 | |
| /* >                    where R is the triangular factor from the QRF of A. */
 | |
| /* >                    However, if R is truncated and the numerical rank is */
 | |
| /* >                    determined to be strictly smaller than N, SCONDA is */
 | |
| /* >                    returned as -1, thus indicating that the smallest */
 | |
| /* >                    singular values might be lost. */
 | |
| /* > */
 | |
| /* >          If full SVD is needed, the following two condition numbers are */
 | |
| /* >          useful for the analysis of the algorithm. They are provied for */
 | |
| /* >          a developer/implementer who is familiar with the details of */
 | |
| /* >          the method. */
 | |
| /* > */
 | |
| /* >          WORK(4) = an estimate of the scaled condition number of the */
 | |
| /* >                    triangular factor in the first QR factorization. */
 | |
| /* >          WORK(5) = an estimate of the scaled condition number of the */
 | |
| /* >                    triangular factor in the second QR factorization. */
 | |
| /* >          The following two parameters are computed if JOBT = 'T'. */
 | |
| /* >          They are provided for a developer/implementer who is familiar */
 | |
| /* >          with the details of the method. */
 | |
| /* > */
 | |
| /* >          WORK(6) = the entropy of A^t*A :: this is the Shannon entropy */
 | |
| /* >                    of diag(A^t*A) / Trace(A^t*A) taken as point in the */
 | |
| /* >                    probability simplex. */
 | |
| /* >          WORK(7) = the entropy of A*A^t. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[in] LWORK */
 | |
| /* > \verbatim */
 | |
| /* >          LWORK is INTEGER */
 | |
| /* >          Length of WORK to confirm proper allocation of work space. */
 | |
| /* >          LWORK depends on the job: */
 | |
| /* > */
 | |
| /* >          If only SIGMA is needed ( JOBU = 'N', JOBV = 'N' ) and */
 | |
| /* >            -> .. no scaled condition estimate required (JOBE = 'N'): */
 | |
| /* >               LWORK >= f2cmax(2*M+N,4*N+1,7). This is the minimal requirement. */
 | |
| /* >               ->> For optimal performance (blocked code) the optimal value */
 | |
| /* >               is LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,7). Here NB is the optimal */
 | |
| /* >               block size for DGEQP3 and DGEQRF. */
 | |
| /* >               In general, optimal LWORK is computed as */
 | |
| /* >               LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), 7). */
 | |
| /* >            -> .. an estimate of the scaled condition number of A is */
 | |
| /* >               required (JOBA='E', 'G'). In this case, LWORK is the maximum */
 | |
| /* >               of the above and N*N+4*N, i.e. LWORK >= f2cmax(2*M+N,N*N+4*N,7). */
 | |
| /* >               ->> For optimal performance (blocked code) the optimal value */
 | |
| /* >               is LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB, N*N+4*N, 7). */
 | |
| /* >               In general, the optimal length LWORK is computed as */
 | |
| /* >               LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3),N+LWORK(DGEQRF), */
 | |
| /* >                                                     N+N*N+LWORK(DPOCON),7). */
 | |
| /* > */
 | |
| /* >          If SIGMA and the right singular vectors are needed (JOBV = 'V'), */
 | |
| /* >            -> the minimal requirement is LWORK >= f2cmax(2*M+N,4*N+1,7). */
 | |
| /* >            -> For optimal performance, LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,7), */
 | |
| /* >               where NB is the optimal block size for DGEQP3, DGEQRF, DGELQ, */
 | |
| /* >               DORMLQ. In general, the optimal length LWORK is computed as */
 | |
| /* >               LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3), N+LWORK(DPOCON), */
 | |
| /* >                       N+LWORK(DGELQ), 2*N+LWORK(DGEQRF), N+LWORK(DORMLQ)). */
 | |
| /* > */
 | |
| /* >          If SIGMA and the left singular vectors are needed */
 | |
| /* >            -> the minimal requirement is LWORK >= f2cmax(2*M+N,4*N+1,7). */
 | |
| /* >            -> For optimal performance: */
 | |
| /* >               if JOBU = 'U' :: LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,7), */
 | |
| /* >               if JOBU = 'F' :: LWORK >= f2cmax(2*M+N,3*N+(N+1)*NB,N+M*NB,7), */
 | |
| /* >               where NB is the optimal block size for DGEQP3, DGEQRF, DORMQR. */
 | |
| /* >               In general, the optimal length LWORK is computed as */
 | |
| /* >               LWORK >= f2cmax(2*M+N,N+LWORK(DGEQP3),N+LWORK(DPOCON), */
 | |
| /* >                        2*N+LWORK(DGEQRF), N+LWORK(DORMQR)). */
 | |
| /* >               Here LWORK(DORMQR) equals N*NB (for JOBU = 'U') or */
 | |
| /* >               M*NB (for JOBU = 'F'). */
 | |
| /* > */
 | |
| /* >          If the full SVD is needed: (JOBU = 'U' or JOBU = 'F') and */
 | |
| /* >            -> if JOBV = 'V' */
 | |
| /* >               the minimal requirement is LWORK >= f2cmax(2*M+N,6*N+2*N*N). */
 | |
| /* >            -> if JOBV = 'J' the minimal requirement is */
 | |
| /* >               LWORK >= f2cmax(2*M+N, 4*N+N*N,2*N+N*N+6). */
 | |
| /* >            -> For optimal performance, LWORK should be additionally */
 | |
| /* >               larger than N+M*NB, where NB is the optimal block size */
 | |
| /* >               for DORMQR. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] IWORK */
 | |
| /* > \verbatim */
 | |
| /* >          IWORK is INTEGER array, dimension (M+3*N). */
 | |
| /* >          On exit, */
 | |
| /* >          IWORK(1) = the numerical rank determined after the initial */
 | |
| /* >                     QR factorization with pivoting. See the descriptions */
 | |
| /* >                     of JOBA and JOBR. */
 | |
| /* >          IWORK(2) = the number of the computed nonzero singular values */
 | |
| /* >          IWORK(3) = if nonzero, a warning message: */
 | |
| /* >                     If IWORK(3) = 1 then some of the column norms of A */
 | |
| /* >                     were denormalized floats. The requested high accuracy */
 | |
| /* >                     is not warranted by the data. */
 | |
| /* > \endverbatim */
 | |
| /* > */
 | |
| /* > \param[out] INFO */
 | |
| /* > \verbatim */
 | |
| /* >          INFO is INTEGER */
 | |
| /* >           < 0:  if INFO = -i, then the i-th argument had an illegal value. */
 | |
| /* >           = 0:  successful exit; */
 | |
| /* >           > 0:  SGEJSV  did not converge in the maximal allowed number */
 | |
| /* >                 of sweeps. The computed values may be inaccurate. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /*  Authors: */
 | |
| /*  ======== */
 | |
| 
 | |
| /* > \author Univ. of Tennessee */
 | |
| /* > \author Univ. of California Berkeley */
 | |
| /* > \author Univ. of Colorado Denver */
 | |
| /* > \author NAG Ltd. */
 | |
| 
 | |
| /* > \date June 2016 */
 | |
| 
 | |
| /* > \ingroup realGEsing */
 | |
| 
 | |
| /* > \par Further Details: */
 | |
| /*  ===================== */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* >  SGEJSV implements a preconditioned Jacobi SVD algorithm. It uses SGEQP3, */
 | |
| /* >  SGEQRF, and SGELQF as preprocessors and preconditioners. Optionally, an */
 | |
| /* >  additional row pivoting can be used as a preprocessor, which in some */
 | |
| /* >  cases results in much higher accuracy. An example is matrix A with the */
 | |
| /* >  structure A = D1 * C * D2, where D1, D2 are arbitrarily ill-conditioned */
 | |
| /* >  diagonal matrices and C is well-conditioned matrix. In that case, complete */
 | |
| /* >  pivoting in the first QR factorizations provides accuracy dependent on the */
 | |
| /* >  condition number of C, and independent of D1, D2. Such higher accuracy is */
 | |
| /* >  not completely understood theoretically, but it works well in practice. */
 | |
| /* >  Further, if A can be written as A = B*D, with well-conditioned B and some */
 | |
| /* >  diagonal D, then the high accuracy is guaranteed, both theoretically and */
 | |
| /* >  in software, independent of D. For more details see [1], [2]. */
 | |
| /* >     The computational range for the singular values can be the full range */
 | |
| /* >  ( UNDERFLOW,OVERFLOW ), provided that the machine arithmetic and the BLAS */
 | |
| /* >  & LAPACK routines called by SGEJSV are implemented to work in that range. */
 | |
| /* >  If that is not the case, then the restriction for safe computation with */
 | |
| /* >  the singular values in the range of normalized IEEE numbers is that the */
 | |
| /* >  spectral condition number kappa(A)=sigma_max(A)/sigma_min(A) does not */
 | |
| /* >  overflow. This code (SGEJSV) is best used in this restricted range, */
 | |
| /* >  meaning that singular values of magnitude below ||A||_2 / SLAMCH('O') are */
 | |
| /* >  returned as zeros. See JOBR for details on this. */
 | |
| /* >     Further, this implementation is somewhat slower than the one described */
 | |
| /* >  in [1,2] due to replacement of some non-LAPACK components, and because */
 | |
| /* >  the choice of some tuning parameters in the iterative part (SGESVJ) is */
 | |
| /* >  left to the implementer on a particular machine. */
 | |
| /* >     The rank revealing QR factorization (in this code: SGEQP3) should be */
 | |
| /* >  implemented as in [3]. We have a new version of SGEQP3 under development */
 | |
| /* >  that is more robust than the current one in LAPACK, with a cleaner cut in */
 | |
| /* >  rank deficient cases. It will be available in the SIGMA library [4]. */
 | |
| /* >  If M is much larger than N, it is obvious that the initial QRF with */
 | |
| /* >  column pivoting can be preprocessed by the QRF without pivoting. That */
 | |
| /* >  well known trick is not used in SGEJSV because in some cases heavy row */
 | |
| /* >  weighting can be treated with complete pivoting. The overhead in cases */
 | |
| /* >  M much larger than N is then only due to pivoting, but the benefits in */
 | |
| /* >  terms of accuracy have prevailed. The implementer/user can incorporate */
 | |
| /* >  this extra QRF step easily. The implementer can also improve data movement */
 | |
| /* >  (matrix transpose, matrix copy, matrix transposed copy) - this */
 | |
| /* >  implementation of SGEJSV uses only the simplest, naive data movement. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* > \par Contributors: */
 | |
| /*  ================== */
 | |
| /* > */
 | |
| /* >  Zlatko Drmac (Zagreb, Croatia) and Kresimir Veselic (Hagen, Germany) */
 | |
| 
 | |
| /* > \par References: */
 | |
| /*  ================ */
 | |
| /* > */
 | |
| /* > \verbatim */
 | |
| /* > */
 | |
| /* > [1] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm I. */
 | |
| /* >     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1322-1342. */
 | |
| /* >     LAPACK Working note 169. */
 | |
| /* > [2] Z. Drmac and K. Veselic: New fast and accurate Jacobi SVD algorithm II. */
 | |
| /* >     SIAM J. Matrix Anal. Appl. Vol. 35, No. 2 (2008), pp. 1343-1362. */
 | |
| /* >     LAPACK Working note 170. */
 | |
| /* > [3] Z. Drmac and Z. Bujanovic: On the failure of rank-revealing QR */
 | |
| /* >     factorization software - a case study. */
 | |
| /* >     ACM Trans. Math. Softw. Vol. 35, No 2 (2008), pp. 1-28. */
 | |
| /* >     LAPACK Working note 176. */
 | |
| /* > [4] Z. Drmac: SIGMA - mathematical software library for accurate SVD, PSV, */
 | |
| /* >     QSVD, (H,K)-SVD computations. */
 | |
| /* >     Department of Mathematics, University of Zagreb, 2008. */
 | |
| /* > \endverbatim */
 | |
| 
 | |
| /* >  \par Bugs, examples and comments: */
 | |
| /*   ================================= */
 | |
| /* > */
 | |
| /* >  Please report all bugs and send interesting examples and/or comments to */
 | |
| /* >  drmac@math.hr. Thank you. */
 | |
| /* > */
 | |
| /*  ===================================================================== */
 | |
| /* Subroutine */ void sgejsv_(char *joba, char *jobu, char *jobv, char *jobr, 
 | |
| 	char *jobt, char *jobp, integer *m, integer *n, real *a, integer *lda,
 | |
| 	 real *sva, real *u, integer *ldu, real *v, integer *ldv, real *work, 
 | |
| 	integer *lwork, integer *iwork, integer *info)
 | |
| {
 | |
|     /* System generated locals */
 | |
|     integer a_dim1, a_offset, u_dim1, u_offset, v_dim1, v_offset, i__1, i__2, 
 | |
| 	    i__3, i__4, i__5, i__6, i__7, i__8, i__9, i__10, i__11, i__12;
 | |
|     real r__1, r__2, r__3, r__4;
 | |
| 
 | |
|     /* Local variables */
 | |
|     logical defr;
 | |
|     real aapp, aaqq;
 | |
|     logical kill;
 | |
|     integer ierr;
 | |
|     real temp1;
 | |
|     extern real snrm2_(integer *, real *, integer *);
 | |
|     integer p, q;
 | |
|     logical jracc;
 | |
|     extern logical lsame_(char *, char *);
 | |
|     extern /* Subroutine */ void sscal_(integer *, real *, real *, integer *);
 | |
|     real small, entra, sfmin;
 | |
|     logical lsvec;
 | |
|     real epsln;
 | |
|     logical rsvec;
 | |
|     extern /* Subroutine */ void scopy_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     integer n1;
 | |
|     extern /* Subroutine */ void sswap_(integer *, real *, integer *, real *, 
 | |
| 	    integer *);
 | |
|     logical l2aber;
 | |
|     extern /* Subroutine */ void strsm_(char *, char *, char *, char *, 
 | |
| 	    integer *, integer *, real *, real *, integer *, real *, integer *
 | |
| 	    );
 | |
|     real condr1, condr2, uscal1, uscal2;
 | |
|     logical l2kill, l2rank, l2tran;
 | |
|     extern /* Subroutine */ void sgeqp3_(integer *, integer *, real *, integer 
 | |
| 	    *, integer *, real *, real *, integer *, integer *);
 | |
|     logical l2pert;
 | |
|     integer nr;
 | |
|     real scalem, sconda;
 | |
|     logical goscal;
 | |
|     real aatmin;
 | |
|     extern real slamch_(char *);
 | |
|     real aatmax;
 | |
|     extern /* Subroutine */ int xerbla_(char *, integer *, ftnlen);
 | |
|     logical noscal;
 | |
|     extern /* Subroutine */ void sgelqf_(integer *, integer *, real *, integer 
 | |
| 	    *, real *, real *, integer *, integer *);
 | |
|     extern integer isamax_(integer *, real *, integer *);
 | |
|     extern /* Subroutine */ void slascl_(char *, integer *, integer *, real *, 
 | |
| 	    real *, integer *, integer *, real *, integer *, integer *), sgeqrf_(integer *, integer *, real *, integer *, real *, 
 | |
| 	    real *, integer *, integer *), slacpy_(char *, integer *, integer 
 | |
| 	    *, real *, integer *, real *, integer *), slaset_(char *, 
 | |
| 	    integer *, integer *, real *, real *, real *, integer *);
 | |
|     real entrat;
 | |
|     logical almort;
 | |
|     real maxprj;
 | |
|     extern /* Subroutine */ void spocon_(char *, integer *, real *, integer *, 
 | |
| 	    real *, real *, real *, integer *, integer *);
 | |
|     logical errest;
 | |
|     extern /* Subroutine */ void sgesvj_(char *, char *, char *, integer *, 
 | |
| 	    integer *, real *, integer *, real *, integer *, real *, integer *
 | |
| 	    , real *, integer *, integer *), slassq_(
 | |
| 	    integer *, real *, integer *, real *, real *);
 | |
|     logical transp;
 | |
|     extern /* Subroutine */ int slaswp_(integer *, real *, integer *, integer 
 | |
| 	    *, integer *, integer *, integer *); 
 | |
|     extern void sorgqr_(integer *, integer *,
 | |
| 	     integer *, real *, integer *, real *, real *, integer *, integer 
 | |
| 	    *), sormlq_(char *, char *, integer *, integer *, integer *, real 
 | |
| 	    *, integer *, real *, real *, integer *, real *, integer *, 
 | |
| 	    integer *), sormqr_(char *, char *, integer *, 
 | |
| 	    integer *, integer *, real *, integer *, real *, real *, integer *
 | |
| 	    , real *, integer *, integer *);
 | |
|     logical rowpiv;
 | |
|     real big, cond_ok__, xsc, big1;
 | |
|     integer warning, numrank;
 | |
| 
 | |
| 
 | |
| /*  -- LAPACK computational routine (version 3.7.1) -- */
 | |
| /*  -- LAPACK is a software package provided by Univ. of Tennessee,    -- */
 | |
| /*  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..-- */
 | |
| /*     June 2016 */
 | |
| 
 | |
| 
 | |
| /*  =========================================================================== */
 | |
| 
 | |
| 
 | |
| 
 | |
| /*     Test the input arguments */
 | |
| 
 | |
|     /* Parameter adjustments */
 | |
|     --sva;
 | |
|     a_dim1 = *lda;
 | |
|     a_offset = 1 + a_dim1 * 1;
 | |
|     a -= a_offset;
 | |
|     u_dim1 = *ldu;
 | |
|     u_offset = 1 + u_dim1 * 1;
 | |
|     u -= u_offset;
 | |
|     v_dim1 = *ldv;
 | |
|     v_offset = 1 + v_dim1 * 1;
 | |
|     v -= v_offset;
 | |
|     --work;
 | |
|     --iwork;
 | |
| 
 | |
|     /* Function Body */
 | |
|     lsvec = lsame_(jobu, "U") || lsame_(jobu, "F");
 | |
|     jracc = lsame_(jobv, "J");
 | |
|     rsvec = lsame_(jobv, "V") || jracc;
 | |
|     rowpiv = lsame_(joba, "F") || lsame_(joba, "G");
 | |
|     l2rank = lsame_(joba, "R");
 | |
|     l2aber = lsame_(joba, "A");
 | |
|     errest = lsame_(joba, "E") || lsame_(joba, "G");
 | |
|     l2tran = lsame_(jobt, "T");
 | |
|     l2kill = lsame_(jobr, "R");
 | |
|     defr = lsame_(jobr, "N");
 | |
|     l2pert = lsame_(jobp, "P");
 | |
| 
 | |
|     if (! (rowpiv || l2rank || l2aber || errest || lsame_(joba, "C"))) {
 | |
| 	*info = -1;
 | |
|     } else if (! (lsvec || lsame_(jobu, "N") || lsame_(
 | |
| 	    jobu, "W"))) {
 | |
| 	*info = -2;
 | |
|     } else if (! (rsvec || lsame_(jobv, "N") || lsame_(
 | |
| 	    jobv, "W")) || jracc && ! lsvec) {
 | |
| 	*info = -3;
 | |
|     } else if (! (l2kill || defr)) {
 | |
| 	*info = -4;
 | |
|     } else if (! (l2tran || lsame_(jobt, "N"))) {
 | |
| 	*info = -5;
 | |
|     } else if (! (l2pert || lsame_(jobp, "N"))) {
 | |
| 	*info = -6;
 | |
|     } else if (*m < 0) {
 | |
| 	*info = -7;
 | |
|     } else if (*n < 0 || *n > *m) {
 | |
| 	*info = -8;
 | |
|     } else if (*lda < *m) {
 | |
| 	*info = -10;
 | |
|     } else if (lsvec && *ldu < *m) {
 | |
| 	*info = -13;
 | |
|     } else if (rsvec && *ldv < *n) {
 | |
| 	*info = -15;
 | |
|     } else /* if(complicated condition) */ {
 | |
| /* Computing MAX */
 | |
| 	i__1 = 7, i__2 = (*n << 2) + 1, i__1 = f2cmax(i__1,i__2), i__2 = (*m << 
 | |
| 		1) + *n;
 | |
| /* Computing MAX */
 | |
| 	i__3 = 7, i__4 = (*n << 2) + *n * *n, i__3 = f2cmax(i__3,i__4), i__4 = (*
 | |
| 		m << 1) + *n;
 | |
| /* Computing MAX */
 | |
| 	i__5 = 7, i__6 = (*m << 1) + *n, i__5 = f2cmax(i__5,i__6), i__6 = (*n << 
 | |
| 		2) + 1;
 | |
| /* Computing MAX */
 | |
| 	i__7 = 7, i__8 = (*m << 1) + *n, i__7 = f2cmax(i__7,i__8), i__8 = (*n << 
 | |
| 		2) + 1;
 | |
| /* Computing MAX */
 | |
| 	i__9 = (*m << 1) + *n, i__10 = *n * 6 + (*n << 1) * *n;
 | |
| /* Computing MAX */
 | |
| 	i__11 = (*m << 1) + *n, i__12 = (*n << 2) + *n * *n, i__11 = f2cmax(
 | |
| 		i__11,i__12), i__12 = (*n << 1) + *n * *n + 6;
 | |
| 	if (! (lsvec || rsvec || errest) && *lwork < f2cmax(i__1,i__2) || ! (
 | |
| 		lsvec || rsvec) && errest && *lwork < f2cmax(i__3,i__4) || lsvec 
 | |
| 		&& ! rsvec && *lwork < f2cmax(i__5,i__6) || rsvec && ! lsvec && *
 | |
| 		lwork < f2cmax(i__7,i__8) || lsvec && rsvec && ! jracc && *lwork 
 | |
| 		< f2cmax(i__9,i__10) || lsvec && rsvec && jracc && *lwork < f2cmax(
 | |
| 		i__11,i__12)) {
 | |
| 	    *info = -17;
 | |
| 	} else {
 | |
| /*        #:) */
 | |
| 	    *info = 0;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     if (*info != 0) {
 | |
| /*       #:( */
 | |
| 	i__1 = -(*info);
 | |
| 	xerbla_("SGEJSV", &i__1, (ftnlen)6);
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Quick return for void matrix (Y3K safe) */
 | |
| /* #:) */
 | |
|     if (*m == 0 || *n == 0) {
 | |
| 	iwork[1] = 0;
 | |
| 	iwork[2] = 0;
 | |
| 	iwork[3] = 0;
 | |
| 	work[1] = 0.f;
 | |
| 	work[2] = 0.f;
 | |
| 	work[3] = 0.f;
 | |
| 	work[4] = 0.f;
 | |
| 	work[5] = 0.f;
 | |
| 	work[6] = 0.f;
 | |
| 	work[7] = 0.f;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Determine whether the matrix U should be M x N or M x M */
 | |
| 
 | |
|     if (lsvec) {
 | |
| 	n1 = *n;
 | |
| 	if (lsame_(jobu, "F")) {
 | |
| 	    n1 = *m;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Set numerical parameters */
 | |
| 
 | |
| /* !    NOTE: Make sure SLAMCH() does not fail on the target architecture. */
 | |
| 
 | |
|     epsln = slamch_("Epsilon");
 | |
|     sfmin = slamch_("SafeMinimum");
 | |
|     small = sfmin / epsln;
 | |
|     big = slamch_("O");
 | |
| /*     BIG   = ONE / SFMIN */
 | |
| 
 | |
| /*     Initialize SVA(1:N) = diag( ||A e_i||_2 )_1^N */
 | |
| 
 | |
| /* (!)  If necessary, scale SVA() to protect the largest norm from */
 | |
| /*     overflow. It is possible that this scaling pushes the smallest */
 | |
| /*     column norm left from the underflow threshold (extreme case). */
 | |
| 
 | |
|     scalem = 1.f / sqrt((real) (*m) * (real) (*n));
 | |
|     noscal = TRUE_;
 | |
|     goscal = TRUE_;
 | |
|     i__1 = *n;
 | |
|     for (p = 1; p <= i__1; ++p) {
 | |
| 	aapp = 0.f;
 | |
| 	aaqq = 1.f;
 | |
| 	slassq_(m, &a[p * a_dim1 + 1], &c__1, &aapp, &aaqq);
 | |
| 	if (aapp > big) {
 | |
| 	    *info = -9;
 | |
| 	    i__2 = -(*info);
 | |
| 	    xerbla_("SGEJSV", &i__2, (ftnlen)6);
 | |
| 	    return;
 | |
| 	}
 | |
| 	aaqq = sqrt(aaqq);
 | |
| 	if (aapp < big / aaqq && noscal) {
 | |
| 	    sva[p] = aapp * aaqq;
 | |
| 	} else {
 | |
| 	    noscal = FALSE_;
 | |
| 	    sva[p] = aapp * (aaqq * scalem);
 | |
| 	    if (goscal) {
 | |
| 		goscal = FALSE_;
 | |
| 		i__2 = p - 1;
 | |
| 		sscal_(&i__2, &scalem, &sva[1], &c__1);
 | |
| 	    }
 | |
| 	}
 | |
| /* L1874: */
 | |
|     }
 | |
| 
 | |
|     if (noscal) {
 | |
| 	scalem = 1.f;
 | |
|     }
 | |
| 
 | |
|     aapp = 0.f;
 | |
|     aaqq = big;
 | |
|     i__1 = *n;
 | |
|     for (p = 1; p <= i__1; ++p) {
 | |
| /* Computing MAX */
 | |
| 	r__1 = aapp, r__2 = sva[p];
 | |
| 	aapp = f2cmax(r__1,r__2);
 | |
| 	if (sva[p] != 0.f) {
 | |
| /* Computing MIN */
 | |
| 	    r__1 = aaqq, r__2 = sva[p];
 | |
| 	    aaqq = f2cmin(r__1,r__2);
 | |
| 	}
 | |
| /* L4781: */
 | |
|     }
 | |
| 
 | |
| /*     Quick return for zero M x N matrix */
 | |
| /* #:) */
 | |
|     if (aapp == 0.f) {
 | |
| 	if (lsvec) {
 | |
| 	    slaset_("G", m, &n1, &c_b34, &c_b35, &u[u_offset], ldu)
 | |
| 		    ;
 | |
| 	}
 | |
| 	if (rsvec) {
 | |
| 	    slaset_("G", n, n, &c_b34, &c_b35, &v[v_offset], ldv);
 | |
| 	}
 | |
| 	work[1] = 1.f;
 | |
| 	work[2] = 1.f;
 | |
| 	if (errest) {
 | |
| 	    work[3] = 1.f;
 | |
| 	}
 | |
| 	if (lsvec && rsvec) {
 | |
| 	    work[4] = 1.f;
 | |
| 	    work[5] = 1.f;
 | |
| 	}
 | |
| 	if (l2tran) {
 | |
| 	    work[6] = 0.f;
 | |
| 	    work[7] = 0.f;
 | |
| 	}
 | |
| 	iwork[1] = 0;
 | |
| 	iwork[2] = 0;
 | |
| 	iwork[3] = 0;
 | |
| 	return;
 | |
|     }
 | |
| 
 | |
| /*     Issue warning if denormalized column norms detected. Override the */
 | |
| /*     high relative accuracy request. Issue licence to kill columns */
 | |
| /*     (set them to zero) whose norm is less than sigma_max / BIG (roughly). */
 | |
| /* #:( */
 | |
|     warning = 0;
 | |
|     if (aaqq <= sfmin) {
 | |
| 	l2rank = TRUE_;
 | |
| 	l2kill = TRUE_;
 | |
| 	warning = 1;
 | |
|     }
 | |
| 
 | |
| /*     Quick return for one-column matrix */
 | |
| /* #:) */
 | |
|     if (*n == 1) {
 | |
| 
 | |
| 	if (lsvec) {
 | |
| 	    slascl_("G", &c__0, &c__0, &sva[1], &scalem, m, &c__1, &a[a_dim1 
 | |
| 		    + 1], lda, &ierr);
 | |
| 	    slacpy_("A", m, &c__1, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| /*           computing all M left singular vectors of the M x 1 matrix */
 | |
| 	    if (n1 != *n) {
 | |
| 		i__1 = *lwork - *n;
 | |
| 		sgeqrf_(m, n, &u[u_offset], ldu, &work[1], &work[*n + 1], &
 | |
| 			i__1, &ierr);
 | |
| 		i__1 = *lwork - *n;
 | |
| 		sorgqr_(m, &n1, &c__1, &u[u_offset], ldu, &work[1], &work[*n 
 | |
| 			+ 1], &i__1, &ierr);
 | |
| 		scopy_(m, &a[a_dim1 + 1], &c__1, &u[u_dim1 + 1], &c__1);
 | |
| 	    }
 | |
| 	}
 | |
| 	if (rsvec) {
 | |
| 	    v[v_dim1 + 1] = 1.f;
 | |
| 	}
 | |
| 	if (sva[1] < big * scalem) {
 | |
| 	    sva[1] /= scalem;
 | |
| 	    scalem = 1.f;
 | |
| 	}
 | |
| 	work[1] = 1.f / scalem;
 | |
| 	work[2] = 1.f;
 | |
| 	if (sva[1] != 0.f) {
 | |
| 	    iwork[1] = 1;
 | |
| 	    if (sva[1] / scalem >= sfmin) {
 | |
| 		iwork[2] = 1;
 | |
| 	    } else {
 | |
| 		iwork[2] = 0;
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    iwork[1] = 0;
 | |
| 	    iwork[2] = 0;
 | |
| 	}
 | |
| 	iwork[3] = 0;
 | |
| 	if (errest) {
 | |
| 	    work[3] = 1.f;
 | |
| 	}
 | |
| 	if (lsvec && rsvec) {
 | |
| 	    work[4] = 1.f;
 | |
| 	    work[5] = 1.f;
 | |
| 	}
 | |
| 	if (l2tran) {
 | |
| 	    work[6] = 0.f;
 | |
| 	    work[7] = 0.f;
 | |
| 	}
 | |
| 	return;
 | |
| 
 | |
|     }
 | |
| 
 | |
|     transp = FALSE_;
 | |
|     l2tran = l2tran && *m == *n;
 | |
| 
 | |
|     aatmax = -1.f;
 | |
|     aatmin = big;
 | |
|     if (rowpiv || l2tran) {
 | |
| 
 | |
| /*     Compute the row norms, needed to determine row pivoting sequence */
 | |
| /*     (in the case of heavily row weighted A, row pivoting is strongly */
 | |
| /*     advised) and to collect information needed to compare the */
 | |
| /*     structures of A * A^t and A^t * A (in the case L2TRAN.EQ..TRUE.). */
 | |
| 
 | |
| 	if (l2tran) {
 | |
| 	    i__1 = *m;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		xsc = 0.f;
 | |
| 		temp1 = 1.f;
 | |
| 		slassq_(n, &a[p + a_dim1], lda, &xsc, &temp1);
 | |
| /*              SLASSQ gets both the ell_2 and the ell_infinity norm */
 | |
| /*              in one pass through the vector */
 | |
| 		work[*m + *n + p] = xsc * scalem;
 | |
| 		work[*n + p] = xsc * (scalem * sqrt(temp1));
 | |
| /* Computing MAX */
 | |
| 		r__1 = aatmax, r__2 = work[*n + p];
 | |
| 		aatmax = f2cmax(r__1,r__2);
 | |
| 		if (work[*n + p] != 0.f) {
 | |
| /* Computing MIN */
 | |
| 		    r__1 = aatmin, r__2 = work[*n + p];
 | |
| 		    aatmin = f2cmin(r__1,r__2);
 | |
| 		}
 | |
| /* L1950: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = *m;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		work[*m + *n + p] = scalem * (r__1 = a[p + isamax_(n, &a[p + 
 | |
| 			a_dim1], lda) * a_dim1], abs(r__1));
 | |
| /* Computing MAX */
 | |
| 		r__1 = aatmax, r__2 = work[*m + *n + p];
 | |
| 		aatmax = f2cmax(r__1,r__2);
 | |
| /* Computing MIN */
 | |
| 		r__1 = aatmin, r__2 = work[*m + *n + p];
 | |
| 		aatmin = f2cmin(r__1,r__2);
 | |
| /* L1904: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| 
 | |
| /*     For square matrix A try to determine whether A^t  would be  better */
 | |
| /*     input for the preconditioned Jacobi SVD, with faster convergence. */
 | |
| /*     The decision is based on an O(N) function of the vector of column */
 | |
| /*     and row norms of A, based on the Shannon entropy. This should give */
 | |
| /*     the right choice in most cases when the difference actually matters. */
 | |
| /*     It may fail and pick the slower converging side. */
 | |
| 
 | |
|     entra = 0.f;
 | |
|     entrat = 0.f;
 | |
|     if (l2tran) {
 | |
| 
 | |
| 	xsc = 0.f;
 | |
| 	temp1 = 1.f;
 | |
| 	slassq_(n, &sva[1], &c__1, &xsc, &temp1);
 | |
| 	temp1 = 1.f / temp1;
 | |
| 
 | |
| 	entra = 0.f;
 | |
| 	i__1 = *n;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| /* Computing 2nd power */
 | |
| 	    r__1 = sva[p] / xsc;
 | |
| 	    big1 = r__1 * r__1 * temp1;
 | |
| 	    if (big1 != 0.f) {
 | |
| 		entra += big1 * log(big1);
 | |
| 	    }
 | |
| /* L1113: */
 | |
| 	}
 | |
| 	entra = -entra / log((real) (*n));
 | |
| 
 | |
| /*        Now, SVA().^2/Trace(A^t * A) is a point in the probability simplex. */
 | |
| /*        It is derived from the diagonal of  A^t * A.  Do the same with the */
 | |
| /*        diagonal of A * A^t, compute the entropy of the corresponding */
 | |
| /*        probability distribution. Note that A * A^t and A^t * A have the */
 | |
| /*        same trace. */
 | |
| 
 | |
| 	entrat = 0.f;
 | |
| 	i__1 = *n + *m;
 | |
| 	for (p = *n + 1; p <= i__1; ++p) {
 | |
| /* Computing 2nd power */
 | |
| 	    r__1 = work[p] / xsc;
 | |
| 	    big1 = r__1 * r__1 * temp1;
 | |
| 	    if (big1 != 0.f) {
 | |
| 		entrat += big1 * log(big1);
 | |
| 	    }
 | |
| /* L1114: */
 | |
| 	}
 | |
| 	entrat = -entrat / log((real) (*m));
 | |
| 
 | |
| /*        Analyze the entropies and decide A or A^t. Smaller entropy */
 | |
| /*        usually means better input for the algorithm. */
 | |
| 
 | |
| 	transp = entrat < entra;
 | |
| 
 | |
| /*        If A^t is better than A, transpose A. */
 | |
| 
 | |
| 	if (transp) {
 | |
| /*           In an optimal implementation, this trivial transpose */
 | |
| /*           should be replaced with faster transpose. */
 | |
| 	    i__1 = *n - 1;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		i__2 = *n;
 | |
| 		for (q = p + 1; q <= i__2; ++q) {
 | |
| 		    temp1 = a[q + p * a_dim1];
 | |
| 		    a[q + p * a_dim1] = a[p + q * a_dim1];
 | |
| 		    a[p + q * a_dim1] = temp1;
 | |
| /* L1116: */
 | |
| 		}
 | |
| /* L1115: */
 | |
| 	    }
 | |
| 	    i__1 = *n;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		work[*m + *n + p] = sva[p];
 | |
| 		sva[p] = work[*n + p];
 | |
| /* L1117: */
 | |
| 	    }
 | |
| 	    temp1 = aapp;
 | |
| 	    aapp = aatmax;
 | |
| 	    aatmax = temp1;
 | |
| 	    temp1 = aaqq;
 | |
| 	    aaqq = aatmin;
 | |
| 	    aatmin = temp1;
 | |
| 	    kill = lsvec;
 | |
| 	    lsvec = rsvec;
 | |
| 	    rsvec = kill;
 | |
| 	    if (lsvec) {
 | |
| 		n1 = *n;
 | |
| 	    }
 | |
| 
 | |
| 	    rowpiv = TRUE_;
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| /*     END IF L2TRAN */
 | |
| 
 | |
| /*     Scale the matrix so that its maximal singular value remains less */
 | |
| /*     than SQRT(BIG) -- the matrix is scaled so that its maximal column */
 | |
| /*     has Euclidean norm equal to SQRT(BIG/N). The only reason to keep */
 | |
| /*     SQRT(BIG) instead of BIG is the fact that SGEJSV uses LAPACK and */
 | |
| /*     BLAS routines that, in some implementations, are not capable of */
 | |
| /*     working in the full interval [SFMIN,BIG] and that they may provoke */
 | |
| /*     overflows in the intermediate results. If the singular values spread */
 | |
| /*     from SFMIN to BIG, then SGESVJ will compute them. So, in that case, */
 | |
| /*     one should use SGESVJ instead of SGEJSV. */
 | |
| 
 | |
|     big1 = sqrt(big);
 | |
|     temp1 = sqrt(big / (real) (*n));
 | |
| 
 | |
|     slascl_("G", &c__0, &c__0, &aapp, &temp1, n, &c__1, &sva[1], n, &ierr);
 | |
|     if (aaqq > aapp * sfmin) {
 | |
| 	aaqq = aaqq / aapp * temp1;
 | |
|     } else {
 | |
| 	aaqq = aaqq * temp1 / aapp;
 | |
|     }
 | |
|     temp1 *= scalem;
 | |
|     slascl_("G", &c__0, &c__0, &aapp, &temp1, m, n, &a[a_offset], lda, &ierr);
 | |
| 
 | |
| /*     To undo scaling at the end of this procedure, multiply the */
 | |
| /*     computed singular values with USCAL2 / USCAL1. */
 | |
| 
 | |
|     uscal1 = temp1;
 | |
|     uscal2 = aapp;
 | |
| 
 | |
|     if (l2kill) {
 | |
| /*        L2KILL enforces computation of nonzero singular values in */
 | |
| /*        the restricted range of condition number of the initial A, */
 | |
| /*        sigma_max(A) / sigma_min(A) approx. SQRT(BIG)/SQRT(SFMIN). */
 | |
| 	xsc = sqrt(sfmin);
 | |
|     } else {
 | |
| 	xsc = small;
 | |
| 
 | |
| /*        Now, if the condition number of A is too big, */
 | |
| /*        sigma_max(A) / sigma_min(A) .GT. SQRT(BIG/N) * EPSLN / SFMIN, */
 | |
| /*        as a precaution measure, the full SVD is computed using SGESVJ */
 | |
| /*        with accumulated Jacobi rotations. This provides numerically */
 | |
| /*        more robust computation, at the cost of slightly increased run */
 | |
| /*        time. Depending on the concrete implementation of BLAS and LAPACK */
 | |
| /*        (i.e. how they behave in presence of extreme ill-conditioning) the */
 | |
| /*        implementor may decide to remove this switch. */
 | |
| 	if (aaqq < sqrt(sfmin) && lsvec && rsvec) {
 | |
| 	    jracc = TRUE_;
 | |
| 	}
 | |
| 
 | |
|     }
 | |
|     if (aaqq < xsc) {
 | |
| 	i__1 = *n;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    if (sva[p] < xsc) {
 | |
| 		slaset_("A", m, &c__1, &c_b34, &c_b34, &a[p * a_dim1 + 1], 
 | |
| 			lda);
 | |
| 		sva[p] = 0.f;
 | |
| 	    }
 | |
| /* L700: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| /*     Preconditioning using QR factorization with pivoting */
 | |
| 
 | |
|     if (rowpiv) {
 | |
| /*        Optional row permutation (Bjoerck row pivoting): */
 | |
| /*        A result by Cox and Higham shows that the Bjoerck's */
 | |
| /*        row pivoting combined with standard column pivoting */
 | |
| /*        has similar effect as Powell-Reid complete pivoting. */
 | |
| /*        The ell-infinity norms of A are made nonincreasing. */
 | |
| 	i__1 = *m - 1;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    i__2 = *m - p + 1;
 | |
| 	    q = isamax_(&i__2, &work[*m + *n + p], &c__1) + p - 1;
 | |
| 	    iwork[(*n << 1) + p] = q;
 | |
| 	    if (p != q) {
 | |
| 		temp1 = work[*m + *n + p];
 | |
| 		work[*m + *n + p] = work[*m + *n + q];
 | |
| 		work[*m + *n + q] = temp1;
 | |
| 	    }
 | |
| /* L1952: */
 | |
| 	}
 | |
| 	i__1 = *m - 1;
 | |
| 	slaswp_(n, &a[a_offset], lda, &c__1, &i__1, &iwork[(*n << 1) + 1], &
 | |
| 		c__1);
 | |
|     }
 | |
| 
 | |
| /*     End of the preparation phase (scaling, optional sorting and */
 | |
| /*     transposing, optional flushing of small columns). */
 | |
| 
 | |
| /*     Preconditioning */
 | |
| 
 | |
| /*     If the full SVD is needed, the right singular vectors are computed */
 | |
| /*     from a matrix equation, and for that we need theoretical analysis */
 | |
| /*     of the Businger-Golub pivoting. So we use SGEQP3 as the first RR QRF. */
 | |
| /*     In all other cases the first RR QRF can be chosen by other criteria */
 | |
| /*     (eg speed by replacing global with restricted window pivoting, such */
 | |
| /*     as in SGEQPX from TOMS # 782). Good results will be obtained using */
 | |
| /*     SGEQPX with properly (!) chosen numerical parameters. */
 | |
| /*     Any improvement of SGEQP3 improves overal performance of SGEJSV. */
 | |
| 
 | |
| /*     A * P1 = Q1 * [ R1^t 0]^t: */
 | |
|     i__1 = *n;
 | |
|     for (p = 1; p <= i__1; ++p) {
 | |
| 	iwork[p] = 0;
 | |
| /* L1963: */
 | |
|     }
 | |
|     i__1 = *lwork - *n;
 | |
|     sgeqp3_(m, n, &a[a_offset], lda, &iwork[1], &work[1], &work[*n + 1], &
 | |
| 	    i__1, &ierr);
 | |
| 
 | |
| /*     The upper triangular matrix R1 from the first QRF is inspected for */
 | |
| /*     rank deficiency and possibilities for deflation, or possible */
 | |
| /*     ill-conditioning. Depending on the user specified flag L2RANK, */
 | |
| /*     the procedure explores possibilities to reduce the numerical */
 | |
| /*     rank by inspecting the computed upper triangular factor. If */
 | |
| /*     L2RANK or L2ABER are up, then SGEJSV will compute the SVD of */
 | |
| /*     A + dA, where ||dA|| <= f(M,N)*EPSLN. */
 | |
| 
 | |
|     nr = 1;
 | |
|     if (l2aber) {
 | |
| /*        Standard absolute error bound suffices. All sigma_i with */
 | |
| /*        sigma_i < N*EPSLN*||A|| are flushed to zero. This is an */
 | |
| /*        aggressive enforcement of lower numerical rank by introducing a */
 | |
| /*        backward error of the order of N*EPSLN*||A||. */
 | |
| 	temp1 = sqrt((real) (*n)) * epsln;
 | |
| 	i__1 = *n;
 | |
| 	for (p = 2; p <= i__1; ++p) {
 | |
| 	    if ((r__2 = a[p + p * a_dim1], abs(r__2)) >= temp1 * (r__1 = a[
 | |
| 		    a_dim1 + 1], abs(r__1))) {
 | |
| 		++nr;
 | |
| 	    } else {
 | |
| 		goto L3002;
 | |
| 	    }
 | |
| /* L3001: */
 | |
| 	}
 | |
| L3002:
 | |
| 	;
 | |
|     } else if (l2rank) {
 | |
| /*        Sudden drop on the diagonal of R1 is used as the criterion for */
 | |
| /*        close-to-rank-deficient. */
 | |
| 	temp1 = sqrt(sfmin);
 | |
| 	i__1 = *n;
 | |
| 	for (p = 2; p <= i__1; ++p) {
 | |
| 	    if ((r__2 = a[p + p * a_dim1], abs(r__2)) < epsln * (r__1 = a[p - 
 | |
| 		    1 + (p - 1) * a_dim1], abs(r__1)) || (r__3 = a[p + p * 
 | |
| 		    a_dim1], abs(r__3)) < small || l2kill && (r__4 = a[p + p *
 | |
| 		     a_dim1], abs(r__4)) < temp1) {
 | |
| 		goto L3402;
 | |
| 	    }
 | |
| 	    ++nr;
 | |
| /* L3401: */
 | |
| 	}
 | |
| L3402:
 | |
| 
 | |
| 	;
 | |
|     } else {
 | |
| /*        The goal is high relative accuracy. However, if the matrix */
 | |
| /*        has high scaled condition number the relative accuracy is in */
 | |
| /*        general not feasible. Later on, a condition number estimator */
 | |
| /*        will be deployed to estimate the scaled condition number. */
 | |
| /*        Here we just remove the underflowed part of the triangular */
 | |
| /*        factor. This prevents the situation in which the code is */
 | |
| /*        working hard to get the accuracy not warranted by the data. */
 | |
| 	temp1 = sqrt(sfmin);
 | |
| 	i__1 = *n;
 | |
| 	for (p = 2; p <= i__1; ++p) {
 | |
| 	    if ((r__1 = a[p + p * a_dim1], abs(r__1)) < small || l2kill && (
 | |
| 		    r__2 = a[p + p * a_dim1], abs(r__2)) < temp1) {
 | |
| 		goto L3302;
 | |
| 	    }
 | |
| 	    ++nr;
 | |
| /* L3301: */
 | |
| 	}
 | |
| L3302:
 | |
| 
 | |
| 	;
 | |
|     }
 | |
| 
 | |
|     almort = FALSE_;
 | |
|     if (nr == *n) {
 | |
| 	maxprj = 1.f;
 | |
| 	i__1 = *n;
 | |
| 	for (p = 2; p <= i__1; ++p) {
 | |
| 	    temp1 = (r__1 = a[p + p * a_dim1], abs(r__1)) / sva[iwork[p]];
 | |
| 	    maxprj = f2cmin(maxprj,temp1);
 | |
| /* L3051: */
 | |
| 	}
 | |
| /* Computing 2nd power */
 | |
| 	r__1 = maxprj;
 | |
| 	if (r__1 * r__1 >= 1.f - (real) (*n) * epsln) {
 | |
| 	    almort = TRUE_;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
| 
 | |
|     sconda = -1.f;
 | |
|     condr1 = -1.f;
 | |
|     condr2 = -1.f;
 | |
| 
 | |
|     if (errest) {
 | |
| 	if (*n == nr) {
 | |
| 	    if (rsvec) {
 | |
| 		slacpy_("U", n, n, &a[a_offset], lda, &v[v_offset], ldv);
 | |
| 		i__1 = *n;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    temp1 = sva[iwork[p]];
 | |
| 		    r__1 = 1.f / temp1;
 | |
| 		    sscal_(&p, &r__1, &v[p * v_dim1 + 1], &c__1);
 | |
| /* L3053: */
 | |
| 		}
 | |
| 		spocon_("U", n, &v[v_offset], ldv, &c_b35, &temp1, &work[*n + 
 | |
| 			1], &iwork[(*n << 1) + *m + 1], &ierr);
 | |
| 	    } else if (lsvec) {
 | |
| 		slacpy_("U", n, n, &a[a_offset], lda, &u[u_offset], ldu);
 | |
| 		i__1 = *n;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    temp1 = sva[iwork[p]];
 | |
| 		    r__1 = 1.f / temp1;
 | |
| 		    sscal_(&p, &r__1, &u[p * u_dim1 + 1], &c__1);
 | |
| /* L3054: */
 | |
| 		}
 | |
| 		spocon_("U", n, &u[u_offset], ldu, &c_b35, &temp1, &work[*n + 
 | |
| 			1], &iwork[(*n << 1) + *m + 1], &ierr);
 | |
| 	    } else {
 | |
| 		slacpy_("U", n, n, &a[a_offset], lda, &work[*n + 1], n);
 | |
| 		i__1 = *n;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    temp1 = sva[iwork[p]];
 | |
| 		    r__1 = 1.f / temp1;
 | |
| 		    sscal_(&p, &r__1, &work[*n + (p - 1) * *n + 1], &c__1);
 | |
| /* L3052: */
 | |
| 		}
 | |
| 		spocon_("U", n, &work[*n + 1], n, &c_b35, &temp1, &work[*n + *
 | |
| 			n * *n + 1], &iwork[(*n << 1) + *m + 1], &ierr);
 | |
| 	    }
 | |
| 	    sconda = 1.f / sqrt(temp1);
 | |
| /*           SCONDA is an estimate of SQRT(||(R^t * R)^(-1)||_1). */
 | |
| /*           N^(-1/4) * SCONDA <= ||R^(-1)||_2 <= N^(1/4) * SCONDA */
 | |
| 	} else {
 | |
| 	    sconda = -1.f;
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     l2pert = l2pert && (r__1 = a[a_dim1 + 1] / a[nr + nr * a_dim1], abs(r__1))
 | |
| 	     > sqrt(big1);
 | |
| /*     If there is no violent scaling, artificial perturbation is not needed. */
 | |
| 
 | |
| /*     Phase 3: */
 | |
| 
 | |
|     if (! (rsvec || lsvec)) {
 | |
| 
 | |
| /*         Singular Values only */
 | |
| 
 | |
| /* Computing MIN */
 | |
| 	i__2 = *n - 1;
 | |
| 	i__1 = f2cmin(i__2,nr);
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    i__2 = *n - p;
 | |
| 	    scopy_(&i__2, &a[p + (p + 1) * a_dim1], lda, &a[p + 1 + p * 
 | |
| 		    a_dim1], &c__1);
 | |
| /* L1946: */
 | |
| 	}
 | |
| 
 | |
| /*        The following two DO-loops introduce small relative perturbation */
 | |
| /*        into the strict upper triangle of the lower triangular matrix. */
 | |
| /*        Small entries below the main diagonal are also changed. */
 | |
| /*        This modification is useful if the computing environment does not */
 | |
| /*        provide/allow FLUSH TO ZERO underflow, for it prevents many */
 | |
| /*        annoying denormalized numbers in case of strongly scaled matrices. */
 | |
| /*        The perturbation is structured so that it does not introduce any */
 | |
| /*        new perturbation of the singular values, and it does not destroy */
 | |
| /*        the job done by the preconditioner. */
 | |
| /*        The licence for this perturbation is in the variable L2PERT, which */
 | |
| /*        should be .FALSE. if FLUSH TO ZERO underflow is active. */
 | |
| 
 | |
| 	if (! almort) {
 | |
| 
 | |
| 	    if (l2pert) {
 | |
| /*              XSC = SQRT(SMALL) */
 | |
| 		xsc = epsln / (real) (*n);
 | |
| 		i__1 = nr;
 | |
| 		for (q = 1; q <= i__1; ++q) {
 | |
| 		    temp1 = xsc * (r__1 = a[q + q * a_dim1], abs(r__1));
 | |
| 		    i__2 = *n;
 | |
| 		    for (p = 1; p <= i__2; ++p) {
 | |
| 			if (p > q && (r__1 = a[p + q * a_dim1], abs(r__1)) <= 
 | |
| 				temp1 || p < q) {
 | |
| 			    a[p + q * a_dim1] = r_sign(&temp1, &a[p + q * 
 | |
| 				    a_dim1]);
 | |
| 			}
 | |
| /* L4949: */
 | |
| 		    }
 | |
| /* L4947: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__1 = nr - 1;
 | |
| 		i__2 = nr - 1;
 | |
| 		slaset_("U", &i__1, &i__2, &c_b34, &c_b34, &a[(a_dim1 << 1) + 
 | |
| 			1], lda);
 | |
| 	    }
 | |
| 
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    sgeqrf_(n, &nr, &a[a_offset], lda, &work[1], &work[*n + 1], &i__1,
 | |
| 		     &ierr);
 | |
| 
 | |
| 	    i__1 = nr - 1;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		i__2 = nr - p;
 | |
| 		scopy_(&i__2, &a[p + (p + 1) * a_dim1], lda, &a[p + 1 + p * 
 | |
| 			a_dim1], &c__1);
 | |
| /* L1948: */
 | |
| 	    }
 | |
| 
 | |
| 	}
 | |
| 
 | |
| /*           Row-cyclic Jacobi SVD algorithm with column pivoting */
 | |
| 
 | |
| /*           to drown denormals */
 | |
| 	if (l2pert) {
 | |
| /*              XSC = SQRT(SMALL) */
 | |
| 	    xsc = epsln / (real) (*n);
 | |
| 	    i__1 = nr;
 | |
| 	    for (q = 1; q <= i__1; ++q) {
 | |
| 		temp1 = xsc * (r__1 = a[q + q * a_dim1], abs(r__1));
 | |
| 		i__2 = nr;
 | |
| 		for (p = 1; p <= i__2; ++p) {
 | |
| 		    if (p > q && (r__1 = a[p + q * a_dim1], abs(r__1)) <= 
 | |
| 			    temp1 || p < q) {
 | |
| 			a[p + q * a_dim1] = r_sign(&temp1, &a[p + q * a_dim1])
 | |
| 				;
 | |
| 		    }
 | |
| /* L1949: */
 | |
| 		}
 | |
| /* L1947: */
 | |
| 	    }
 | |
| 	} else {
 | |
| 	    i__1 = nr - 1;
 | |
| 	    i__2 = nr - 1;
 | |
| 	    slaset_("U", &i__1, &i__2, &c_b34, &c_b34, &a[(a_dim1 << 1) + 1], 
 | |
| 		    lda);
 | |
| 	}
 | |
| 
 | |
| /*           triangular matrix (plus perturbation which is ignored in */
 | |
| /*           the part which destroys triangular form (confusing?!)) */
 | |
| 
 | |
| 	sgesvj_("L", "NoU", "NoV", &nr, &nr, &a[a_offset], lda, &sva[1], n, &
 | |
| 		v[v_offset], ldv, &work[1], lwork, info);
 | |
| 
 | |
| 	scalem = work[1];
 | |
| 	numrank = i_nint(&work[2]);
 | |
| 
 | |
| 
 | |
|     } else if (rsvec && ! lsvec) {
 | |
| 
 | |
| /*        -> Singular Values and Right Singular Vectors <- */
 | |
| 
 | |
| 	if (almort) {
 | |
| 
 | |
| 	    i__1 = nr;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		i__2 = *n - p + 1;
 | |
| 		scopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1], &
 | |
| 			c__1);
 | |
| /* L1998: */
 | |
| 	    }
 | |
| 	    i__1 = nr - 1;
 | |
| 	    i__2 = nr - 1;
 | |
| 	    slaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 
 | |
| 		    1], ldv);
 | |
| 
 | |
| 	    sgesvj_("L", "U", "N", n, &nr, &v[v_offset], ldv, &sva[1], &nr, &
 | |
| 		    a[a_offset], lda, &work[1], lwork, info);
 | |
| 	    scalem = work[1];
 | |
| 	    numrank = i_nint(&work[2]);
 | |
| 	} else {
 | |
| 
 | |
| /*        accumulated product of Jacobi rotations, three are perfect ) */
 | |
| 
 | |
| 	    i__1 = nr - 1;
 | |
| 	    i__2 = nr - 1;
 | |
| 	    slaset_("Lower", &i__1, &i__2, &c_b34, &c_b34, &a[a_dim1 + 2], 
 | |
| 		    lda);
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    sgelqf_(&nr, n, &a[a_offset], lda, &work[1], &work[*n + 1], &i__1,
 | |
| 		     &ierr);
 | |
| 	    slacpy_("Lower", &nr, &nr, &a[a_offset], lda, &v[v_offset], ldv);
 | |
| 	    i__1 = nr - 1;
 | |
| 	    i__2 = nr - 1;
 | |
| 	    slaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 
 | |
| 		    1], ldv);
 | |
| 	    i__1 = *lwork - (*n << 1);
 | |
| 	    sgeqrf_(&nr, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*n << 
 | |
| 		    1) + 1], &i__1, &ierr);
 | |
| 	    i__1 = nr;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		i__2 = nr - p + 1;
 | |
| 		scopy_(&i__2, &v[p + p * v_dim1], ldv, &v[p + p * v_dim1], &
 | |
| 			c__1);
 | |
| /* L8998: */
 | |
| 	    }
 | |
| 	    i__1 = nr - 1;
 | |
| 	    i__2 = nr - 1;
 | |
| 	    slaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 
 | |
| 		    1], ldv);
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    sgesvj_("Lower", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[1], &
 | |
| 		    nr, &u[u_offset], ldu, &work[*n + 1], &i__1, info);
 | |
| 	    scalem = work[*n + 1];
 | |
| 	    numrank = i_nint(&work[*n + 2]);
 | |
| 	    if (nr < *n) {
 | |
| 		i__1 = *n - nr;
 | |
| 		slaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + v_dim1], 
 | |
| 			ldv);
 | |
| 		i__1 = *n - nr;
 | |
| 		slaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) * v_dim1 
 | |
| 			+ 1], ldv);
 | |
| 		i__1 = *n - nr;
 | |
| 		i__2 = *n - nr;
 | |
| 		slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 + (nr + 
 | |
| 			1) * v_dim1], ldv);
 | |
| 	    }
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    sormlq_("Left", "Transpose", n, n, &nr, &a[a_offset], lda, &work[
 | |
| 		    1], &v[v_offset], ldv, &work[*n + 1], &i__1, &ierr);
 | |
| 
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *n;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    scopy_(n, &v[p + v_dim1], ldv, &a[iwork[p] + a_dim1], lda);
 | |
| /* L8991: */
 | |
| 	}
 | |
| 	slacpy_("All", n, n, &a[a_offset], lda, &v[v_offset], ldv);
 | |
| 
 | |
| 	if (transp) {
 | |
| 	    slacpy_("All", n, n, &v[v_offset], ldv, &u[u_offset], ldu);
 | |
| 	}
 | |
| 
 | |
|     } else if (lsvec && ! rsvec) {
 | |
| 
 | |
| 
 | |
| /*        Jacobi rotations in the Jacobi iterations. */
 | |
| 	i__1 = nr;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    i__2 = *n - p + 1;
 | |
| 	    scopy_(&i__2, &a[p + p * a_dim1], lda, &u[p + p * u_dim1], &c__1);
 | |
| /* L1965: */
 | |
| 	}
 | |
| 	i__1 = nr - 1;
 | |
| 	i__2 = nr - 1;
 | |
| 	slaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 1], 
 | |
| 		ldu);
 | |
| 
 | |
| 	i__1 = *lwork - (*n << 1);
 | |
| 	sgeqrf_(n, &nr, &u[u_offset], ldu, &work[*n + 1], &work[(*n << 1) + 1]
 | |
| 		, &i__1, &ierr);
 | |
| 
 | |
| 	i__1 = nr - 1;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    i__2 = nr - p;
 | |
| 	    scopy_(&i__2, &u[p + (p + 1) * u_dim1], ldu, &u[p + 1 + p * 
 | |
| 		    u_dim1], &c__1);
 | |
| /* L1967: */
 | |
| 	}
 | |
| 	i__1 = nr - 1;
 | |
| 	i__2 = nr - 1;
 | |
| 	slaset_("Upper", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 1], 
 | |
| 		ldu);
 | |
| 
 | |
| 	i__1 = *lwork - *n;
 | |
| 	sgesvj_("Lower", "U", "N", &nr, &nr, &u[u_offset], ldu, &sva[1], &nr, 
 | |
| 		&a[a_offset], lda, &work[*n + 1], &i__1, info);
 | |
| 	scalem = work[*n + 1];
 | |
| 	numrank = i_nint(&work[*n + 2]);
 | |
| 
 | |
| 	if (nr < *m) {
 | |
| 	    i__1 = *m - nr;
 | |
| 	    slaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 + u_dim1], ldu);
 | |
| 	    if (nr < n1) {
 | |
| 		i__1 = n1 - nr;
 | |
| 		slaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) * u_dim1 
 | |
| 			+ 1], ldu);
 | |
| 		i__1 = *m - nr;
 | |
| 		i__2 = n1 - nr;
 | |
| 		slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 + (nr + 
 | |
| 			1) * u_dim1], ldu);
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
| 	i__1 = *lwork - *n;
 | |
| 	sormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[1], &u[
 | |
| 		u_offset], ldu, &work[*n + 1], &i__1, &ierr);
 | |
| 
 | |
| 	if (rowpiv) {
 | |
| 	    i__1 = *m - 1;
 | |
| 	    slaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n << 1) + 
 | |
| 		    1], &c_n1);
 | |
| 	}
 | |
| 
 | |
| 	i__1 = n1;
 | |
| 	for (p = 1; p <= i__1; ++p) {
 | |
| 	    xsc = 1.f / snrm2_(m, &u[p * u_dim1 + 1], &c__1);
 | |
| 	    sscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);
 | |
| /* L1974: */
 | |
| 	}
 | |
| 
 | |
| 	if (transp) {
 | |
| 	    slacpy_("All", n, n, &u[u_offset], ldu, &v[v_offset], ldv);
 | |
| 	}
 | |
| 
 | |
|     } else {
 | |
| 
 | |
| 
 | |
| 	if (! jracc) {
 | |
| 
 | |
| 	    if (! almort) {
 | |
| 
 | |
| /*           Second Preconditioning Step (QRF [with pivoting]) */
 | |
| /*           Note that the composition of TRANSPOSE, QRF and TRANSPOSE is */
 | |
| /*           equivalent to an LQF CALL. Since in many libraries the QRF */
 | |
| /*           seems to be better optimized than the LQF, we do explicit */
 | |
| /*           transpose and use the QRF. This is subject to changes in an */
 | |
| /*           optimized implementation of SGEJSV. */
 | |
| 
 | |
| 		i__1 = nr;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    i__2 = *n - p + 1;
 | |
| 		    scopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1],
 | |
| 			     &c__1);
 | |
| /* L1968: */
 | |
| 		}
 | |
| 
 | |
| /*           denormals in the second QR factorization, where they are */
 | |
| /*           as good as zeros. This is done to avoid painfully slow */
 | |
| /*           computation with denormals. The relative size of the perturbation */
 | |
| /*           is a parameter that can be changed by the implementer. */
 | |
| /*           This perturbation device will be obsolete on machines with */
 | |
| /*           properly implemented arithmetic. */
 | |
| /*           To switch it off, set L2PERT=.FALSE. To remove it from  the */
 | |
| /*           code, remove the action under L2PERT=.TRUE., leave the ELSE part. */
 | |
| /*           The following two loops should be blocked and fused with the */
 | |
| /*           transposed copy above. */
 | |
| 
 | |
| 		if (l2pert) {
 | |
| 		    xsc = sqrt(small);
 | |
| 		    i__1 = nr;
 | |
| 		    for (q = 1; q <= i__1; ++q) {
 | |
| 			temp1 = xsc * (r__1 = v[q + q * v_dim1], abs(r__1));
 | |
| 			i__2 = *n;
 | |
| 			for (p = 1; p <= i__2; ++p) {
 | |
| 			    if (p > q && (r__1 = v[p + q * v_dim1], abs(r__1))
 | |
| 				     <= temp1 || p < q) {
 | |
| 				v[p + q * v_dim1] = r_sign(&temp1, &v[p + q * 
 | |
| 					v_dim1]);
 | |
| 			    }
 | |
| 			    if (p < q) {
 | |
| 				v[p + q * v_dim1] = -v[p + q * v_dim1];
 | |
| 			    }
 | |
| /* L2968: */
 | |
| 			}
 | |
| /* L2969: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__1 = nr - 1;
 | |
| 		    i__2 = nr - 1;
 | |
| 		    slaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 
 | |
| 			    1) + 1], ldv);
 | |
| 		}
 | |
| 
 | |
| /*           Estimate the row scaled condition number of R1 */
 | |
| /*           (If R1 is rectangular, N > NR, then the condition number */
 | |
| /*           of the leading NR x NR submatrix is estimated.) */
 | |
| 
 | |
| 		slacpy_("L", &nr, &nr, &v[v_offset], ldv, &work[(*n << 1) + 1]
 | |
| 			, &nr);
 | |
| 		i__1 = nr;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    i__2 = nr - p + 1;
 | |
| 		    temp1 = snrm2_(&i__2, &work[(*n << 1) + (p - 1) * nr + p],
 | |
| 			     &c__1);
 | |
| 		    i__2 = nr - p + 1;
 | |
| 		    r__1 = 1.f / temp1;
 | |
| 		    sscal_(&i__2, &r__1, &work[(*n << 1) + (p - 1) * nr + p], 
 | |
| 			    &c__1);
 | |
| /* L3950: */
 | |
| 		}
 | |
| 		spocon_("Lower", &nr, &work[(*n << 1) + 1], &nr, &c_b35, &
 | |
| 			temp1, &work[(*n << 1) + nr * nr + 1], &iwork[*m + (*
 | |
| 			n << 1) + 1], &ierr);
 | |
| 		condr1 = 1.f / sqrt(temp1);
 | |
| /*           R1 is OK for inverse <=> CONDR1 .LT. FLOAT(N) */
 | |
| /*           more conservative    <=> CONDR1 .LT. SQRT(FLOAT(N)) */
 | |
| 
 | |
| 		cond_ok__ = sqrt((real) nr);
 | |
| /* [TP]       COND_OK is a tuning parameter. */
 | |
| 		if (condr1 < cond_ok__) {
 | |
| /*              implementation, this QRF should be implemented as the QRF */
 | |
| /*              of a lower triangular matrix. */
 | |
| /*              R1^t = Q2 * R2 */
 | |
| 		    i__1 = *lwork - (*n << 1);
 | |
| 		    sgeqrf_(n, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*
 | |
| 			    n << 1) + 1], &i__1, &ierr);
 | |
| 
 | |
| 		    if (l2pert) {
 | |
| 			xsc = sqrt(small) / epsln;
 | |
| 			i__1 = nr;
 | |
| 			for (p = 2; p <= i__1; ++p) {
 | |
| 			    i__2 = p - 1;
 | |
| 			    for (q = 1; q <= i__2; ++q) {
 | |
| /* Computing MIN */
 | |
| 				r__3 = (r__1 = v[p + p * v_dim1], abs(r__1)), 
 | |
| 					r__4 = (r__2 = v[q + q * v_dim1], abs(
 | |
| 					r__2));
 | |
| 				temp1 = xsc * f2cmin(r__3,r__4);
 | |
| 				if ((r__1 = v[q + p * v_dim1], abs(r__1)) <= 
 | |
| 					temp1) {
 | |
| 				    v[q + p * v_dim1] = r_sign(&temp1, &v[q + 
 | |
| 					    p * v_dim1]);
 | |
| 				}
 | |
| /* L3958: */
 | |
| 			    }
 | |
| /* L3959: */
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    if (nr != *n) {
 | |
| 			slacpy_("A", n, &nr, &v[v_offset], ldv, &work[(*n << 
 | |
| 				1) + 1], n);
 | |
| 		    }
 | |
| 
 | |
| 		    i__1 = nr - 1;
 | |
| 		    for (p = 1; p <= i__1; ++p) {
 | |
| 			i__2 = nr - p;
 | |
| 			scopy_(&i__2, &v[p + (p + 1) * v_dim1], ldv, &v[p + 1 
 | |
| 				+ p * v_dim1], &c__1);
 | |
| /* L1969: */
 | |
| 		    }
 | |
| 
 | |
| 		    condr2 = condr1;
 | |
| 
 | |
| 		} else {
 | |
| 
 | |
| /*              Note that windowed pivoting would be equally good */
 | |
| /*              numerically, and more run-time efficient. So, in */
 | |
| /*              an optimal implementation, the next call to SGEQP3 */
 | |
| /*              should be replaced with eg. CALL SGEQPX (ACM TOMS #782) */
 | |
| /*              with properly (carefully) chosen parameters. */
 | |
| 
 | |
| /*              R1^t * P2 = Q2 * R2 */
 | |
| 		    i__1 = nr;
 | |
| 		    for (p = 1; p <= i__1; ++p) {
 | |
| 			iwork[*n + p] = 0;
 | |
| /* L3003: */
 | |
| 		    }
 | |
| 		    i__1 = *lwork - (*n << 1);
 | |
| 		    sgeqp3_(n, &nr, &v[v_offset], ldv, &iwork[*n + 1], &work[*
 | |
| 			    n + 1], &work[(*n << 1) + 1], &i__1, &ierr);
 | |
| /* *               CALL SGEQRF( N, NR, V, LDV, WORK(N+1), WORK(2*N+1), */
 | |
| /* *     $              LWORK-2*N, IERR ) */
 | |
| 		    if (l2pert) {
 | |
| 			xsc = sqrt(small);
 | |
| 			i__1 = nr;
 | |
| 			for (p = 2; p <= i__1; ++p) {
 | |
| 			    i__2 = p - 1;
 | |
| 			    for (q = 1; q <= i__2; ++q) {
 | |
| /* Computing MIN */
 | |
| 				r__3 = (r__1 = v[p + p * v_dim1], abs(r__1)), 
 | |
| 					r__4 = (r__2 = v[q + q * v_dim1], abs(
 | |
| 					r__2));
 | |
| 				temp1 = xsc * f2cmin(r__3,r__4);
 | |
| 				if ((r__1 = v[q + p * v_dim1], abs(r__1)) <= 
 | |
| 					temp1) {
 | |
| 				    v[q + p * v_dim1] = r_sign(&temp1, &v[q + 
 | |
| 					    p * v_dim1]);
 | |
| 				}
 | |
| /* L3968: */
 | |
| 			    }
 | |
| /* L3969: */
 | |
| 			}
 | |
| 		    }
 | |
| 
 | |
| 		    slacpy_("A", n, &nr, &v[v_offset], ldv, &work[(*n << 1) + 
 | |
| 			    1], n);
 | |
| 
 | |
| 		    if (l2pert) {
 | |
| 			xsc = sqrt(small);
 | |
| 			i__1 = nr;
 | |
| 			for (p = 2; p <= i__1; ++p) {
 | |
| 			    i__2 = p - 1;
 | |
| 			    for (q = 1; q <= i__2; ++q) {
 | |
| /* Computing MIN */
 | |
| 				r__3 = (r__1 = v[p + p * v_dim1], abs(r__1)), 
 | |
| 					r__4 = (r__2 = v[q + q * v_dim1], abs(
 | |
| 					r__2));
 | |
| 				temp1 = xsc * f2cmin(r__3,r__4);
 | |
| 				v[p + q * v_dim1] = -r_sign(&temp1, &v[q + p *
 | |
| 					 v_dim1]);
 | |
| /* L8971: */
 | |
| 			    }
 | |
| /* L8970: */
 | |
| 			}
 | |
| 		    } else {
 | |
| 			i__1 = nr - 1;
 | |
| 			i__2 = nr - 1;
 | |
| 			slaset_("L", &i__1, &i__2, &c_b34, &c_b34, &v[v_dim1 
 | |
| 				+ 2], ldv);
 | |
| 		    }
 | |
| /*              Now, compute R2 = L3 * Q3, the LQ factorization. */
 | |
| 		    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 		    sgelqf_(&nr, &nr, &v[v_offset], ldv, &work[(*n << 1) + *n 
 | |
| 			    * nr + 1], &work[(*n << 1) + *n * nr + nr + 1], &
 | |
| 			    i__1, &ierr);
 | |
| 		    slacpy_("L", &nr, &nr, &v[v_offset], ldv, &work[(*n << 1) 
 | |
| 			    + *n * nr + nr + 1], &nr);
 | |
| 		    i__1 = nr;
 | |
| 		    for (p = 1; p <= i__1; ++p) {
 | |
| 			temp1 = snrm2_(&p, &work[(*n << 1) + *n * nr + nr + p]
 | |
| 				, &nr);
 | |
| 			r__1 = 1.f / temp1;
 | |
| 			sscal_(&p, &r__1, &work[(*n << 1) + *n * nr + nr + p],
 | |
| 				 &nr);
 | |
| /* L4950: */
 | |
| 		    }
 | |
| 		    spocon_("L", &nr, &work[(*n << 1) + *n * nr + nr + 1], &
 | |
| 			    nr, &c_b35, &temp1, &work[(*n << 1) + *n * nr + 
 | |
| 			    nr + nr * nr + 1], &iwork[*m + (*n << 1) + 1], &
 | |
| 			    ierr);
 | |
| 		    condr2 = 1.f / sqrt(temp1);
 | |
| 
 | |
| 		    if (condr2 >= cond_ok__) {
 | |
| /*                 (this overwrites the copy of R2, as it will not be */
 | |
| /*                 needed in this branch, but it does not overwritte the */
 | |
| /*                 Huseholder vectors of Q2.). */
 | |
| 			slacpy_("U", &nr, &nr, &v[v_offset], ldv, &work[(*n <<
 | |
| 				 1) + 1], n);
 | |
| /*                 WORK(2*N+N*NR+1:2*N+N*NR+N) */
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| 		if (l2pert) {
 | |
| 		    xsc = sqrt(small);
 | |
| 		    i__1 = nr;
 | |
| 		    for (q = 2; q <= i__1; ++q) {
 | |
| 			temp1 = xsc * v[q + q * v_dim1];
 | |
| 			i__2 = q - 1;
 | |
| 			for (p = 1; p <= i__2; ++p) {
 | |
| /*                    V(p,q) = - SIGN( TEMP1, V(q,p) ) */
 | |
| 			    v[p + q * v_dim1] = -r_sign(&temp1, &v[p + q * 
 | |
| 				    v_dim1]);
 | |
| /* L4969: */
 | |
| 			}
 | |
| /* L4968: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__1 = nr - 1;
 | |
| 		    i__2 = nr - 1;
 | |
| 		    slaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 
 | |
| 			    1) + 1], ldv);
 | |
| 		}
 | |
| 
 | |
| /*        Second preconditioning finished; continue with Jacobi SVD */
 | |
| /*        The input matrix is lower trinagular. */
 | |
| 
 | |
| /*        Recover the right singular vectors as solution of a well */
 | |
| /*        conditioned triangular matrix equation. */
 | |
| 
 | |
| 		if (condr1 < cond_ok__) {
 | |
| 
 | |
| 		    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 		    sgesvj_("L", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[
 | |
| 			    1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *
 | |
| 			     nr + nr + 1], &i__1, info);
 | |
| 		    scalem = work[(*n << 1) + *n * nr + nr + 1];
 | |
| 		    numrank = i_nint(&work[(*n << 1) + *n * nr + nr + 2]);
 | |
| 		    i__1 = nr;
 | |
| 		    for (p = 1; p <= i__1; ++p) {
 | |
| 			scopy_(&nr, &v[p * v_dim1 + 1], &c__1, &u[p * u_dim1 
 | |
| 				+ 1], &c__1);
 | |
| 			sscal_(&nr, &sva[p], &v[p * v_dim1 + 1], &c__1);
 | |
| /* L3970: */
 | |
| 		    }
 | |
| 
 | |
| 		    if (nr == *n) {
 | |
| /* :))             .. best case, R1 is inverted. The solution of this matrix */
 | |
| /*                 equation is Q2*V2 = the product of the Jacobi rotations */
 | |
| /*                 used in SGESVJ, premultiplied with the orthogonal matrix */
 | |
| /*                 from the second QR factorization. */
 | |
| 			strsm_("L", "U", "N", "N", &nr, &nr, &c_b35, &a[
 | |
| 				a_offset], lda, &v[v_offset], ldv);
 | |
| 		    } else {
 | |
| /*                 is inverted to get the product of the Jacobi rotations */
 | |
| /*                 used in SGESVJ. The Q-factor from the second QR */
 | |
| /*                 factorization is then built in explicitly. */
 | |
| 			strsm_("L", "U", "T", "N", &nr, &nr, &c_b35, &work[(*
 | |
| 				n << 1) + 1], n, &v[v_offset], ldv);
 | |
| 			if (nr < *n) {
 | |
| 			    i__1 = *n - nr;
 | |
| 			    slaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 
 | |
| 				    1 + v_dim1], ldv);
 | |
| 			    i__1 = *n - nr;
 | |
| 			    slaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 
 | |
| 				    1) * v_dim1 + 1], ldv);
 | |
| 			    i__1 = *n - nr;
 | |
| 			    i__2 = *n - nr;
 | |
| 			    slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr 
 | |
| 				    + 1 + (nr + 1) * v_dim1], ldv);
 | |
| 			}
 | |
| 			i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 			sormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, 
 | |
| 				&work[*n + 1], &v[v_offset], ldv, &work[(*n <<
 | |
| 				 1) + *n * nr + nr + 1], &i__1, &ierr);
 | |
| 		    }
 | |
| 
 | |
| 		} else if (condr2 < cond_ok__) {
 | |
| 
 | |
| /* :)           .. the input matrix A is very likely a relative of */
 | |
| /*              the Kahan matrix :) */
 | |
| /*              The matrix R2 is inverted. The solution of the matrix equation */
 | |
| /*              is Q3^T*V3 = the product of the Jacobi rotations (appplied to */
 | |
| /*              the lower triangular L3 from the LQ factorization of */
 | |
| /*              R2=L3*Q3), pre-multiplied with the transposed Q3. */
 | |
| 		    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 		    sgesvj_("L", "U", "N", &nr, &nr, &v[v_offset], ldv, &sva[
 | |
| 			    1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *
 | |
| 			     nr + nr + 1], &i__1, info);
 | |
| 		    scalem = work[(*n << 1) + *n * nr + nr + 1];
 | |
| 		    numrank = i_nint(&work[(*n << 1) + *n * nr + nr + 2]);
 | |
| 		    i__1 = nr;
 | |
| 		    for (p = 1; p <= i__1; ++p) {
 | |
| 			scopy_(&nr, &v[p * v_dim1 + 1], &c__1, &u[p * u_dim1 
 | |
| 				+ 1], &c__1);
 | |
| 			sscal_(&nr, &sva[p], &u[p * u_dim1 + 1], &c__1);
 | |
| /* L3870: */
 | |
| 		    }
 | |
| 		    strsm_("L", "U", "N", "N", &nr, &nr, &c_b35, &work[(*n << 
 | |
| 			    1) + 1], n, &u[u_offset], ldu);
 | |
| 		    i__1 = nr;
 | |
| 		    for (q = 1; q <= i__1; ++q) {
 | |
| 			i__2 = nr;
 | |
| 			for (p = 1; p <= i__2; ++p) {
 | |
| 			    work[(*n << 1) + *n * nr + nr + iwork[*n + p]] = 
 | |
| 				    u[p + q * u_dim1];
 | |
| /* L872: */
 | |
| 			}
 | |
| 			i__2 = nr;
 | |
| 			for (p = 1; p <= i__2; ++p) {
 | |
| 			    u[p + q * u_dim1] = work[(*n << 1) + *n * nr + nr 
 | |
| 				    + p];
 | |
| /* L874: */
 | |
| 			}
 | |
| /* L873: */
 | |
| 		    }
 | |
| 		    if (nr < *n) {
 | |
| 			i__1 = *n - nr;
 | |
| 			slaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + 
 | |
| 				v_dim1], ldv);
 | |
| 			i__1 = *n - nr;
 | |
| 			slaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) *
 | |
| 				 v_dim1 + 1], ldv);
 | |
| 			i__1 = *n - nr;
 | |
| 			i__2 = *n - nr;
 | |
| 			slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 
 | |
| 				+ (nr + 1) * v_dim1], ldv);
 | |
| 		    }
 | |
| 		    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 		    sormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &
 | |
| 			    work[*n + 1], &v[v_offset], ldv, &work[(*n << 1) 
 | |
| 			    + *n * nr + nr + 1], &i__1, &ierr);
 | |
| 		} else {
 | |
| /*              Last line of defense. */
 | |
| /* #:(          This is a rather pathological case: no scaled condition */
 | |
| /*              improvement after two pivoted QR factorizations. Other */
 | |
| /*              possibility is that the rank revealing QR factorization */
 | |
| /*              or the condition estimator has failed, or the COND_OK */
 | |
| /*              is set very close to ONE (which is unnecessary). Normally, */
 | |
| /*              this branch should never be executed, but in rare cases of */
 | |
| /*              failure of the RRQR or condition estimator, the last line of */
 | |
| /*              defense ensures that SGEJSV completes the task. */
 | |
| /*              Compute the full SVD of L3 using SGESVJ with explicit */
 | |
| /*              accumulation of Jacobi rotations. */
 | |
| 		    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 		    sgesvj_("L", "U", "V", &nr, &nr, &v[v_offset], ldv, &sva[
 | |
| 			    1], &nr, &u[u_offset], ldu, &work[(*n << 1) + *n *
 | |
| 			     nr + nr + 1], &i__1, info);
 | |
| 		    scalem = work[(*n << 1) + *n * nr + nr + 1];
 | |
| 		    numrank = i_nint(&work[(*n << 1) + *n * nr + nr + 2]);
 | |
| 		    if (nr < *n) {
 | |
| 			i__1 = *n - nr;
 | |
| 			slaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + 
 | |
| 				v_dim1], ldv);
 | |
| 			i__1 = *n - nr;
 | |
| 			slaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) *
 | |
| 				 v_dim1 + 1], ldv);
 | |
| 			i__1 = *n - nr;
 | |
| 			i__2 = *n - nr;
 | |
| 			slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 
 | |
| 				+ (nr + 1) * v_dim1], ldv);
 | |
| 		    }
 | |
| 		    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 		    sormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &
 | |
| 			    work[*n + 1], &v[v_offset], ldv, &work[(*n << 1) 
 | |
| 			    + *n * nr + nr + 1], &i__1, &ierr);
 | |
| 
 | |
| 		    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 		    sormlq_("L", "T", &nr, &nr, &nr, &work[(*n << 1) + 1], n, 
 | |
| 			    &work[(*n << 1) + *n * nr + 1], &u[u_offset], ldu,
 | |
| 			     &work[(*n << 1) + *n * nr + nr + 1], &i__1, &
 | |
| 			    ierr);
 | |
| 		    i__1 = nr;
 | |
| 		    for (q = 1; q <= i__1; ++q) {
 | |
| 			i__2 = nr;
 | |
| 			for (p = 1; p <= i__2; ++p) {
 | |
| 			    work[(*n << 1) + *n * nr + nr + iwork[*n + p]] = 
 | |
| 				    u[p + q * u_dim1];
 | |
| /* L772: */
 | |
| 			}
 | |
| 			i__2 = nr;
 | |
| 			for (p = 1; p <= i__2; ++p) {
 | |
| 			    u[p + q * u_dim1] = work[(*n << 1) + *n * nr + nr 
 | |
| 				    + p];
 | |
| /* L774: */
 | |
| 			}
 | |
| /* L773: */
 | |
| 		    }
 | |
| 
 | |
| 		}
 | |
| 
 | |
| /*           Permute the rows of V using the (column) permutation from the */
 | |
| /*           first QRF. Also, scale the columns to make them unit in */
 | |
| /*           Euclidean norm. This applies to all cases. */
 | |
| 
 | |
| 		temp1 = sqrt((real) (*n)) * epsln;
 | |
| 		i__1 = *n;
 | |
| 		for (q = 1; q <= i__1; ++q) {
 | |
| 		    i__2 = *n;
 | |
| 		    for (p = 1; p <= i__2; ++p) {
 | |
| 			work[(*n << 1) + *n * nr + nr + iwork[p]] = v[p + q * 
 | |
| 				v_dim1];
 | |
| /* L972: */
 | |
| 		    }
 | |
| 		    i__2 = *n;
 | |
| 		    for (p = 1; p <= i__2; ++p) {
 | |
| 			v[p + q * v_dim1] = work[(*n << 1) + *n * nr + nr + p]
 | |
| 				;
 | |
| /* L973: */
 | |
| 		    }
 | |
| 		    xsc = 1.f / snrm2_(n, &v[q * v_dim1 + 1], &c__1);
 | |
| 		    if (xsc < 1.f - temp1 || xsc > temp1 + 1.f) {
 | |
| 			sscal_(n, &xsc, &v[q * v_dim1 + 1], &c__1);
 | |
| 		    }
 | |
| /* L1972: */
 | |
| 		}
 | |
| /*           At this moment, V contains the right singular vectors of A. */
 | |
| /*           Next, assemble the left singular vector matrix U (M x N). */
 | |
| 		if (nr < *m) {
 | |
| 		    i__1 = *m - nr;
 | |
| 		    slaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 + 
 | |
| 			    u_dim1], ldu);
 | |
| 		    if (nr < n1) {
 | |
| 			i__1 = n1 - nr;
 | |
| 			slaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) *
 | |
| 				 u_dim1 + 1], ldu);
 | |
| 			i__1 = *m - nr;
 | |
| 			i__2 = n1 - nr;
 | |
| 			slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 
 | |
| 				+ (nr + 1) * u_dim1], ldu);
 | |
| 		    }
 | |
| 		}
 | |
| 
 | |
| /*           The Q matrix from the first QRF is built into the left singular */
 | |
| /*           matrix U. This applies to all cases. */
 | |
| 
 | |
| 		i__1 = *lwork - *n;
 | |
| 		sormqr_("Left", "No_Tr", m, &n1, n, &a[a_offset], lda, &work[
 | |
| 			1], &u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);
 | |
| /*           The columns of U are normalized. The cost is O(M*N) flops. */
 | |
| 		temp1 = sqrt((real) (*m)) * epsln;
 | |
| 		i__1 = nr;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    xsc = 1.f / snrm2_(m, &u[p * u_dim1 + 1], &c__1);
 | |
| 		    if (xsc < 1.f - temp1 || xsc > temp1 + 1.f) {
 | |
| 			sscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);
 | |
| 		    }
 | |
| /* L1973: */
 | |
| 		}
 | |
| 
 | |
| /*           If the initial QRF is computed with row pivoting, the left */
 | |
| /*           singular vectors must be adjusted. */
 | |
| 
 | |
| 		if (rowpiv) {
 | |
| 		    i__1 = *m - 1;
 | |
| 		    slaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n 
 | |
| 			    << 1) + 1], &c_n1);
 | |
| 		}
 | |
| 
 | |
| 	    } else {
 | |
| 
 | |
| /*        the second QRF is not needed */
 | |
| 
 | |
| 		slacpy_("Upper", n, n, &a[a_offset], lda, &work[*n + 1], n);
 | |
| 		if (l2pert) {
 | |
| 		    xsc = sqrt(small);
 | |
| 		    i__1 = *n;
 | |
| 		    for (p = 2; p <= i__1; ++p) {
 | |
| 			temp1 = xsc * work[*n + (p - 1) * *n + p];
 | |
| 			i__2 = p - 1;
 | |
| 			for (q = 1; q <= i__2; ++q) {
 | |
| 			    work[*n + (q - 1) * *n + p] = -r_sign(&temp1, &
 | |
| 				    work[*n + (p - 1) * *n + q]);
 | |
| /* L5971: */
 | |
| 			}
 | |
| /* L5970: */
 | |
| 		    }
 | |
| 		} else {
 | |
| 		    i__1 = *n - 1;
 | |
| 		    i__2 = *n - 1;
 | |
| 		    slaset_("Lower", &i__1, &i__2, &c_b34, &c_b34, &work[*n + 
 | |
| 			    2], n);
 | |
| 		}
 | |
| 
 | |
| 		i__1 = *lwork - *n - *n * *n;
 | |
| 		sgesvj_("Upper", "U", "N", n, n, &work[*n + 1], n, &sva[1], n,
 | |
| 			 &u[u_offset], ldu, &work[*n + *n * *n + 1], &i__1, 
 | |
| 			info);
 | |
| 
 | |
| 		scalem = work[*n + *n * *n + 1];
 | |
| 		numrank = i_nint(&work[*n + *n * *n + 2]);
 | |
| 		i__1 = *n;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    scopy_(n, &work[*n + (p - 1) * *n + 1], &c__1, &u[p * 
 | |
| 			    u_dim1 + 1], &c__1);
 | |
| 		    sscal_(n, &sva[p], &work[*n + (p - 1) * *n + 1], &c__1);
 | |
| /* L6970: */
 | |
| 		}
 | |
| 
 | |
| 		strsm_("Left", "Upper", "NoTrans", "No UD", n, n, &c_b35, &a[
 | |
| 			a_offset], lda, &work[*n + 1], n);
 | |
| 		i__1 = *n;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    scopy_(n, &work[*n + p], n, &v[iwork[p] + v_dim1], ldv);
 | |
| /* L6972: */
 | |
| 		}
 | |
| 		temp1 = sqrt((real) (*n)) * epsln;
 | |
| 		i__1 = *n;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    xsc = 1.f / snrm2_(n, &v[p * v_dim1 + 1], &c__1);
 | |
| 		    if (xsc < 1.f - temp1 || xsc > temp1 + 1.f) {
 | |
| 			sscal_(n, &xsc, &v[p * v_dim1 + 1], &c__1);
 | |
| 		    }
 | |
| /* L6971: */
 | |
| 		}
 | |
| 
 | |
| /*           Assemble the left singular vector matrix U (M x N). */
 | |
| 
 | |
| 		if (*n < *m) {
 | |
| 		    i__1 = *m - *n;
 | |
| 		    slaset_("A", &i__1, n, &c_b34, &c_b34, &u[*n + 1 + u_dim1]
 | |
| 			    , ldu);
 | |
| 		    if (*n < n1) {
 | |
| 			i__1 = n1 - *n;
 | |
| 			slaset_("A", n, &i__1, &c_b34, &c_b34, &u[(*n + 1) * 
 | |
| 				u_dim1 + 1], ldu);
 | |
| 			i__1 = *m - *n;
 | |
| 			i__2 = n1 - *n;
 | |
| 			slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[*n + 1 
 | |
| 				+ (*n + 1) * u_dim1], ldu);
 | |
| 		    }
 | |
| 		}
 | |
| 		i__1 = *lwork - *n;
 | |
| 		sormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[
 | |
| 			1], &u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);
 | |
| 		temp1 = sqrt((real) (*m)) * epsln;
 | |
| 		i__1 = n1;
 | |
| 		for (p = 1; p <= i__1; ++p) {
 | |
| 		    xsc = 1.f / snrm2_(m, &u[p * u_dim1 + 1], &c__1);
 | |
| 		    if (xsc < 1.f - temp1 || xsc > temp1 + 1.f) {
 | |
| 			sscal_(m, &xsc, &u[p * u_dim1 + 1], &c__1);
 | |
| 		    }
 | |
| /* L6973: */
 | |
| 		}
 | |
| 
 | |
| 		if (rowpiv) {
 | |
| 		    i__1 = *m - 1;
 | |
| 		    slaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n 
 | |
| 			    << 1) + 1], &c_n1);
 | |
| 		}
 | |
| 
 | |
| 	    }
 | |
| 
 | |
| /*        end of the  >> almost orthogonal case <<  in the full SVD */
 | |
| 
 | |
| 	} else {
 | |
| 
 | |
| /*        This branch deploys a preconditioned Jacobi SVD with explicitly */
 | |
| /*        accumulated rotations. It is included as optional, mainly for */
 | |
| /*        experimental purposes. It does perform well, and can also be used. */
 | |
| /*        In this implementation, this branch will be automatically activated */
 | |
| /*        if the  condition number sigma_max(A) / sigma_min(A) is predicted */
 | |
| /*        to be greater than the overflow threshold. This is because the */
 | |
| /*        a posteriori computation of the singular vectors assumes robust */
 | |
| /*        implementation of BLAS and some LAPACK procedures, capable of working */
 | |
| /*        in presence of extreme values. Since that is not always the case, ... */
 | |
| 
 | |
| 	    i__1 = nr;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		i__2 = *n - p + 1;
 | |
| 		scopy_(&i__2, &a[p + p * a_dim1], lda, &v[p + p * v_dim1], &
 | |
| 			c__1);
 | |
| /* L7968: */
 | |
| 	    }
 | |
| 
 | |
| 	    if (l2pert) {
 | |
| 		xsc = sqrt(small / epsln);
 | |
| 		i__1 = nr;
 | |
| 		for (q = 1; q <= i__1; ++q) {
 | |
| 		    temp1 = xsc * (r__1 = v[q + q * v_dim1], abs(r__1));
 | |
| 		    i__2 = *n;
 | |
| 		    for (p = 1; p <= i__2; ++p) {
 | |
| 			if (p > q && (r__1 = v[p + q * v_dim1], abs(r__1)) <= 
 | |
| 				temp1 || p < q) {
 | |
| 			    v[p + q * v_dim1] = r_sign(&temp1, &v[p + q * 
 | |
| 				    v_dim1]);
 | |
| 			}
 | |
| 			if (p < q) {
 | |
| 			    v[p + q * v_dim1] = -v[p + q * v_dim1];
 | |
| 			}
 | |
| /* L5968: */
 | |
| 		    }
 | |
| /* L5969: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__1 = nr - 1;
 | |
| 		i__2 = nr - 1;
 | |
| 		slaset_("U", &i__1, &i__2, &c_b34, &c_b34, &v[(v_dim1 << 1) + 
 | |
| 			1], ldv);
 | |
| 	    }
 | |
| 	    i__1 = *lwork - (*n << 1);
 | |
| 	    sgeqrf_(n, &nr, &v[v_offset], ldv, &work[*n + 1], &work[(*n << 1) 
 | |
| 		    + 1], &i__1, &ierr);
 | |
| 	    slacpy_("L", n, &nr, &v[v_offset], ldv, &work[(*n << 1) + 1], n);
 | |
| 
 | |
| 	    i__1 = nr;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		i__2 = nr - p + 1;
 | |
| 		scopy_(&i__2, &v[p + p * v_dim1], ldv, &u[p + p * u_dim1], &
 | |
| 			c__1);
 | |
| /* L7969: */
 | |
| 	    }
 | |
| 	    if (l2pert) {
 | |
| 		xsc = sqrt(small / epsln);
 | |
| 		i__1 = nr;
 | |
| 		for (q = 2; q <= i__1; ++q) {
 | |
| 		    i__2 = q - 1;
 | |
| 		    for (p = 1; p <= i__2; ++p) {
 | |
| /* Computing MIN */
 | |
| 			r__3 = (r__1 = u[p + p * u_dim1], abs(r__1)), r__4 = (
 | |
| 				r__2 = u[q + q * u_dim1], abs(r__2));
 | |
| 			temp1 = xsc * f2cmin(r__3,r__4);
 | |
| 			u[p + q * u_dim1] = -r_sign(&temp1, &u[q + p * u_dim1]
 | |
| 				);
 | |
| /* L9971: */
 | |
| 		    }
 | |
| /* L9970: */
 | |
| 		}
 | |
| 	    } else {
 | |
| 		i__1 = nr - 1;
 | |
| 		i__2 = nr - 1;
 | |
| 		slaset_("U", &i__1, &i__2, &c_b34, &c_b34, &u[(u_dim1 << 1) + 
 | |
| 			1], ldu);
 | |
| 	    }
 | |
| 	    i__1 = *lwork - (*n << 1) - *n * nr;
 | |
| 	    sgesvj_("L", "U", "V", &nr, &nr, &u[u_offset], ldu, &sva[1], n, &
 | |
| 		    v[v_offset], ldv, &work[(*n << 1) + *n * nr + 1], &i__1, 
 | |
| 		    info);
 | |
| 	    scalem = work[(*n << 1) + *n * nr + 1];
 | |
| 	    numrank = i_nint(&work[(*n << 1) + *n * nr + 2]);
 | |
| 	    if (nr < *n) {
 | |
| 		i__1 = *n - nr;
 | |
| 		slaset_("A", &i__1, &nr, &c_b34, &c_b34, &v[nr + 1 + v_dim1], 
 | |
| 			ldv);
 | |
| 		i__1 = *n - nr;
 | |
| 		slaset_("A", &nr, &i__1, &c_b34, &c_b34, &v[(nr + 1) * v_dim1 
 | |
| 			+ 1], ldv);
 | |
| 		i__1 = *n - nr;
 | |
| 		i__2 = *n - nr;
 | |
| 		slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &v[nr + 1 + (nr + 
 | |
| 			1) * v_dim1], ldv);
 | |
| 	    }
 | |
| 	    i__1 = *lwork - (*n << 1) - *n * nr - nr;
 | |
| 	    sormqr_("L", "N", n, n, &nr, &work[(*n << 1) + 1], n, &work[*n + 
 | |
| 		    1], &v[v_offset], ldv, &work[(*n << 1) + *n * nr + nr + 1]
 | |
| 		    , &i__1, &ierr);
 | |
| 
 | |
| /*           Permute the rows of V using the (column) permutation from the */
 | |
| /*           first QRF. Also, scale the columns to make them unit in */
 | |
| /*           Euclidean norm. This applies to all cases. */
 | |
| 
 | |
| 	    temp1 = sqrt((real) (*n)) * epsln;
 | |
| 	    i__1 = *n;
 | |
| 	    for (q = 1; q <= i__1; ++q) {
 | |
| 		i__2 = *n;
 | |
| 		for (p = 1; p <= i__2; ++p) {
 | |
| 		    work[(*n << 1) + *n * nr + nr + iwork[p]] = v[p + q * 
 | |
| 			    v_dim1];
 | |
| /* L8972: */
 | |
| 		}
 | |
| 		i__2 = *n;
 | |
| 		for (p = 1; p <= i__2; ++p) {
 | |
| 		    v[p + q * v_dim1] = work[(*n << 1) + *n * nr + nr + p];
 | |
| /* L8973: */
 | |
| 		}
 | |
| 		xsc = 1.f / snrm2_(n, &v[q * v_dim1 + 1], &c__1);
 | |
| 		if (xsc < 1.f - temp1 || xsc > temp1 + 1.f) {
 | |
| 		    sscal_(n, &xsc, &v[q * v_dim1 + 1], &c__1);
 | |
| 		}
 | |
| /* L7972: */
 | |
| 	    }
 | |
| 
 | |
| /*           At this moment, V contains the right singular vectors of A. */
 | |
| /*           Next, assemble the left singular vector matrix U (M x N). */
 | |
| 
 | |
| 	    if (nr < *m) {
 | |
| 		i__1 = *m - nr;
 | |
| 		slaset_("A", &i__1, &nr, &c_b34, &c_b34, &u[nr + 1 + u_dim1], 
 | |
| 			ldu);
 | |
| 		if (nr < n1) {
 | |
| 		    i__1 = n1 - nr;
 | |
| 		    slaset_("A", &nr, &i__1, &c_b34, &c_b34, &u[(nr + 1) * 
 | |
| 			    u_dim1 + 1], ldu);
 | |
| 		    i__1 = *m - nr;
 | |
| 		    i__2 = n1 - nr;
 | |
| 		    slaset_("A", &i__1, &i__2, &c_b34, &c_b35, &u[nr + 1 + (
 | |
| 			    nr + 1) * u_dim1], ldu);
 | |
| 		}
 | |
| 	    }
 | |
| 
 | |
| 	    i__1 = *lwork - *n;
 | |
| 	    sormqr_("Left", "No Tr", m, &n1, n, &a[a_offset], lda, &work[1], &
 | |
| 		    u[u_offset], ldu, &work[*n + 1], &i__1, &ierr);
 | |
| 
 | |
| 	    if (rowpiv) {
 | |
| 		i__1 = *m - 1;
 | |
| 		slaswp_(&n1, &u[u_offset], ldu, &c__1, &i__1, &iwork[(*n << 1)
 | |
| 			 + 1], &c_n1);
 | |
| 	    }
 | |
| 
 | |
| 
 | |
| 	}
 | |
| 	if (transp) {
 | |
| 	    i__1 = *n;
 | |
| 	    for (p = 1; p <= i__1; ++p) {
 | |
| 		sswap_(n, &u[p * u_dim1 + 1], &c__1, &v[p * v_dim1 + 1], &
 | |
| 			c__1);
 | |
| /* L6974: */
 | |
| 	    }
 | |
| 	}
 | |
| 
 | |
|     }
 | |
| /*     end of the full SVD */
 | |
| 
 | |
| /*     Undo scaling, if necessary (and possible) */
 | |
| 
 | |
|     if (uscal2 <= big / sva[1] * uscal1) {
 | |
| 	slascl_("G", &c__0, &c__0, &uscal1, &uscal2, &nr, &c__1, &sva[1], n, &
 | |
| 		ierr);
 | |
| 	uscal1 = 1.f;
 | |
| 	uscal2 = 1.f;
 | |
|     }
 | |
| 
 | |
|     if (nr < *n) {
 | |
| 	i__1 = *n;
 | |
| 	for (p = nr + 1; p <= i__1; ++p) {
 | |
| 	    sva[p] = 0.f;
 | |
| /* L3004: */
 | |
| 	}
 | |
|     }
 | |
| 
 | |
|     work[1] = uscal2 * scalem;
 | |
|     work[2] = uscal1;
 | |
|     if (errest) {
 | |
| 	work[3] = sconda;
 | |
|     }
 | |
|     if (lsvec && rsvec) {
 | |
| 	work[4] = condr1;
 | |
| 	work[5] = condr2;
 | |
|     }
 | |
|     if (l2tran) {
 | |
| 	work[6] = entra;
 | |
| 	work[7] = entrat;
 | |
|     }
 | |
| 
 | |
|     iwork[1] = nr;
 | |
|     iwork[2] = numrank;
 | |
|     iwork[3] = warning;
 | |
| 
 | |
|     return;
 | |
| } /* sgejsv_ */
 | |
| 
 |