221 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
			
		
		
	
	
			221 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
| *> \brief <b> SGBSV computes the solution to system of linear equations A * X = B for GB matrices</b> (simple driver)
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at
 | |
| *            http://www.netlib.org/lapack/explore-html/
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download SGBSV + dependencies
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/sgbsv.f">
 | |
| *> [TGZ]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/sgbsv.f">
 | |
| *> [ZIP]</a>
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/sgbsv.f">
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE SGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
 | |
| *
 | |
| *       .. Scalar Arguments ..
 | |
| *       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       INTEGER            IPIV( * )
 | |
| *       REAL               AB( LDAB, * ), B( LDB, * )
 | |
| *       ..
 | |
| *
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *> SGBSV computes the solution to a real system of linear equations
 | |
| *> A * X = B, where A is a band matrix of order N with KL subdiagonals
 | |
| *> and KU superdiagonals, and X and B are N-by-NRHS matrices.
 | |
| *>
 | |
| *> The LU decomposition with partial pivoting and row interchanges is
 | |
| *> used to factor A as A = L * U, where L is a product of permutation
 | |
| *> and unit lower triangular matrices with KL subdiagonals, and U is
 | |
| *> upper triangular with KL+KU superdiagonals.  The factored form of A
 | |
| *> is then used to solve the system of equations A * X = B.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is INTEGER
 | |
| *>          The number of linear equations, i.e., the order of the
 | |
| *>          matrix A.  N >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KL
 | |
| *> \verbatim
 | |
| *>          KL is INTEGER
 | |
| *>          The number of subdiagonals within the band of A.  KL >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] KU
 | |
| *> \verbatim
 | |
| *>          KU is INTEGER
 | |
| *>          The number of superdiagonals within the band of A.  KU >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] NRHS
 | |
| *> \verbatim
 | |
| *>          NRHS is INTEGER
 | |
| *>          The number of right hand sides, i.e., the number of columns
 | |
| *>          of the matrix B.  NRHS >= 0.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] AB
 | |
| *> \verbatim
 | |
| *>          AB is REAL array, dimension (LDAB,N)
 | |
| *>          On entry, the matrix A in band storage, in rows KL+1 to
 | |
| *>          2*KL+KU+1; rows 1 to KL of the array need not be set.
 | |
| *>          The j-th column of A is stored in the j-th column of the
 | |
| *>          array AB as follows:
 | |
| *>          AB(KL+KU+1+i-j,j) = A(i,j) for max(1,j-KU)<=i<=min(N,j+KL)
 | |
| *>          On exit, details of the factorization: U is stored as an
 | |
| *>          upper triangular band matrix with KL+KU superdiagonals in
 | |
| *>          rows 1 to KL+KU+1, and the multipliers used during the
 | |
| *>          factorization are stored in rows KL+KU+2 to 2*KL+KU+1.
 | |
| *>          See below for further details.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDAB
 | |
| *> \verbatim
 | |
| *>          LDAB is INTEGER
 | |
| *>          The leading dimension of the array AB.  LDAB >= 2*KL+KU+1.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] IPIV
 | |
| *> \verbatim
 | |
| *>          IPIV is INTEGER array, dimension (N)
 | |
| *>          The pivot indices that define the permutation matrix P;
 | |
| *>          row i of the matrix was interchanged with row IPIV(i).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in,out] B
 | |
| *> \verbatim
 | |
| *>          B is REAL array, dimension (LDB,NRHS)
 | |
| *>          On entry, the N-by-NRHS right hand side matrix B.
 | |
| *>          On exit, if INFO = 0, the N-by-NRHS solution matrix X.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDB
 | |
| *> \verbatim
 | |
| *>          LDB is INTEGER
 | |
| *>          The leading dimension of the array B.  LDB >= max(1,N).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] INFO
 | |
| *> \verbatim
 | |
| *>          INFO is INTEGER
 | |
| *>          = 0:  successful exit
 | |
| *>          < 0:  if INFO = -i, the i-th argument had an illegal value
 | |
| *>          > 0:  if INFO = i, U(i,i) is exactly zero.  The factorization
 | |
| *>                has been completed, but the factor U is exactly
 | |
| *>                singular, and the solution has not been computed.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee
 | |
| *> \author Univ. of California Berkeley
 | |
| *> \author Univ. of Colorado Denver
 | |
| *> \author NAG Ltd.
 | |
| *
 | |
| *> \ingroup realGBsolve
 | |
| *
 | |
| *> \par Further Details:
 | |
| *  =====================
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>  The band storage scheme is illustrated by the following example, when
 | |
| *>  M = N = 6, KL = 2, KU = 1:
 | |
| *>
 | |
| *>  On entry:                       On exit:
 | |
| *>
 | |
| *>      *    *    *    +    +    +       *    *    *   u14  u25  u36
 | |
| *>      *    *    +    +    +    +       *    *   u13  u24  u35  u46
 | |
| *>      *   a12  a23  a34  a45  a56      *   u12  u23  u34  u45  u56
 | |
| *>     a11  a22  a33  a44  a55  a66     u11  u22  u33  u44  u55  u66
 | |
| *>     a21  a32  a43  a54  a65   *      m21  m32  m43  m54  m65   *
 | |
| *>     a31  a42  a53  a64   *    *      m31  m42  m53  m64   *    *
 | |
| *>
 | |
| *>  Array elements marked * are not used by the routine; elements marked
 | |
| *>  + need not be set on entry, but are required by the routine to store
 | |
| *>  elements of U because of fill-in resulting from the row interchanges.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE SGBSV( N, KL, KU, NRHS, AB, LDAB, IPIV, B, LDB, INFO )
 | |
| *
 | |
| *  -- LAPACK driver routine --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       INTEGER            INFO, KL, KU, LDAB, LDB, N, NRHS
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       INTEGER            IPIV( * )
 | |
|       REAL               AB( LDAB, * ), B( LDB, * )
 | |
| *     ..
 | |
| *
 | |
| *  =====================================================================
 | |
| *
 | |
| *     .. External Subroutines ..
 | |
|       EXTERNAL           SGBTRF, SGBTRS, XERBLA
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          MAX
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
| *
 | |
| *     Test the input parameters.
 | |
| *
 | |
|       INFO = 0
 | |
|       IF( N.LT.0 ) THEN
 | |
|          INFO = -1
 | |
|       ELSE IF( KL.LT.0 ) THEN
 | |
|          INFO = -2
 | |
|       ELSE IF( KU.LT.0 ) THEN
 | |
|          INFO = -3
 | |
|       ELSE IF( NRHS.LT.0 ) THEN
 | |
|          INFO = -4
 | |
|       ELSE IF( LDAB.LT.2*KL+KU+1 ) THEN
 | |
|          INFO = -6
 | |
|       ELSE IF( LDB.LT.MAX( N, 1 ) ) THEN
 | |
|          INFO = -9
 | |
|       END IF
 | |
|       IF( INFO.NE.0 ) THEN
 | |
|          CALL XERBLA( 'SGBSV ', -INFO )
 | |
|          RETURN
 | |
|       END IF
 | |
| *
 | |
| *     Compute the LU factorization of the band matrix A.
 | |
| *
 | |
|       CALL SGBTRF( N, N, KL, KU, AB, LDAB, IPIV, INFO )
 | |
|       IF( INFO.EQ.0 ) THEN
 | |
| *
 | |
| *        Solve the system A*X = B, overwriting B with X.
 | |
| *
 | |
|          CALL SGBTRS( 'No transpose', N, KL, KU, NRHS, AB, LDAB, IPIV,
 | |
|      $                B, LDB, INFO )
 | |
|       END IF
 | |
|       RETURN
 | |
| *
 | |
| *     End of SGBSV
 | |
| *
 | |
|       END
 |